## Assignment 4

Deadline for solutions: 7.01.2019

## Exercise 1 Without K

(16 Points)

Implement solutions to the following problems in Agda with the pragma \{-\# OPTIONS --without-K \#-\} activated. This corresponds to the general version of Martin-Löf type theory with the elimination principle for the identity types, as explained at the lecture. As a result, proofs of identities themselves become subject to nontrivial proofs. The following intuition is helpful when working with such proofs. You can think of $p: x \equiv y$ as a path from $x$ to $y$ on a surface. Then refl : $x \equiv x$ is a one point path, symmetry produces a reversed path $(\operatorname{sym} p): y \equiv x$, and transitivity concatenates two paths. For example, you can show that trans $p$ (sym $p$ ) $\equiv$ refl (do it!). This is called the groupoid interpretation of type theory. The following variant of the identity type eliminator

$$
\begin{aligned}
& \mathrm{J}^{\prime}: \forall\{A: \text { Set } \ell\}\{x: A\}(P:(z: A) \rightarrow x \equiv z \rightarrow \text { Set } \ell) \rightarrow \\
& \\
& \quad P x \text { refl } \rightarrow(y: A)(x \equiv y: x \equiv y) \rightarrow P y x \equiv y \\
& \mathrm{~J}^{\prime} P p \cdot \text { refl }=p
\end{aligned}
$$

can thus be regarded as (based) path induction: to show a property $P y x \equiv y$ of a path $x \equiv y$, we show $P x$ refl (induction base) and that all paths $P z x \equiv z$ can be formed (so, we can continuously move from $z:=x$ to $z:=y$ ).

A type is contractible if it provably has exactly one inhabitant; a type is a proposition if all its inhabitants are equal; a type is a set if there is at most one proof of equality of any two its inhabitants. This is formalized in Agda as follows:

```
isContr: Set \ell}->\mathrm{ Set }
isContr A=\SigmaA(\lambdax->\forally->x\equivy)
isProp : Set \ell}->\mathrm{ Set }
isProp }A=(xy:A)->x\equiv
isSet: Set \ell}->\mathrm{ Set }
isSet }A=(xy:A)->\mathrm{ isProp (x इy)
```

1. Show that every contractible type is a proposition and every proposition is a set.

Hint: Second property is non-tivial and requires some exploration of the space of identity proofs $p: x \equiv x$. The idea is to prove that every proof $x \equiv y: x \equiv y$ is equal to the canonical proof witnessing isProp A. As an intermediate step, show the following, using (based) path induction:

$$
\text { prop-refl-prop : } \forall\{A: \text { Set } \ell\}\{x: A\}(p: \text { isProp } A) \rightarrow((\operatorname{trans}(p x x)(\operatorname{sym}(p x x))) \equiv(p x x))
$$

2. Show that a type A is a proposition iff every type $x \equiv y$ with $x y$ : A is contractible.
3. Show that a type A is a set iff it satisfies the $K$ rule, iff it satisfies uniqueness of identity proofs:

$$
\begin{aligned}
& \mathrm{K}: \forall(A: \text { Set } \ell)(x: A)(P: x \equiv x \rightarrow \text { Set }) \rightarrow P \text { refl } \rightarrow(x \equiv x: x \equiv x) \rightarrow P x \equiv x \\
& \text { UIP }: \forall(A: \text { Set } \ell) \rightarrow \text { Set } \ell
\end{aligned}
$$

Hence, removal of the \{-\# OPTIONS --without-K \#-\} is precisely equivalent to stating that every type is a set. This explains the historical choice of the name Set for types in Agda.
4. Show that $\mathbb{B}$ and $\mathbb{N}$ are sets.

Hint: The second property is non-trivial and can be proven by induction over natural numbers, for which you will need to prove the following auxiliary property by path induction

```
pre: \mathbb{N}->\mathbb{N}
pre zero = zero
pre (suc n) = n
h:}\forall{xy:\mathbb{N}}(x\equivy:\operatorname{suc}x\equiv\operatorname{suc}y)->\operatorname{cong}x\equivy(\lambdaz->\operatorname{suc}(\mathrm{ pre z)})\equivx\equiv
```

(you will need to adapt cong from eq.agda and possibly other functions about equalities.)

## Exercise 2 GCD

(7 Points)

Greatest common divisor $\operatorname{gcd}(a, b)$ of two natural positive (!) numbers is inductively defined as $\operatorname{gcd}(a-b, b)$ if $a>b$, as $\operatorname{gcd}(a, b-a)$ if $b>a$ and as $a$ if $a=b$.

1. Implement $g c d$ in Agda using the modules of Iowa Agda library. To that end you will need to design a corresponding termination proof.

Hint: A concise and elegant solution can be obtained by using the lexicographic order and a corresponding termination proof $\downarrow$-lex from termination. agda. Note, however, that it is only one possible approach.
2. Formalize that $\operatorname{gcd}(a, b)$ divides both $a$ and $b$.

Hint: It is convenient to couch the developments in terms of the relation

$$
\text { _divides_ }: \forall(n m: \mathbb{N}) \rightarrow \text { Set }
$$

expressing the fact that $n$ divides $m$, and to prove the lemma

$$
\text { divides } \doteq: \forall(n m k: \mathbb{N}) \rightarrow k \text { divides } n \rightarrow k \text { divides } m \rightarrow k \text { divides }(m \doteq n)
$$

## Exercise 3 Logarithms and Tree Heights

1. Implement the following functions calculating binary logarithms of natural numbers and rounding the result down and up respectively:

$$
\begin{aligned}
& \left\lfloor\log _{2 \_}\right\rfloor: \mathbb{N} \rightarrow \mathbb{N} \\
& \left\lceil\log _{2}\right\rceil: \mathbb{N} \rightarrow \mathbb{N}
\end{aligned}
$$

So, e.g. $\left\lfloor\log _{2} 2\right\rfloor=\left\lceil\log _{2} 2\right\rceil=1$ and $\left\lfloor\log _{2} 3\right\rfloor=1,\left\lceil\log _{2} 3\right\rceil=2$. For the sake of simplicity, you can assume that $\left\lfloor\log _{2} 0\right\rfloor=\left\lceil\log _{2} 0\right\rceil=0$.
2. Write down a function to calculate the hight of a brown tree:
bt-height : $\forall\{A:$ Set $\ell\}\{n: \mathbb{N}\} \rightarrow$ braun-tree $n \rightarrow \mathbb{N}$
3. Design a proof of the following property:
bt-height-lt: $\forall\{A:$ Set $\ell\}\{n: \mathbb{N}\} \rightarrow(t:$ braun-tree $n) \rightarrow\left(\right.$ bt-height $\left.t \leq\left\lceil\log _{2} n\right\rceil \equiv \mathrm{tt}\right)$
To that end, you can use the following properties without a proof.

$$
\begin{aligned}
& \left\lfloor\log _{2}\right\rfloor \text {-dup : } \forall\{n: \mathbb{N}\} \rightarrow n>0 \equiv \mathrm{tt} \rightarrow\left\lfloor\log _{2}\left(2^{*} n\right)\right\rfloor \equiv \operatorname{suc}\left\lfloor\log _{2} n\right\rfloor \\
& \left\lfloor\log _{2}\right\rfloor \text {-dup-suc }: \forall\{n: \mathbb{N}\} \rightarrow n>0 \equiv \mathrm{tt} \rightarrow\left\lfloor\log _{2}\left(\operatorname{suc}\left(2^{*} n\right)\right)\right\rfloor \equiv \operatorname{suc}\left\lfloor\log _{2} n\right\rfloor
\end{aligned}
$$

