EN | DE
Theoretische Informatik

Dr. Henning Urbat

FAU Erlangen-Nürnberg
Lehrstuhl für Informatik 8 (Theoretische Informatik)
Martensstraße 3
D-91058 Erlangen
Office: 11.157
E-Mail: henning.urbat[at]fau.de
Phone: 0049-9131/85-64030

About me

I am a postdoctoral researcher in the Theoretical Computer Science group at Friedrich-Alexander-Universität Erlangen-Nürnberg. My research focuses on categorical and coalgebraic structures in computer science, in particular:

  • Duality theory for formal languages
  • Semantics of recursion and iteration
  • Monad-based verification logics

My position is funded by the DFG project HighMoon II, led by Sergey Goncharov and Lutz Schröder.

Publications

  1. Jirí Adámek, Stefan Milius, Henning Urbat: A categorical approach to syntactic monoids. Logical Methods in Computer Science, Vol. 14(2:9), pp. 1–34, 2018
  2. Stefan Milius, Jirí Adámek, Henning Urbat: On algebras with effectful iteration. Proc. Fourteenth International Workshop on Coalgebraic Methods in Computer Science (CMCS 2018), Lecture Notes Comput. Sci.
  3. Henning Urbat, Jirí Adámek, Liang-Ting Chen, Stefan Milius: Eilenberg theorems for free. EATCS Best paper award. Proc. 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs). Extended ArXiv version
  4. Henning Urbat: Finite behaviours and finitary corecursion. Proc. 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017), Leibniz International Proceedings in Informatics (LIPIcs)
  5. Liang-Ting Chen, Henning Urbat: Schützenberger products in a category. Proc. Developments in Language Theory (DLT 2016), 89-101
  6. Jirí Adámek, Liang-Ting Chen, Stefan Milius, Henning Urbat: Profinite monads, profinite equations, and Reiterman's theorem. Proc. Ninteenth International Conference on Foundations of Software Science and Computation Structures (FOSSACS 2016), 531-547
  7. Jirí Adámek, Stefan Milius, Robert Myers, Henning Urbat: Varieties of languages in a category. Proc. 30th Annual Symposium on Logic in Computer Science (LICS 2015), pp. 414-425, IEEE 2015
  8. Jirí Adámek, Stefan Milius, Henning Urbat: Syntactic monoids in a category. Best paper award. Proc. 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015), Leibniz International Proceedings in Informatics (LIPIcs)
  9. Liang-Ting Chen, Henning Urbat: A fibrational approach to automata theory. Proc. 6th Conference on Algebra and Coalgebra in Computer Science (CALCO 2015), Leibniz International Proceedings in Informatics (LIPIcs)
  10. Jirí Adámek, Stefan Milius, Robert Myers, Henning Urbat: Coalgebraic constructions of canonical nondeterministic automata. Journal version of CMCS 2014 conference paper below. To appear in Theor. Comp. Sci., 2015
  11. Jirí Adámek, Stefan Milius, Lawrence S. Moss, Henning Urbat: On finitary functors and their presentation. J. Comput. System Sci., vol. 81 (5), pp. 813-833, 2015
  12. Jirí Adámek, Stefan Milius, Robert Myers, Henning Urbat: On continuous nondeterminism and state minimality. Proc. 30th Conference on Mathematical Foundations of Programming Semantics (MFPS 2014), Electron. Notes Theor. Comput. Sci., vol. 308, pp. 3-23.
  13. Jirí Adámek, Stefan Milius, Robert Myers, Henning Urbat: Canonical nondeterministic automata. Proc. Twelfth International Workshop on Coalgebraic Methods in Computer Science (CMCS 2014), Lecture Notes Comput. Sci., vol. 8446, pp. 189-210.
  14. Jirí Adámek, Stefan Milius, Robert Myers, Henning Urbat: Generalized Eilenberg Theorem I: Local varieties of languages. Proc. Seventeenth International Conference on Foundations of Software Science and Computation Structures (FOSSACS 2014), Lecture Notes Comput. Sci. (ARCoSS), vol. 8412, pp. 366-380.
  15. Robert Myers, Henning Urbat: A characterisation of NL/poly via nondeterministic finite automata. Proc. Descriptional Complexity of Formal Systems (DCFS 2013), Lecture Notes Comput. Sci., vol. 8031, pp. 194-204

Scientific Talks

  1. Eilenberg theorems for free. HIGHLIGHTS 2018, Berlin, Germany, September 2018
  2. Finite behaviours and finitary corecursion. CALCO 2017, Ljubljana, Slovenia, June 2017
  3. Eilenberg-Reiterman theory for a monad. Logic Colloquium 2016, Leeds, England, August 2016
  4. Schützenberger products in a category. DLT 2016, Montreal, Canada, July 2016
  5. Algebraic language theory = monads + duality. CMCS 2016, Eindhoven, Netherlands, April 2016
  6. Algebraic language theory = monads + duality. PSSL 99, Braunschweig, Germany, March 2016
  7. Varieties of languages in a category. LICS 2015, Kyoto, Japan, July 2015
  8. Syntactic monoids in a category. CALCO 2015, Nijmegen, Netherlands, June 2015
  9. On continuous nondeterminism and state minimality. MFPS 2014, Ithaca, United States, June 2014
  10. Canonical nondeterministic automata. CMCS 2014, Grenoble, France, April 2014
  11. A characterisation of NL/poly via nondeterministic finite automata. DCFS 2013, London, Canada, July 2013
  12. Two finitary functors. Dagstuhl seminar “Coalgebraic Logics”, Schloss Dagstuhl, Germany, October 2012

Professional Activitivies

  • Fourteenth International Workshop on Coalgebraic Methods in Computer Science (CMCS 2018), PC member
  • Reviewer for conferences (CONCUR 2018, DLT 2018, CMCS 2018, CALCO 2017, FOSSACS 2017, MFCS 2016, MFPS 2016, ICALP 2016, LICS 2016, CALCO 2015) and journals (Houston Journal of Mathematics, Journal of Pure and Applied Algebra, Logical Methods in Computer Science)

Teaching

In winter term 2018/2019 I will be teaching the course Algebraic and Logical Aspects of Automata Theory (in German). Previously I (co-)taught the following courses:

  • Automata and Formal Languages
  • Computability and Complexity
  • Introduction to Logic
  • Formal Verification
  • Algebra of Programming