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Abstract. Conditional logics capture default entailment in a modal
framework in which non-monotonic implication is a first-class cit-
izen, and in particular can be negated and nested. There is a wide
range of axiomatizations of conditionals in the literature, from weak
systems such as the basic conditional logic CK, which allows only
for equivalent exchange of conditional antecedents, to strong systems
such as Burgess’ system S, which imposes the full Kraus-Lehmann-
Magidor properties of preferential logic. While tableaux systems im-
plementing the actual complexity of the logic at hand have recently
been developed for several weak systems, strong systems including
in particular disjunction elimination or cautious monotonicity have
so far eluded such efforts; previous results for strong systems are lim-
ited to semantics-based decision procedures and completeness proofs
for Hilbert-style axiomatizations. Here, we present tableaux systems
of optimal complexity PSPACE for several strong axiom systems in
conditional logic, including system S; the arising decision procedure
for system S is implemented in the generic reasoning tool CoLoSS.

1 Introduction
A recurring theme in the formal representation of common-sense rea-
soning is non-monotonic entailment, where one expects those con-
clusions to hold that are not invalidated by the premise. To avoid the
penguins vs. birds cliché, a typical example is the assertion that John
normally goes to work on Mondays, which can be formalized as a
non-monotonic conditional

Monday⇒ work

where we use ⇒ to denote a defeasible implication ‘if – then nor-
mally’. The non-monotonicity manifests itself in the fact that the
conclusion is not maintained if more information becomes available,
such as that on some given Monday, John is sick. That is, our judge-
ment that John normally goes to work on Mondays should be consis-
tent with

¬(Monday ∧ sick⇒ work).

Situations such as the above are commonplace, and non-monotonic
reasoning has maintained a core position in artificial intelligence ever
since the first non-monotonic systems were proposed in the late 70s
and early 80s [15, 19]. Besides the philosophical interest in studying
the formal basis of common-sense reasoning, there is a growing in-
terest in implementations of non-monotonic systems for dealing with
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real-life knowledge bases and semantic web applications. (See, e.g.,
the special session on NMR Systems and Applications in [8].)

While there is a substantial body of work concerning automated
reasoning in flat non-monotonic logics (without nesting of non-
monotonic implications) there are surprisingly few results that deal
with the general case (where non-monotonic implications may be
nested), in particular if strong reasoning principles such as cautious
monotony are adopted. If we categorize non-monotonic logics ac-
cording to

• whether non-monotonic implications may be nested, and
• which set of reasoning principles is supported,

the present work fills a gap in the literature on conditional logics —
which allow for nesting and Boolean combination of conditionals —
supporting strong reasoning principles, for which we provide tight
complexity bounds and tableau algorithms.

It is well-known that weaker approaches that treat non-
monotonicity as an external entailment relation can be encoded in
the more expressive framework of conditional logic (see, e.g., [7, 2]).
We shall refer to non-monotonic entailment systems as flat non-
monotonic logics. Nested conditionals play a prominent role, e.g.,
in belief revision [3] to model update of conditional knowledge
bases by new conditional beliefs. To give a second example, defea-
sible implications can be used to model combinations of generic and
enterprise-specific rules: if your company has specific rules saying
you should not discuss your salary with others, you should, as a gen-
eral rule, be discrete about your payslip and not, e.g., leave it lying
around on your desk (although this does not, strictly speaking, logi-
cally follow from the injunction on discussing your salary with your
colleagues). Clearly, both these rules only apply in default situations
as we need to divulge our salary if we ask for a pay rise, and (maybe
unfortunately) need to disclose our payslip to the taxman. We can use
the nested conditional

(employed⇒ ¬discuss salary)⇒ (discrete about payslip)

to specify such situations. A similar example (‘documents whose dis-
closure would normally harm the interests of the company are nor-
mally confidential’) is discussed in [21].

