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Abstract. For each language L ⊆ 2∗ and function t : N→ N, we define
another language t∗L ⊆ 2∗. We then prove that L ∈ NL/poly if and only
if there exists k ∈ N such that the projections (nk ∗L)∩2n are accepted
by nondeterministic finite automata of size polynomial in n. Therefore,
proving super-polynomial lower bounds for unrestricted nondeterministic
branching programs reduces to proving super-polynomial lower bounds
for oblivious read-once nondeterministic branching programs i.e. nonde-
terministic finite automata.

1 Introduction

In this paper, we show that proving super-polynomial lower bounds for nondeter-
ministic branching programs (nbps) is essentially equivalent to proving them for
nondeterministic finite automata (nfas). It is a major open problem in complex-
ity theory to provide an explicit language L ⊆ 2∗, such that there is no sequence
of nbps Bn of size polynomial in n accepting the projections Ln = L ∩ 2n [4].
However, if one restricts to sequences of nfas – which are instances of oblivious
read-once nbps – many explicit languages with provably super-polynomial lower
bounds are known, e.g. the language of all binary palindromes. Since the latter
has linear size nbps, which read the variables in the appropriate order, we cannot
simply replace nbps by nfas. Instead, given any L ⊆ 2∗ and function t : N→ N

we define another language t ∗ L ⊆ 2∗. We then show that for any language L,
the projections Ln are accepted by nbps of size polynomial in n iff there exists
k ∈ N such that the projections (nk ∗L)n are accepted by nfas of size polynomial
in n. This is achieved via a relatively simple translation between nbps and nfas.

Recall the non-uniform complexity class NL/poly i.e. those languages ac-
cepted by a single logspace-bounded nondeterministic Turing machine with poly-
nomially bounded advice [6]. It is known to coincide with those languages whose
projections are accepted by a sequence of nbps of size polynomial in n [9, 1].
Letting nfa(poly) contain those languages whose projections are accepted by a
sequence of nfas of size polynomial in n, our main result is as follows:

Theorem. L ∈ NL/poly iff there exists k ∈ N such that nk ∗ L ∈ nfa(poly).

As we explain in the final section, one can also deduce other connections
between complexity theory and automata theory:
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(1) For any language L ⊆ 2∗ with poly-size deterministic branching programs,
there exists k ∈ N such that nk ∗ L is accepted by a sequence of poly-size
nfas, each of which is a disjoint union of dfas.

(2) There is an explicit polynomial translation from propositional formulae φ to
nfas Nφ, such that φ is a tautology iff Nφ accepts the full language 2∗.

These results illustrate the difficulty of minimising or proving lower bounds
for nondeterministic finite automata. Although it is well known that minimising
nfas is PSPACE-complete, our results imply hardness for many specific languages.
For example, to show L /∈ NL/poly it is necessary and sufficient to prove that, for
each fixed natural k, the language nk ∗ L does not have poly-size nfas. Showing
this for any language L ∈ NP would prove that NL 6= NP. Also, by the contra-
positive of (1) above, one could prove L 6= NL by starting with some L ∈ NL.

We discuss some connections with existing work. It is known that NL/poly =
UL/poly i.e. in some precise sense one can efficiently make nbps unambiguous
[10]. However, our translation from nbps to nfas does not preserve unambiguity.
This is unsurprising, since there exist good general methods for proving lower
bounds for unambiguous nfas, essentially by computing the minimal dimension
of any Z2-weighted machine accepting L ⊆ 2n, viewed as a weighted language
L : 2∗ → Z2. We have also considered the (extended) fooling technique and
its generalisation, namely biclique edge coverings and their associated dimen-
sion [2], which is strongly related to communication complexity [8, 3]. These
methods appear to be unsuitable for the languages we consider, although this
approach deserves further study. Finally, Jukna has written a note concerning
our construction, in which he explains that all known lower bound methods for
read-once nbps do not apply to the languages we consider [5, 4].

2 Nondeterministic Branching Programs

In this section we review nondeterministic branching programs, providing com-
parisons to related structures and a normal form. We first fix our notation.

