FMSoft

Formal Methods in Software Engineering

Paul Wild
Tutorial session 1

Tuesday 22 QOctober, 2019

FMSoft

Tutorial procedure

Homework
m 50% of your grade comes from homework exercises

m exercise sheets will appear regularly
m submission by e-mail, usually until before the next tutorial

Class
m homework presentation, comparison of solutions, discussion of
problems
m we will experiment with the tools during class

® active participation required

FMSoft

Model Checking and Temporal Logics

Model-based verification techniques

describe a system and its behaviour in a mathematically precise and
unambiguous manner

use algorithms to explore all possible states of the models
model checking: exhaustive search
simulation: experiments with a restrictive set of scenarios

testing: experiments on a “real” implementation of the model

FMSoft

Model Checking and Temporal Logics

Model Checking

[model of system]
N

Model checker: internals taken
as a black box for the moment

/ ~\
“Yes" “No" + counter—example]

FMSoft

Overview of LTSmin tools

Language

mCRL2 | | Promela I DVE | | UPPAAL |
Modules
' ' I '
PINS = = ¥qm e == = [ZUUR L A ——— -
I ' '
Pins2pins Transition Variable reordering Partial-order
‘Wrappers caching Transition grouping reduction
| ! |
PINS = = = Ve e e e o - _¥ oo
| | i
Algorithmi T " v
gorithmic
B;kc'" d's' | Distributed | Multi-core | Symbolic

The tools of LTSmin are made up of three layers:

m Language front-ends that support different specification languages
for models and translate them to the PINS interface.

m PINS2PINS wrappers that transform the models, enabling various
optimizations and model checking.

m Algorithmic backends offering various algorithms for reachability and
model-checking (both explicit-state and symbolic).

FMSoft

Basic syntax of Promela

Manuals

Promela is the modelling language of the Spin model checker.
Documentation can be found here:

m http://spinroot.com/spin/Man/

http://spinroot.com/spin/Man/

FMSoft

Basic syntax of Promela

#define _instances_A 1

#define __instances_B 1
byte state = 1;

proctype AQ)
{ byte tmp;

(state==1) -> tmp = state; tmp = tmp+1l; state = tmp
X
proctype B()
{ byte tmp;

(state==1) -> tmp = state; tmp = tmp-1; state = tmp
X
init

{ atomic { run A(); run B() }
}

FMSoft

LTL model checking for Promela models

m Compile the model into PINS format:

$ spins example.prm

m Check an LTL formula and store a counterexample:

prom2lts-seq \
--1tl="1,<>(state==0,&&_ ,<>(state==1))" \
--trace=trace.gcf example.prm.spins

m Print a trace containing a counterexample:

ltsmin-printtrace trace.gcf | grep action

FMSoft

Dining Philosophers

Setting

m n philosophers are sitting around a circular dining table and there
are n forks, one between each pair of adjacent philosophers.

m Whenever a philosopher is hungry, they first grab the fork to their
left, then the fork to their right, and then they eat.

m When they are done they release both forks.

Modelling in Promela

We will now try to model this in Promela.
m The philosophers will be modelled as processes (proctype).
m The forks will be modelled as channels (chan).

What are some properties of this system that we may want to check?