Throughout, we discuss extensions of the minimal conditional
logic CK [6]. The only reasoning principles supported by CK are
normality in the right hand argument of the conditional (the con-
sequent), and replacement of equivalents on the left-hand side (the
antecedent). Widely accepted additional reasoning principles have
emerged in the so-called KLM axioms [13] that stipulate the identity
axiom A ⇒ A, disjunction elimination, which may be expressed in
conditional logic as

(A⇒ C) ∧ (B ⇒ C)→ (A ∨B)⇒ C,



and cautious monotonicity

(A⇒ B) ∧ (A⇒ C)→ (A ∧B)⇒ C,

where→ denotes material implication. We refer to systems that sup-
port one of the latter two axioms, which allow for manipulation of
conditional antecedents, as strong conditional logics, and to systems
that support only manipulation of conditional consequents (as dis-
cussed, e.g., in [17]) as weak conditional logics. Cautious monotony
is a particularly compelling principle. Continuing our logical dis-
cussion of John’s attendance record at work, cautious monotonicity
would allow us to conclude

Monday ∧ sick⇒ work

after all if we were given the additional information that John is nor-
mally sick on Mondays (Monday ⇒ sick), say because he tends to
be hung over after the weekend – given that we cannot very well
assume that John normally skips work on Mondays, this is indeed
quite realistic. The conditional logic implementing the KLM axioms
is known as system S [4].

Contributions of the present work. We develop unlabelled tableau
systems (which in general are structurally simpler and easier to im-
plement than labelled systems) for strong systems of conditional
logic, specifically for system S and weaker systems obtained by
dropping disjunction elimination. All these systems admit proof
search in PSPACE, thereby for the first time matching the known com-
plexity bound [9] within a tableau system in the case of system S, and
establishing new bounds in the other cases. We obtain these systems
as duals of cut-free sequent systems which arise by application of
generic modal principles [18] to suitable sets of modal rules for the
nesting-free fragment. Clearly, the crucial step here is to find these
rules, and indeed their description turns out to be non-trivial. The
complexity bounds follow by application of a generic criterion first
published in [16], which we develop further in the present work by
providing a purely syntactic version of it. We have implemented the
tableau procedure for system S within the framework of the generic
modal reasoner CoLoSS [5]; to our knowledge, this constitutes the
first implemented reasoner for a strong conditional logic.

Related work. Despite the widespread acceptance of the KLM ax-
ioms as the basic set of non-monotonic reasoning principles, there is
to date only little work on tableau calculi for logics containing these
axioms, which would be seen as a prerequisite for efficient automated
reasoning. Specifically, optimal tableau systems have been developed
in [10] for the flat non-monotonic logics considered in [13]; however,
all of these systems need to employ extensions of the language by
an additional operator. Earlier, a labelled tableau calculus of unclear
complexity for one of these logics has been given [1]. At the level
of full conditional logics, optimal tableau systems for several weak
systems have been presented in [17, 18]. The only tableau system
for a strong system of conditional logic that we are aware of is a la-
belled tableau system for the conditional logicCE [11] (correspond-
ing in the terminology of [9] to conditional logic with the uniformity
property); it is presently unclear whether this system matches known
complexity bounds.

2 Preliminaries on Conditional Logics
Conditional logic is based on a single binary modal operator⇒, the
conditional operator. Formulas of conditional logic are given by the
grammar

F 3 A,B ::= ⊥ | a | ¬A | A ∧B | A⇒ B

where a ranges over a set P of propositional atoms. The reading of
A⇒ B is ‘ifA, then normallyB’. This grammar allows for Boolean
combination and nesting of conditionals, the hallmark of conditional
logic. We refer to the left-hand argument A of a conditional A⇒ B
as its antecedent, and to the right-hand argumentB as its consequent.

The semantics of conditional logics can be given in terms of ei-
ther selection functions [6] or local preference orderings and related
structures [4, 9], depending on the postulated reasoning principles.
We do not elaborate details here, but shall return to preference se-
mantics when we discuss the tableau system for system S. We con-
sider various axiomatizations for conditional logics, which we for-
mulate in single-sided sequent style. Thus, a sequent Γ is a multiset
of formulas, to be read disjunctively. As usual, we let a formula de-
note also its singleton sequent and denote multi-set union by comma-
separated juxtaposition; combining these notations, Γ, B denotes the
multiset union of Γ and {B}. Moreover, we regard sets as multisets
where all elements have multiplicity 1. All our systems extend the
basic rules of CK, namely replacement of equivalents,

A1 = A2 B1 = B2

¬(A1 ⇒ B1), A2 ⇒ B2
,

where A1 = A2 abbreviates the sequents ¬A1, A2 and A1,¬A2

throughout, and normality of consequents,

A0 = A1 = A2 ¬B1,¬B2, B0

¬(A1 ⇒ B1),¬(A2 ⇒ B2), A0 ⇒ B0

B

A⇒ B

Further systems will be defined by the addition of more sequent rules
of this type, explicitly:

Definition 1. A literal over a set L is an element of L ∪ ¬L, where
¬L = {¬a | a ∈ L}. A sequent over L is a multiset over L ∪ ¬L.
We write⇒(L) for the set of formal terms {a ⇒ b | a, b ∈ L}. A
one-step rule Γ1 . . .Γn/Γ0 consists of sequents Γ1, . . . ,Γn over the
set P of propositional atoms (abused as variables) and a sequent Γ0

over⇒(P ) such that every propositional atom appears at most once
in Γ0 (so that Γ0 is actually a set). An L-instance of Γ1 . . .Γn/Γ0

is a rule Γ1σ . . .Γnσ/Γ0σ,∆ obtained by applying a substitution
σ : P → L and a weakening context ∆.

In particular, the above rules for CK are one-step rules. Most condi-
tional logics in the literature are rank-1, i.e. can be defined by a sys-
tem of one-step rules (one exception being conditional modus ponens
(A ⇒ B) → A → B, which however is obviously incompatible
with a view of the conditional as an internalized default implication).
Below, when we refer to a (conditional) rule system R, we mean a
set of one-step rules that extends the one-step rules of CK.

All systems moreover contain a fixed propositional part consisting
of the standard rules

Γ, a,¬a
Γ,¬A,¬B

Γ,¬(A ∧B)

Γ, A Γ, B

Γ, A ∧B
Γ, A

Γ,¬¬A

where the leftmost rule is called the axiom rule (a generalized version
of which with formulas A in place of atoms a is admissible). The set
of sequents derivable in a rule system from a set of assumptions is
the smallest set containing the assumptions and closed under appli-
cation of substitution instances of the rules; here, the given one-step
rules are applied as F-instances Γ1σ . . .Γnσ/Γ0σ,∆ according to
Definition 1, i.e. with weakening built in. More generously, a sequent
is cut-derivable if it can be derived using additionally the cut rule

Γ, A Γ,¬A
Γ



— a rule that is evidently undesirable from the perspective of proof
search, as its backwards application requires the invention of A. The
main point of the analysis below is to give criteria for the cut rule to
be admissible under the remaining rules, so that proof search algo-
rithms can proceed without having to try the cut rule.

A sequent system immediately gives rise to a dual tableau system
which is obtained by dualizing all rules (and, conventionally, turning
them upside down). E.g., one has the tableau rule

Γ,¬(A ∧B)

Γ,¬A Γ,¬B

where multisets of formulas are now called labels and read conjunc-
tively, and a satisfiability proof of the premise Γ,¬(A∧B) demands
a satisfiability proof for either one of the two conclusions Γ,¬A or
Γ,¬B. We shall present all rule systems below as sequent systems,
on the understanding that tableau systems are presented dually.

We inherit the driving principle of our analysis of conditional sys-
tems from coalgebraic modal logic [18]: one can reduce properties
of a full modal logic with nested modalities to its one-step logic,
characterized syntactically by excluding nested modalities as well as
lonely propositional atoms. Formally, formulas A,B of the one-step
fragment of conditional logic are defined by the grammar

A,B ::= ⊥ | ¬A | A ∧B | α⇒ β

where α and β range over Boolean combinations of propositional
atoms. As shown in [20], such formulas may equivalently be pre-
sented as one-step rules. E.g., monotonicity of ⇒ in the second ar-
gument may be expressed either by the one-step formula (A ⇒
(B ∧ C))→ (A⇒ B) or equivalently by the one-step rule

A1 = A2 B → C

(A1 ⇒ B)→ (A2 ⇒ C)
.

Definition 2. We say that a one-step rule Γ1 . . .Γn/Γ0 is cut-
derivable in R if Γ0 is cut-derivable from Γ1 . . .Γn in R using
Prop(P )-instances of the one-step rules, and derivable if only cuts
between purely propositional formulas are needed in the derivation
(which then necessarily uses only a P -instance of a single one-step
rule). We say that R admits one-step cut-elimination if every cut-
derivable one-step rule is derivable.

Example 3. [18] It is easily checked that the rules for CK as pre-
sented above do not admit one-step cut elimination. The following
alternative rule does admit one-step cut elimination (see Example 6):

(CK )
A0 = · · · = An ¬B1, . . . ,¬Bn, B0

¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0)
n ≥ 0.

Note that the rule scheme (CK), which is subsumed by all rule
schemes to be introduced below, subsumes replacement of equiva-
lents in both arguments.