Notation. Let 2 = {0, 1} be the booleans and N = {0, 1, 2, . . . } be the set of

natural numbers. For any language L ⊆ 2∗ let L̃ = 2∗\L denote its complement,
and for any finite language L ⊆ 2n write L = 2n \L for its relative complement.
Given any word w ∈ 2n and 1 ≤ i ≤ n let wi ∈ 2 be the ith letter of w.
For any d ∈ N let wd = w · · ·w be the d-fold composition. Finally, fix a set
Xn = {x1, . . . , xn} of n variables for each natural n ∈ N.

Definition 1. (a) A nondeterministic branching program (nbp) over n variables
is a quadruple B = (G, s, θ, τ) consisting of:

(i) a finite directed multigraph G = (V,E);
(ii) a source node s ∈ V ;
(iii) a node labelling i.e. a function θ : V → Xn ∪ 2 where every node

labelled with 0 or 1 is a sink (has out-degree 0);
(iv) an edge labelling i.e. a function τ : E → 2.
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We use the notation (u‖l) b−→ (v‖m) to indicate that node u has label l, node
v has label m, and there is an edge from u to v with label b.

(b) A deterministic branching program (dbp) is an nbp whose variable-labelled
nodes have out-degree 2, where one outgoing edge is labelled by 0, the other
by 1.

(c) The size s(B) of an nbp B is its number of nodes. For acyclic B, its depth
d(B) is the number of edges of any longest directed path starting at the
source.

(d) A word w = w1 . . . wn ∈ 2n is accepted by an nbp B if there exists some
path:

(s‖xk0)
b0−→ (v1‖xk1)

b1−→ · · · bm−2−−−→ (vm−1‖xkm−1)
bm−1−−−→ (vm‖1)

consistent with w, i.e. bi = wki for every 0 ≤ i < m. The language LB ⊆ 2n

of B is the set of all words accepted by B.

Remark 2. Many authors make additional assumptions on the structure of
(nondeterministic) branching programs, e.g. that they are acyclic and every node
is reachable from the source. These restrictions emerge in Lemma 8.

Example 3. Here is an nbp B = (G, s, θ, τ) over n = 4 variables:

�� ���� ��s‖x4
0

yyssss 1

%%KKKK
�� ���� ��v1‖x2

0 ��
0

%%KKKK
�� ���� ��v2‖x3

0

yyssss
1���� ���� ��v3‖x4

0 �� 1 %%KKKK
�� ���� ��v4‖x2

0,1��

�� ���� ��v5‖x1

0tt�� ���� ��0‖0
�� ���� ��1‖1

Then B accepts the language:

LB = {0000, 1000, 0010, 1010, 0001, 0101, 1001, 1101, 0011, 0111}

i.e. the satisfying assignments of (x̄4 ∧ x̄2)∨ (x4 ∧ (x̄3 ∨ (x3 ∧ x̄1))). For example,

1010 is accepted via the path (s‖x4)
0−→ (v1‖x2)

0−→ (v4‖x2)
0−→ (1‖1).

Remark 4. Nbps are closely related to switching-and-rectifier networks (srns)
[9]. An srn S = (G, s, t, µ) over n variables is a finite directed multigraph G =
(V,E) equipped with two vertices s, t ∈ V (source and target) and a partial
edge-labelling µ : E ⇀ Xn × 2. A word w ∈ 2n is accepted iff there exists a
directed path from s to t such that for each label (xi, b) we have wi = b. Define
the size s(S) of an srn S to be the number of nodes, although it is more standard
to consider the number of labelled edges.

Every nbp B has an equivalent srn S with s(S) ≤ s(B) + 1, and every srn S
has an equivalent nbp B with s(B) ≤ 1 + n · s(S). By ‘equivalent’ we mean they
accept the same language. The constructions resemble the translation between
Moore and Mealy machines.
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(a) Given an nbp B = (G, s, θ, τ) one can assume it has exactly one 1-labelled
node 1 (else introduce a new 1-labelled node 1 and merge 1-labelled nodes).
Then an equivalent srn S is obtained by labelling each edge (u, v) in G by
(θ(u), τ(u, v)) and requiring s/1 to be the source/target node, respectively.
Therefore s(S) ≤ 1 + s(B).

(b) Given any srn S = (G, s, t, µ) over n > 0 variables, we may assume that:

(1) Any two labelled edges with the same source are labelled by the same
variable xi i.e. they have labels (xi, bj) for j = 1, 2. One can force this
by adding unlabelled edges to ‘dummy’ nodes, used as the source of
conflicting edges. At most (n− 1) · s(S) new nodes are required.

