
Introduction to Dependently Typed Programming WS 2019

Assignment 4
Deadline for solutions: 7.01.2019

Exercise 1 Without K (16 Points)

Implement solutions to the following problems in Agda with the pragma {-# OPTIONS --without-K #-}
activated. This corresponds to the general version of Martin-Löf type theory with the elimina-
tion principle for the identity types, as explained at the lecture. As a result, proofs of identities
themselves become subject to nontrivial proofs. The following intuition is helpful when working
with such proofs. You can think of p : x ≡ y as a path from x to y on a surface. Then refl : x ≡ x
is a one point path, symmetry produces a reversed path (sym p) : y ≡ x, and transitivity con-
catenates two paths. For example, you can show that trans p (sym p) ≡ refl (do it!). This
is called the groupoid interpretation of type theory. The following variant of the identity type
eliminator

J’ : ∀ {A : Set ℓ} {x : A} (P : (z : A) → x ≡ z → Set ℓ) →
P x refl → (y : A) (x≡y : x ≡ y) → P y x≡y

J’ P p ._ refl = p

can thus be regarded as (based) path induction: to show a property P y x≡y of a path x≡y,
we show P x refl (induction base) and that all paths P z x≡z can be formed (so, we can
continuously move from z := x to z := y).
A type is contractible if it provably has exactly one inhabitant; a type is a proposition if all its
inhabitants are equal; a type is a set if there is at most one proof of equality of any two its
inhabitants. This is formalized in Agda as follows:

isContr : Set ℓ → Set ℓ
isContr A = Σ A (λ x → ∀ y → x ≡ y)

isProp : Set ℓ → Set ℓ
isProp A = (x y : A) → x ≡ y

isSet : Set ℓ → Set ℓ
isSet A = (x y : A) → isProp (x ≡ y)

1. Show that every contractible type is a proposition and every proposition is a set.

Hint: Second property is non-tivial and requires some exploration of the space of identity proofs
p : x ≡ x. The idea is to prove that every proof x≡y : x ≡ y is equal to the canonical proof
witnessing isProp A. As an intermediate step, show the following, using (based) path induction:

prop-refl-prop : ∀ {A : Set ℓ}{x : A} (p : isProp A) → ((trans (p x x) (sym (p x x))) ≡ (p x x))

2. Show that a type A is a proposition iff every type x ≡ y with x y : A is contractible.



IDenT, WS 2019

3. Show that a type A is a set iff it satisfies the K rule, iff it satisfies uniqueness of identity
proofs:

K : ∀ (A : Set ℓ) (x : A) (P : x ≡ x → Set) → P refl → (x≡x : x ≡ x) → P x≡x

UIP : ∀ (A : Set ℓ) → Set ℓ

Hence, removal of the {-# OPTIONS --without-K #-} is precisely equivalent to stating that
every type is a set. This explains the historical choice of the name Set for types in Agda.

4. Show that B and N are sets.
Hint: The second property is non-trivial and can be proven by induction over natural numbers,
for which you will need to prove the following auxiliary property by path induction

pre : N → N
pre zero = zero
pre (suc n) = n

h : ∀ {x y : N} (x≡y : suc x ≡ suc y) → cong x≡y (λ z → suc (pre z)) ≡ x≡y

(you will need to adapt cong from eq.agda and possibly other functions about equalities.)

Exercise 2 GCD (7 Points)

Greatest common divisor gcd(a, b) of two natural positive (!) numbers is inductively defined as
gcd(a − b, b) if a > b, as gcd(a, b − a) if b > a and as a if a = b.

1. Implement gcd in Agda using the modules of Iowa Agda library. To that end you will need
to design a corresponding termination proof.
Hint: A concise and elegant solution can be obtained by using the lexicographic order and a
corresponding termination proof ↓-lex from termination.agda. Note, however, that it is only
one possible approach.

2. Formalize that gcd(a, b) divides both a and b.
Hint: It is convenient to couch the developments in terms of the relation

_divides_ : ∀ (n m : N) → Set

expressing the fact that n divides m, and to prove the lemma

divides .− : ∀ (n m k : N) → k divides n → k divides m → k divides (m .− n)

Exercise 3 Logarithms and Tree Heights (9 Points)

1. Implement the following functions calculating binary logarithms of natural numbers and
rounding the result down and up respectively:

⌊log2_⌋ : N → N
⌈log2_⌉ : N → N

So, e.g. ⌊log22⌋ = ⌈log22⌉ = 1 and ⌊log23⌋ = 1, ⌈log23⌉ = 2. For the sake of simplicity, you can
assume that ⌊log20⌋ = ⌈log20⌉ = 0.

2



IDenT, WS 2019

2. Write down a function to calculate the hight of a brown tree:

bt-height : ∀ {A : Set ℓ}{n : N} → braun-tree n → N

3. Design a proof of the following property:

bt-height-lt : ∀ {A : Set ℓ}{n : N} → (t : braun-tree n) → (bt-height t ≤ ⌈log2 n ⌉ ≡ tt)

To that end, you can use the following properties without a proof.

⌊log2⌋-dup : ∀ {n : N} → n > 0 ≡ tt → ⌊log2 (2 * n) ⌋ ≡ suc ⌊log2 n ⌋
⌊log2⌋-dup-suc : ∀ {n : N} → n > 0 ≡ tt → ⌊log2 (suc (2 * n)) ⌋ ≡ suc ⌊log2 n ⌋

3