Definition 4. [18] We say that R absorbs contraction if for every
rule Γ1 . . .Γn/Γ0 ∈ R and every renaming σ : P → P , there
exists a rule ∆1 . . .∆m/∆0 ∈ R and a renaming ρ : P → P
such that ∆0ρ ⊆ Γ0σ, ρ does not identify any literals in ∆0, and
for j = 1, . . . ,m, ∆j is derivable from {Γ1, . . . ,Γn} using the
propositional rules and cut.

Moreover,R additionally absorbs cut if for all rules Γ1 . . .Γn/Γ0

and ∆1 . . .∆m/∆0 in R and all injective renamings σ, ρ :
P → P such that Γ0σ = Γ, A and ∆0ρ = ∆,¬A where Γ
and ∆ do not share any propositional atoms, there exists a rule

Σ1 . . .Σl/Σ0 and an injective renaming κ : P → P such that
Σ0κ ⊆ Γ,∆ and for all j = 1, . . . , l, Σjκ can be derived from
{Γ1σ, . . . ,Γnσ,∆1ρ, . . . ,∆mρ} using the propositional rules and
cut.

Proposition 5. [18] A rule system admits one-step cut elimination if
it absorbs cut and contraction.

Example 6. It is easy to see that the rule set (CK) of Example 3
absorbs contraction. To see that it absorbs cut, we have to con-
sider two instances (‘left’ and ‘right’) of the rule, where we prime
n and all propositional atoms in the right hand instance but assume
that A0 ⇒ B0 equals one of the negative literals on the right-
hand side, w.l.o.g. A′1 ⇒ B′1. We then need a rule that proves
¬(A1 ⇒ B1), . . . ,¬(An ⇒ Bn),¬(A′2 ⇒ B′2), . . . ,¬(A′n′ ⇒
B′n′), A′0 ⇒ B′0. This has the right form for a conclusion of an in-
stance of (CK), so that we are left with proving the corresponding
premises from the ones of the original rule instances (by proposi-
tional reasoning with cut). This is straightforward; e.g. we prove the
premise ¬B1, . . . ,¬Bn,¬B′2, . . . ,¬B′n′ , B′0 by cutting the corre-
sponding premises of the original two rule instances.

The full logic inherits cut elimination from the one-step logic:

Theorem 7. [18] If a rule system admits one-step cut elimina-
tion, then it admits cut elimination, i.e. whenever a sequent is cut-
derivable from a set of assumptions, then it is derivable.

Similarly, we may reduce the standard complexity of the full logic to
the complexity of the one-step logic, employing an approach where
we equip decision procedures for the one-step logic with discounted
space for input in the same way as standardly used for logspace Tur-
ing machines. The criterion presented below is a novel, purely syn-
tactic variant of a semantics-based criterion from [16].

Definition 8. The strict one-step derivability problem of R is to
decide whether a one-step rule Γ1 . . .Γn/Γ0 is cut-derivable in R,
where the input size of the problem is defined to be the size of Γ0

alone (note that the combined premises may be of exponential size)
and the premises Γ1 . . .Γn are assumed to be stored on an input tape
that does not count towards overall space consumption.

Theorem 9. If the strict one-step derivability problem is in PSPACE,
then cut-derivability of sequents in the full logic from the empty set
of assumptions is in PSPACE.

Proof sketch. By a non-deterministic polynomial-space algorithm
(exploiting NPSPACE =PSPACE) where a sequent is first analysed
propositionally until one arrives at a sequent over ⇒(F), and then
decomposed into a topmost layer of conditionals and the formulas
below these conditionals. One then peels off one layer of conditionals
by calling a PSPACE solver for the strict one-step derivability prob-
lem. Here, the input tape of the one-step derivability checker is em-
ulated by means of recursive calls back to the global derivability al-
gorithm; thus, one keeps space consumption polynomial, in analogy
to the composition of logspace functions.

Having recalled the necessary ingredients of the generic theory, we
now proceed to apply them to the conditional logics of interest.