(2) t is a sink, else add a new target t′ and an unlabelled edge t→ t′.
(3) All edges are labelled, else replace every unlabelled edge (u, v) by two

parallel edges (u, v), one labelled by (xi, 0) and one labelled by (xi, 1),
where i is chosen such that (1) still holds.

Then S and S ′ accept the same language and s(S ′) ≤ 1 + n · s(S). We
obtain B from S ′ as follows. Replace each (xi, b)-labelled edge (u, v) by the
b-labelled edge (u, v) and set θ(u) = xi (well-defined by (1)). Finally label
θ(t) = 1 and θ(v) = 0 for each sink v 6= t, and let s be the source of B. Then
B accepts the same language as S, and s(B) = s(S ′) ≤ 1 + n · s(S).

We now define a ‘normal form’ for nondeterministic branching programs.

Definition 5. An nbp B = (G, s, θ, τ) is called stratified if

(1) for any pair e 6= e′ of parallel edges, one has τ(e) 6= τ(e′);
(2) G is acyclic;
(3) every node is reachable from s;
(4) all sinks are labelled by 0 or 1;
(5) every path from s to a sink has length d(B).

Remark 6. Assuming that (3) holds, the conditions (2) and (5) are equivalent
to the existence of a (necessarily unique) partition V = V0∪V1∪ . . .∪Vd(B) such
that V0 = {s}, all sinks are contained in Vd(B), and every edge of B goes from
Vi to Vi+1 for some 0 ≤ i < d(B). In fact, choose Vi to be the nodes reachable
from s via a path of length i.

Example 7. The nbp in Example 3 is stratified.

Lemma 8. Every nbp B has an equivalent stratified nbp of size O(s(B)6).

Proof. For 1 ≤ k ≤ 5, we show that every nbp B = ((V,E), s, θ, τ) satisfying
the first k − 1 conditions of Definition 5 can be turned into an equivalent nbp
satisfying the first k conditions.

k = 1: Whenever an nbp B has parallel edges with the same label, delete all
but one of them. This yields an equivalent nbp satisfying (1).
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k = 2: If B satisfies (1), construct the nbp B′ = ((V ′, E′), s′, θ′, τ ′) where:

V ′ = V × {0, . . . , s(B)} E′ = {((u, i), (v, i+ 1)) : 0 ≤ i < s(B), (u, v) ∈ E}
s′ = (s, 0) θ′(v, i) = θ(v) τ ′((u, i), (v, i+ 1)) = τ(u, v)

Clearly B′ satisfies (1) and (2). Furthermore B′ is equivalent to B: if w ∈ LB

then there exists a w-consistent path (s‖xk0)
b0−→ (v1‖xk1)

b1−→ · · · bm−1−−−→ (vm‖1)
in B of length m ≤ s(B), which immediately yields the w-consistent path:

((s, 0)‖xk0)
b0−→ ((v1, 1)‖xk1)

b1−→ · · · bm−1−−−→ ((vm,m)‖1)

in B′. This shows LB ⊆ LB′ and the reverse inclusion is proved analogously.

k = 3: Given an nbp satisfying (1) and (2), restrict to those nodes reachable
from the source via directed paths.

k = 4: Now assume that B satisfies (1)-(3). Then relabelling all variable-labelled
sinks with 0 yields an equivalent nbp satisfying (1)-(4).

k = 5: We may assume that every sink is reachable from s via a path of length
d(B): Otherwise merge sinks with the same label, so that the resulting nbp has
at most two sinks, and if there is sink of depth i < d(B), extend it by a dummy
path of length d(B)− i. In view of Remark 6, define the partition:

Vi = {v ∈ V : i is the length of any longest directed path from s to v}

for each 0 ≤ i ≤ d(B). Clearly V0 = {s} and Vd(B) contains all sinks. Further-
more, every edge goes from Vi to Vj for some i < j. By replacing any such edge
by a 0, 1-labelled path of length j− i, one makes sure that every edge goes from
V ′i to V ′i+1 for some i < d(B). By Remark 6, the resulting nbp satisfies (1)-(5).

Observe that in steps 2 and 5, the size of the constructed nbp is at most
quadratic and cubic, respectively, in the size of the given one. In the other steps
the size does not increase. Therefore, starting from any nbp B we have shown
how to construct an equivalent stratified nbp of size O(s(B)6). ut

3 From Stratified Nbps to Nfas

In this section we associate to each stratified nbp B a nondeterministic finite
automaton NB of size polynomial in s(B). Although NB does not accept the
same language as B, they are closely related. We start by recalling the classical
notion of a nondeterministic finite automaton.

Definition 9. A nondeterministic finite automaton (nfa) is a tuple

N = (Z, (Rb)b=0,1, F, I)



6

where Z is a finite set of states,Rb ⊆ Z×Z is a relation representing b-transitions,
F ⊆ Z is the set of final states, and I ⊆ Z is the set of initial states. The size
s(N) of an nfa N is the number of states, and the depth d(N) of N is the
length of any longest path starting in an initial state (defined for acyclic nfas).
N accepts the language L(N) ⊆ 2∗ in the usual manner: w ∈ L(N) iff there
exists a w-path from some initial state to some final state.

Remark 10. In analogy to Definition 5, we call an nfa N stratified if (i) N is
acyclic and reachable, (ii) N has exactly one initial state, (iii) a state is final iff
it is a sink, and (iv) all paths from the initial state to a final state have the same
length d(N). It is easy to see that every nfa accepting a finite language L ⊆ 2n

can be turned into an equivalent stratified nfa with no more states. Moreover, a
stratified nfa can be viewed as a stratified nbp: label final states with 1, label any
nonfinal state with xi+1 if it is reachable via any word of length i, and choose the
initial state as the source node. The resulting nbp is an instance of an oblivious
read-once nbp: all paths from the source to a sink read each variable exactly
once and in the same order.

Definition 11. Given a stratified nbp B = (G, s, θ, τ) over n variables, the nfa
NB is constructed as follows:

(1) Replace every edge (u‖xi)
b−→ (v‖l) of B by a path of length n from u to v,

where the i-th transition has label b and all others have labels 0 and 1.

'&%$ !"#u 0,1
//�������� 0,1

// · · · 0,1 //�������� b //�������� 0,1
// · · · 0,1 //�������� 0,1

// '&%$ !"#v
(2) The source s is the only initial state of NB, and a state is final if and only if
it is labelled with 1.

Example 12. For the nbp B of Example 3 we obtain the following nfa NB:

�� ���� �� 0,1 //�� ���� �� 0,1 //�� ���� �� 1 //�� ���� ��v2
0,1
//

0,1 !!DDDD �� ���� �� 0,1 //�� ���� �� 1 //�� ���� �� 0,1 //�� ���� ��v5
0 //�� ���� �� 0,1 //�� ���� �� 0,1 //�� ���� ��

0,1

��

�� ���� ��
0,1
//�� ���� ��

0
//�� ���� ��
0,1 ��

????? �� ���� �� 0 //�� ���� �� 0,1 //�� ���� ��
0,1
  

AAAA

//�� ���� ��s
0,1

GG��������

0,1

��
////////

�� ���� ��v4

0,1
??�����

0,1 ��
?????

�� ���� ���� ���� ��1

�� ���� �� 0 //�� ���� �� 0,1 //�� ���� ��
0,1 ??����� �� ���� �� 1 //�� ���� �� 0,1 //�� ���� ��

0,1 >>}}}}

�� ���� ��
0,1
//�� ���� ��

0,1
//�� ���� ��

0
//�� ���� ��v1

0,1
//

0,1
=={{{{ �� ���� ��

0
//�� ���� ��

0,1
//�� ���� ��

0,1
//�� ���� ��v3

0,1
//�� ���� ��

0,1
//�� ���� ��

0,1
//�� ���� ��

0
//

1

KK

�� ���� ��0

Lemma 15 below describes various relevant properties of NB. First we need
a simple definition.

Definition 13. For each n, d ∈ N and finite language L ⊆ 2n define:

d · L := {wd : w ∈ L} ⊆ 2nd,

i.e. we take the collection of all d-powers of words from L.
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Remark 14. It follows that d · L = d · L ∪ d · 2n for any n, d ≥ 0 and L ⊆ 2n.
That is, this relative complement consists of (a) those d-powered words wd where
w /∈ L, and (b) those words in 2nd which are not d-powers.

Lemma 15. For any stratified nbp B over n variables, we have:

(a) s(NB) = O(n · s(B)2), d(NB) = n · d(B) and L(NB) ⊆ 2n·d(B).