3 A Cut-Free Sequent System for CK+CM
The first system we consider is the extension of minimal conditional
logic CK with cautious monotonicity alone. As a one-step rule, cau-



tious monotonicity becomes

A0 = A2 ∧B1 A1 = A2 B0 = B2

¬(A1 ⇒ B1),¬(A2 ⇒ B2), (A0 ⇒ B0)
. (1)

The resulting system CK + CM is weaker than the conditional
logic corresponding to the cumulative logic of [13]; we study it here
both due to the evident semantics-independent interest in the cautious
monotonicity axiom as such and with a view to demonstrating a case
that can be handled purely syntactically – in fact, the only known
semantics for CK + CM is selection function semantics, which is
not terribly helpful in detecting good rule sets. In the present case,
one finds a rule set that absorbs cut by repeated application of cut to
the original rules. The result is the following.

A compatibility tree over a non-empty finite index set I with 0 /∈ I
is a finite tree T with nodes v labelled by non-empty sets l(v) ⊆ I
such that the root is labelled by I and the label of any node is the
union of the labels of its children; i.e. T represents a hierarchical
decomposition of I into unions of subsets. For each such T , we have
a rule (compT ):

Ai = Aj for i, j ∈ l(v), v leafS
i∈l(v){¬Bi,¬Ai}, Aj for v child of w and j ∈ l(w)

{¬Bi | i ∈ I}, B0S
i∈I{¬Bi,¬Ai}, A0

¬A0, Ai for i ∈ I
{¬(Ai ⇒ Bi) | i ∈ I}, (A0 ⇒ B0)

The core idea of this rule is that under its premises, one can derive

{¬(Ai ⇒ Bi) | i ∈ I}, (
V

j∈l(v) Aj ⇒
V

j∈l(v) Bj) (2)

for every node v of T , as shown by well-founded induction on v.
We note that we can clearly restrict the second premise to cases

where j /∈ l(v), as instances for j ∈ l(v) are discharged by the
axiom rule. Moreover, we assume w.l.o.g. that all unions of labels
represented by T are irredundant (i.e. no set can be omitted from the
union without decreasing its resulting set).

Both the rule (CK ) of Example 3 and the one-step rule (1) for
cautious monotonicity are derivable from rules (compT ) for trivial
compatibility trees that consist only of the root. Conversely, we have
to prove that every rule (compT ) is actually derivable:

Lemma 10. Every rule (compT ) induced by a compatibility tree T
is derivable in CK + CM.

Proof sketch. By (2), we have in particular that Γ, (
V

i∈I Ai ⇒V
i∈I Bi) is derivable. Then we obtain Γ, (

V
i∈I Ai ⇒

V
i∈I Ai →

A0) by monotonicity on the right and the fourth premise, thus
Γ, (A0 ⇒

V
i∈I Bi) by CM and the fifth premise, and finally

Γ, (A0 ⇒ B0) by monotonicity and the third premise. (The men-
tioned induction for (2) is similar.)

Next, we apply the generic techniques discussed in Section 2 to prove
that the rule set engenders a sequent system that admits cut.

Lemma 11. The set of rules (compT ) induced by compatibility trees
T absorbs cut.

Proof sketch. Assume we have a left-hand instance of the rule as
above, and a right-hand instance with all entities primed, where
A0 ≡ A′i0 and B0 ≡ B′i0 for some i0 ∈ I ′. We have to find a
rule instance proving

{¬(Ai ⇒ Bi) | i ∈ I}, {¬(A′j ⇒ B′j) | i0 6= j ∈ I ′}, (A′0 ⇒ B′0).

To this end, we construct a compatibility tree U over J with labelling
lU , where J = I∪I ′−{i0}, by modifying T ′ as follows, mimicking
substitution of I for {i0} in the corresponding union term:

• Replace i0 by the elements of I in every label of T ′.
• Whenever v is a leaf of T ′ with l′(v) = {i0}, then attach T as a

subtree at v, with the root of T replacing v.
• Whenever v is a leaf of T ′ with {i0} $ l′(v), then attach T as

a subtree, with the root of T becoming a child of v, and create a
second child of v labelled l′(v)− {i0}.

It is then straightforward to derive the premises of the rule instance
for U from the ones for T and T ′.

Lemma 12. The set of rules (compT ) induced by compatibility trees
T absorbs contraction.

Proof sketch. Assume 1, 2 ∈ I and identify A1 and B1 with A2 and
B2, respectively, in a generic instance of rule (compT ) (it is clear
that considering the case of a single identified pair is sufficient). We
obtain a new rule conclusion

{¬(Ai ⇒ Bi) | i ∈ I − {1}}, (A0 ⇒ B0).

A compatibility tree U over the new index set I −{1} is constructed
by replacing 1 with 2 in all labels l(v) of T . It is easy to check that
this is indeed a compatibility tree, and that the premise of the rule
instance for U follows from the one for T .