(b) d(B) ·LB = L(NB)∩ (d(B) ·2n). That is, the d(B)-powers of words accepted
by B are precisely those d(B)-powered words that NB accepts.

Proof. (a) follows directly from the construction of NB.
(b) Let d = d(B). To prove ‘⊆’, suppose w ∈ LB, so there exists some path:

s = (v0‖xk0)
b0−→ (v1‖xk1)

b1−→ . . .
bd−1−−−→ (1‖1) (∗)

in B with bi = wki for all i. This yields accepting paths of the form

(s = v0
c0,1−−→ . . .

c0,n−−→)(v1
c1,1−−→ . . .

c1,n−−→) . . . (vd−1
cd−1,0−−−−→ . . .

cd−1,n−−−−→ 1) (∗∗)

in NB where ci,j = bi for j = ki, and ci,j ∈ 2 is arbitrary otherwise. In particular,
choosing ci,j = wj for all i and j yields an accepting path for the word wd. Hence
wd ∈ L(NB) ∩ d · 2n.

Conversely, any accepting path in NB is induced by some path (∗) in B and
has the form (∗∗). If a word wd (w ∈ 2n) is accepted in NB via (∗∗), we have
bi = ci,ki = wki for all i, so the path (∗) in B is consistent with w. It follows
that w ∈ LB, which proves ‘⊇’. ut

4 Characterisation of NL/poly

We are now ready to prove our characterisation of NL/poly via nondeterministic
finite automata. We first introduce the relevant complexity classes.

Notation. For any language L ⊆ 2∗ and n ∈ N, let Ln := L ∩ 2n.

Definition 16. The complexity class nbp(poly) contains those L ⊆ 2∗ such
that each Ln is accepted by some nbp Bn, where s(Bn) ∈ nO(1) i.e. their size is
bounded polynomially in n. The complexity classes dbp(poly) and nfa(poly) are
defined analogously: replace ‘nbp’ by ‘dbp’ or ‘nfa’, respectively.

The following relationships are well-known:

dbp(poly) = L/poly nbp(poly) = NL/poly

where L/poly (resp. NL/poly) consists of those languages accepted by some single
log-space bounded deterministic (resp. nondeterministic) Turing machine with
polynomially bounded advice [6]. These results are mentioned in [9], where our
dbps correspond to ‘BPs’ and their notion of size agrees up to a linear factor.
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On the other hand, although our nbps are not quite the same as the switching-
and-rectifier networks used in [9] (their size is the number of labelled edges), the
above correspondence nevertheless holds, see [1, Theorem 1].

For any language L ⊆ 2∗ and function t : N→ N, define:

t ∗ L :=
⋃
n≥0

t(n) · Ln ⊆ 2∗

Recall that t(n) · Ln ⊆ 2n·t(n) is the relative complement of t(n) · Ln, the latter
being the t(n)-powers of words in Ln (see Definition 13).

Theorem 17. L ∈ nbp(poly) iff there exists k ∈ N such that nk ∗L ∈ nfa(poly).

The proof uses the following two results. The first is a corollary of the
Immerman-Szelepcsényi theorem, as mentioned in [9].

Theorem 18. The class nbp(poly) is closed under complement:

L ∈ nbp(poly) iff L̃ ∈ nbp(poly)

for any language L ⊆ 2∗.

The second result provides poly-size nfas for certain finite languages.

Lemma 19. For all n, d ∈ N, there exists an nfa with O(n2d3) states accepting
the language d · 2n ⊆ 2nd.

Proof. d · 2n consists of all words w ∈ 2nd such that there exists 1 ≤ i < j ≤ n ·d
where (i) i = j mod n, and (ii) wi 6= wj . The following nfa with O(nd) states
accepts all such words for a fixed pair (i, j):

�� ���� ��xi+1
0,1
// . . .

0,1
//�� ���� ��xj

0

!!DDDDD

//�� ���� ��y1
0,1
// . . .

0,1
//�� ���� ��yi

1
=={{{{{

0 !!CCCCC
�� ���� ��yj+1

0,1
// . . .

0,1
//
�� ���� ���� ���� ��ynd+1

�� ���� ��zi+1
0,1
// . . .

0,1
//�� ���� ��zj

1

==zzzzz

Taking the disjoint union of these nfas yields an nfa accepting d · 2n. Since there
are n

(
d
2

)
= O(nd2) pairs (i, j) satisfying (i), this nfa has O(n2d3) states. ut

Remark 20. On the other hand, poly-size nfas do not exist for the relative
complements d ·2n ⊆ 2nd. In fact, a state-minimal nfa for d ·2n is obtained from
its state-minimal dfa by deleting the state accepting the empty language. The
latter is exponential in n for any fixed d > 1. To see this, one can use the fact
that d · 2n defines a linear code i.e. a linear subspace of Znd2 .
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Proof (Theorem 17). Let L ∈ nbp(poly). Then also L̃ ∈ nbp(poly) by Theorem

18, so there exists a family of nbps Bn (n ≥ 0) such that Bn accepts (L̃)n = Ln
and sn := s(Bn) is polynomially bounded in n. By Lemma 8, we may assume
that the nbps Bn are stratified. Moreover, we assume that dn := d(Bn) = nk for
some k ∈ N (otherwise add dummy paths). Let Nn := NBn be the nfa associated
to Bn (see Definition 11). Then:

dn · Ln = dn · Ln ∪ dn · 2n see Remark 14

= dn · LBn ∪ dn · 2n since LBn = Ln

= (L(Nn) ∩ dn · 2n) ∪ dn · 2n by Lemma 15.(b)

= (L(Nn) ∪ dn · 2n) ∩ (dn · 2n ∪ dn · 2n)

= L(Nn) ∪ dn · 2n

By Lemma 15, Nn has O(ns2n) states. Moreover, by Lemma 19 there exists an nfa
N ′n accepting dn · 2n with O(n2d3n) states, this being polynomial in n because
dn ≤ sn. Taking the disjoint union of the nfas Nn and N ′n yields a polynomial-
sized nfa N ′′n for L(Nn) ∪ dn · 2n = dn · Ln.

Then we obtain a polynomial-sized family of nfas Mm accepting (dn ∗ L)m
as follows. If m = ndn(= nk+1) for some n, we have (dn ∗L)m = dn · Ln, so take
Mm = N ′′n . The size of N ′′n is polynomial in n, hence also in m = nk+1. If m
is not of the form ndn = nk+1 for some n then (dn ∗ L)m = ∅, so let Mm be a
one-state nfa accepting ∅. This proves dn ∗ L ∈ nfa(poly).

For the converse, suppose we have nk ∗ L ∈ nfa(poly) for some k ∈ N. Then
there exists a family of polynomial-sized nfas Nm (m ∈ N) accepting (nk ∗L)m.
By Remark 10, we can turn Nm into an equivalent stratified (oblivious read-
once) nbp Bm of the same size. Then by Theorem 18, there also exists a family

of polynomial-sized nbps B′m accepting ( ˜nk ∗ L)m. If m = nk+1 for some n, then

( ˜nk ∗ L)m = nk ·Ln and the size of B′m is polynomial in n, since it is polynomial
in m = nk+1. The nbp B′m has nk+1 variables x1, . . . , xnk+1 , and replacing all
node labels xp·n+i (where 0 ≤ p < nk and 1 ≤ i ≤ n) by xi yields an nbp B′′n
accepting Ln whose size is polynomial in n. It follows that L ∈ nbp(poly). ut

5 Applications

It immediately follows that L ∈ NL/poly iff there exists k ∈ N such that nk∗L has
poly-size nfas. Equivalently, to show L does not lie in NL/poly it is necessary and
sufficient to prove that, for each fixed k, any sequence of nfas accepting nk ∗L’s
projections have size super-polynomial in n. Proving this for some L ∈ NP would
imply NL 6= NP. Furthermore, if some nk ∗ L did have poly-size nfas, then L
has non-uniform poly-size boolean circuits: (i) view the nfas as acyclic nbps and
linearly translate to boolean circuits, (ii) identify variables xi = xj whenever
|j − i| = 1 mod n, (iii) add a NOT gate to the output. In particular, either an
NP-complete language L has non-uniform poly-size circuits, or for each k the
language nk ∗ L does not have poly-size nfas.
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Next we show that the non-powers d · 2n ⊆ 2nd are accepted by an nfa of size
O(n2d), improving the O(n2d3) bound in Lemma 19. For each 1 ≤ i ≤ n, there
is an nfa Ni of size O(nd) accepting those w ∈ 2nd such that wnx+i 6= wny+i for
some 1 ≤ x, y < d. Below we have drawn N1 in the case where d = 4.