Summing up, the set of rules (compT ) admits one-step cut elimina-
tion, and hence

Corollary 13. The sequent system for CK + CM induced by the
rules (compT ) admits cut elimination.

3.1 Proof Search in PSPACE
By Theorem 9, it suffices to prove that the strict one-step derivability
problem of CK + CM is in PSPACE to establish that proof search
can be performed in PSPACE. Since our rules for CK + CM ad-
mit one-step cut elimination, we only have to check for applicability
of a single rule (compT ) to the conclusion of a given one-step rule
Γ1 . . .Γn/Γ0 to decide its derivability (with or without cut). Assum-
ing that the premises are stored on an input tape, we can do this using
polynomial space in Γ0 by traversing a compatibility tree. Explicitly,
the decision procedure for derivability of Γ1 . . .Γn/Γ0 is as follows.

Algorithm 14. 1. Guess a subsequent Γ′0 of Γ0 of the form Γ′0 =
{¬(Ai ⇒ Bi) | i ∈ I}, (A0 ⇒ B0).

2. Check that {¬Bi | i ∈ I}, B0;
S

i∈I{¬Bi,¬Ai}, A0; and
¬A0, Ai (for all i ∈ I) are propositionally entailed by {Γ1, . . . ,Γn}.
(This can be done without reading all premises from the input tape at
once; instead, one goes through all valuations κ of the propositional
atoms occurring in the rule, checks — in logarithmic space by [14]
— whether κ validates the Γi for i ≥ 1, and in that case checks that
κ validates also the respective target formula.)

3. Check by means of Algorithm 15 that Γ1 . . .Γn/{¬(Ai ⇒
Bi) | i ∈ I}, (

V
i∈I Ai ⇒

V
i∈I Bi) is one-step derivable.

The last step uses the following recursive procedure.

Algorithm 15. (Check that Γ1 . . .Γn/{¬(Ai ⇒ Bi) | i ∈
I}, (

V
j∈J Aj ⇒

V
j∈J Bj) is one-step derivable for J ⊆ I .)



1. Check whether Aj = Ak is propositionally entailed by
{Γ1, . . . ,Γn} for all j, k ∈ J . If yes, answer ‘yes’, otherwise:

2. Guess an irredundant decomposition J =
S

k∈K Jk.
3. Check that for each k ∈ K and each j ∈ J ,S

i∈Jk
{¬Bi,¬Ai}, Aj is propositionally entailed by {Γ1, . . . ,Γn}.

4. Check recursively that Γ1 . . .Γn/{¬(Ai ⇒ Bi) | i ∈
I}, (

V
j∈Jk

Aj ⇒
V

j∈Jk
Bj) is one-step cut-free derivable for each

k ∈ K.

It is clear that both algorithms use polynomial space in Γ0, noting in
the case of Algorithm 15 that the depth of the recursion is at most
|I|. The algorithms can also be phrased in terms of a one-step proof
calculus as follows: the initial steps in Algorithm 14 correspond to a
single application of the rule

Γ, (A⇒ B) ¬B,¬A,C ¬C,A ¬B,D
Γ, (C ⇒ D)

to A =
V

i∈I Ai, B =
V

i∈I Bi, and Γ = {¬(Ai ⇒ Bi) | i ∈ I},
while the recursive procedure in Algorithm 15 corresponds to iterated
application of the rule

Γ, (
V

j∈Jk
Aj ⇒

V
j∈Jk

Bj) for all k ∈ KS
j∈Jk
{¬Bj ,¬Aj}, Ai for all k ∈ K, i ∈ J

Γ, (
V

j∈J Aj ⇒
V

j∈J Bj)
(J =

S
Jk)

finished at the base of the recursion by application of the rule

Ai = Aj for i, j ∈ I
{¬(Ai ⇒ Bi) | i ∈ I}, (

V
i∈I Ai ⇒

V
i∈I Bi)

.

4 Cautious Monotonicity and the Identity Axiom
Our next conditional logic, CK + CM + ID, is obtained from
CK + CM by adding the identity axiom A ⇒ A. The absorb-
ing rule system consists of the expected modification of the rule for
CK + CM,

Ai = Aj for i, j ∈ l(v), v ∈ T leafS
i∈l(v){¬Bi,¬Ai}, Aj for v ∈ T and j ∈ l(w) for

some successor w of v
{¬Bi | i ∈ I},¬A0, B0S

i∈I{¬Bi,¬Ai}, A0

¬A0, Ai for i ∈ I
{¬(Ai ⇒ Bi) | i ∈ I}, (A0 ⇒ B0)

,

referred to as (compID
T ) and again indexed over compatibility trees

T over I , where we continue to insist that I and all labels of T be
non-empty, and additionally the rule

(ID)
¬A,B
A⇒ B

(obtained by cutting identity A = B/A⇒ B with monotony on the
right). In the rule (compID

T ), we may again assume j /∈ l(v) in the
second premise.

Lemma 16. The above rule set absorbs cut and contraction.

Thus, the results already obtained for CK + CM extend to
CK + CM + ID:

Corollary 17. The sequent system for CK + CM + ID given by
the rules (compID

T ) and (ID) admits cut elimination and proof
search in PSPACE.

5 A Cut-Free Sequent Calculus for System S
We now turn to the design of a cut-free sequent calculus with PSPACE

proof search for full system S [4], the conditional logic counterpart
of the preferential logic of Kraus, Lehmann, and Magidor [13]. That
is, system S extends CK by cautious monotony, the identity axiom,
and disjunction elimination, which as a one-step rule becomes

¬A0, A1, A2 ¬A1, A0 ¬A2, A0 B0 = B1 = B2

¬(A1 ⇒ B1),¬(A2 ⇒ B2), (A0 ⇒ B0)
.

We change tack in comparison to the previous sections in that now,
we take the lead to an absorbing rule set from the semantics, specif-
ically from the small model property for one-step formulas proved
in [9]. More specifically, we use the fact (proved in [9]) that uni-
versal validity of a sequent Γ0 = ¬(A1 ⇒ B1), . . . ,¬(An ⇒
Bn), (A0 ⇒ B0) is equivalent to validity in all finite linear pref-
erential models. To formalise this as a sequent rule, we define an
S-structure for Γ0 to be a pair M = (S,�) where S ⊆ Î =
{0, 1, . . . , n}, 0 ∈ S, and � is a linear pre-order on S (i.e. for
i, k ∈ S, i � k or k � i) with greatest element 0. The state i ∈ S
is intended as a smallest Ai-state under �, and i /∈ S signifies the
non-existence of an Ai-state. We write k ≺ i for k � i ∧ i � k,
k ' i for k � i ∧ i � k, and in writing k � i etc. understand that
i, k ∈ S. For [i] ∈ S/ ', we define a sequent ∆M [i] by

∆M [i] ≡
[
k'i

{¬Ak, Ck}, {Aj | i ≺ j ∨ j /∈ S}

where C0 ≡ B0, and Ck = ¬Bk for k 6= 0. Intuitively speak-
ing, every such ∆M [i] expresses that M does not expand to a model
violating Γ0 in the intended fashion, by stating that if the state [i]
behaves according to its role in a putative model of ¬

W
Γ0 (i.e. sat-

isfies Ak ∧ Ck for all k ' i), then either one of the states [j] above
it is not a minimal Aj-state, or [i] is an Aj-state for some j /∈ S.
If we write SΓ0 for the set of S-structures for Γ0, we arrive at the
following rule:

(S)
∆M (ν(M)) for each M ∈ SΓ0

{¬(Ai ⇒ Bi) | i ∈ I}, (A0 ⇒ B0)| {z }
≡:Γ0

,

indexed over a map ν such that for each M = (S,�) ∈ SΓ0 ,
ν(M) ∈ S/ '. With this notation, we can state:

Theorem 18. The system consisting of all instances of rule (S) is
sound, complete and admits one-step cut elimination.

Proof. We briefly recall the preference semantics of the one-step
logic of system S (which is essentially the original semantics of
Kraus, Lehmann, and Magidor, except that we admit Boolean com-
binations of conditionals in the syntax). We emphasize it suffices to
concentrate on the one-step logic, as the conditional version of the
Kraus-Lehmann-Magidor axioms is already known to be complete
for full system S [4, 9]. This is irrespective of the fact that the pref-
erence semantics of system S differs from the preferential semantics
of [13] as recalled below in that it conflates worlds and states.

A preferential model (S, l,�) over a set X of worlds consists of a
set S of states, equipped with a partial ordering � ‘less remote than’
and an assignment l of a world l(s) ∈ X to each state s ∈ S. By
the results of [9] we may assume that S is finite. Given a valuation τ
of the propositional atoms as subsets of X , we have an evident def-
inition of satisfaction of A ∈ Prop(P ) in worlds x ∈ X , which we
can pull back to S along l; we call a state an A-state if it satisfies A.