•
0,1
// •

0,1
// •

0,1
// •

0,1
// •

0,1
// •

0,1

��

x1
0,1
// . . .

0,1
// xn

0 11

1 // xn+1
0,1
// . . .

0,1
// x2n

0
33

1 // x2n+1
0,1
// . . .

0,1
// x3n

0

%%KKKK

// y0

1 44

0 ))

0,1
// y1

0,1
// . . .

0,1
// yn

1

66

0 ((

0,1
// yn+1

0,1
// . . .

0,1
// y2n

1
66

0 ))

y3n+1
0,1
// . . .

0,1
//�� ���� ���� ���� ��y4n

z1
0,1
// . . .

0,1
// zn

1 --

0
// zn+1

0,1
// . . .

0,1
// z2n

1 ++

0
// z2n+1

0,1
// . . .

0,1
// z3n

1

99ssss

•
0,1
// •

0,1
// •

0,1
// •

0,1
// •

0,1
// •

0,1

KK

The disjoint union of the Ni’s accepts d · 2n and has size O(n2d). However the
Ni’s are inherently nondeterministic, whereas the nondeterministic acceptor de-
scribed in Lemma 19 is a disjoint union of partial dfas, which turns out to be
useful. First note that dbps are nbps, so for any L ∈ L/poly there is some nk ∗L
with poly-size nfas. Then one can strengthen this as follows:

Lemma 21. If L ∈ L/poly then there exists k ∈ N such that nk ∗L has poly-size
nfas, each of which is a disjoint union of dfas.

Proof. If L ∈ L/poly there exist poly-size dbps Bn of depth dn accepting Ln. We
may assume they are stratified with dn = nk for some k ∈ N, and construct the
associated nfas NBn . Since Bn is a dbp, NBn is very nearly a partial dfa: some
nondeterminism arises via parallel 0, 1-edges from the dbp but it may easily
be eliminated by identifying states, see node v4 in Example 12. Then we can
construct dfas Dn accepting L(NBn) of essentially the same size, so put them in
parallel with the dfas from Lemma 19 to obtain nfas Nn accepting:

L(Nn) = L(Dn) ∪ dn · 2n = L(NBn) ∪ dn · 2n = dn · L(Bn) = dn · Ln

using Lemma 15.(b) in the penultimate step. Thus nk ∗L has poly-size nfas Nn,
each one being a disjoint union of dfas. ut

Therefore to prove L 6= NL it suffices to find some L ∈ NL such that, for
each fixed k ∈ N, the language nk ∗ L does not have poly-size nfas of this
form. This bares a resemblance to work on 2-dfas simulating nfas [11, 12, 7],
where it is believed that certain nfas which somehow encode ‘reachability’ cannot
be polynomially simulated by 2-dfas. However, there is a significant difference:
the work on 2-dfas uses sequences of nfas accepting infinite regular languages,
whereas we work with sequences of finite languages.

Finally we describe a polynomial translation between propositional formulae
φ and nfas Nφ, such that φ is a tautology iff the nfa Nφ accepts the full language
2∗. We may assume the formula φ is in negation normal form and only mentions
the variables x1, . . . , xn. Then there is a linear translation from φ to an acyclic
nbp Bφ accepting φ’s satisfying valuations Lφ ⊆ 2n [4]. Briefly, variables xi
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and negated variables x̄i become xi
1→ 1 and xi

0→ 1 respectively, whereas
disjunctions/conjunctions become parallel/sequential composition respectively.
Stratifying Bφ, one obtains an nbp B′φ accepting Lφ whose depth dφ is the
maximal nesting depth of conjunctions in φ (appropriately defined). Applying
our translation, we obtain an nfa NB′φ of depth ndφ whose accepted dφ-powered

words are precisely dφ · Lφ. Finally, put this nfa in parallel with:

(i) The O(n2dφ) sized nfa accepting the non-powers dφ · 2n ⊆ 2ndφ .
(ii) An O(ndφ) sized nfa accepting 2∗ \ 2ndφ .

The resulting nfa Nφ accepts the full language 2∗ iff it accepts every dφ-
power in 2ndφ iff Lφ = 2n iff φ is a tautology. Furthermore s(Nφ) is polynomial
in s(Bφ) and hence also in the size of φ, where one usually counts the leaves.
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