Then, (S, l,�) satisfiesA⇒ B forA,B ∈ Prop(P ) iff all minimal
A-states in S satisfy B. It follows from the completeness result of
[9] that a one-step formula is consistent in system S iff it is satisfi-
able in a preferential model. Dually, a one-step rule Γ1 . . .Γn/Γ0 is
derivable iff it is valid in preferential models, where the latter means
that whenever all worlds x ∈ X satisfy the premises Γ1 . . .Γn, then
the preferential model satisfies the conclusion Γ0.

To continue, we note that in the search for a rule set that absorbs
cut, we can limit ourselves to rules whose conclusion Γ0 ≡ ¬(A1 ⇒
B1), . . . ,¬(An ⇒ Bn), (A0 ⇒ B0) is a Horn sequent, i.e. has ex-
actly one positive literal, as all the axioms of system S are of this
form and the set of Horn sequents is closed under cut. (The same is
also easily seen semantically by taking disjoint unions of preference
orderings.) Lemma 0.1 of [9] (which has a simple proof using selec-
tion of minimal worlds and totalization of partial orders) implies that
such a rule is derivable iff it is valid in all finite linear preferential
models, i.e. those where the states are linearly ordered. Evidently,
the only relevant states in such a model w.r.t. to satisfaction of the
rule conclusion Γ0 are those worlds which are minimal Ai-worlds
for some i ∈ Î = {0, . . . , n}. Moreover, it is easy to see that sat-
isfaction of Γ0 is unaffected by the removal of states properly above
(‘more remote than’) 0. By another selection step, we can thus re-
strict attention to linear preferential models M = (S, l,�) where S
is a subset of Î with greatest element 0 ∈ S, which is precisely what
the rule stipulates.

Note that although we arrived at the rule coming from the semantics,
its eventual character is syntactic enough, its premises being essen-
tially indexed by linear orderings of the literals of the conclusion.
Since S-structures are of polynomial size, the complexity of strict
one-step derivability can be kept at bay.

Lemma 19. Strict one-step derivability under the rules (S) is in
PSPACE.

Corollary 20. The rules (S) induce a sequent system for system S
which admits cut elimination and proof search in PSPACE.

Implementation issues As indicated in the introduction, we have
implemented proof search in system S as an extension of the generic
public domain reasoner CoLoSS [5, 12]. Our present implementation
uses only very elementary optimizations, but is nevertheless able to
prove (or disprove) all consequences and non-consequences of the
axiom system discussed in [13]. Several optimizations to the imple-
mentation of rule (S) are currently under investigation. In particu-
lar, note that we may abstract the premises ∆M [i] to ∆(R, T ) ≡S

k∈R{¬Ak, Ck}, {Aj | i ∈ T}, and then need only find the min-
imal choices of R, T such that ∆R,T is derivable; coverage of all
S-structures then translates into a moderate-sized SAT-instance. The
number of possible R, T to consider is related to the size of an-
tichains in a partial order on pairs of sets; as such, it is still theo-
retically exponential but may be hoped to be feasible in practice.

6 Conclusion
We have established cut-free sequent calculi for several strong vari-
ants of conditional logic, including the standard system S that in-
ternalizes Kraus-Lehmann-Magidor preferential entailment. Dually,
this amounts to the presentation of unlabelled tableau systems for
these logics. We have shown that in each case, proof search can
be performed in PSPACE. In particular, we have presented the first
tableau system that matches the known complexity of system S,

which was previously established using a small model property [9].
Technically, our results come about by non-trivial application of
generic methods for cut elimination [18] and complexity analysis
[16] requiring sets of rules that absorb cut and contraction; we have
demonstrated both syntactic and semantic approaches to finding such
sets. Our implementation of the tableau algorithm for system S con-
stitutes, to our knowledge, the first implemented reasoner for this
important logic.
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[20] L. Schröder. A finite model construction for coalgebraic modal logic.

J. Log. Algebr. Prog., 73:97–110, 2007.
[21] I. Song and G. Governatori. Nested rules in defeasible logic. In Rules

and Rule Markup Languages for the Semantic Web, RuleML 2005, vol.
3791 of LNCS, pp. 204–208. Springer, 2005.


