
FMSoft 1 / 9

Formal Methods in Software Engineering

Paul Wild

Tutorial session 1

Tuesday 22nd October, 2019



FMSoft 2 / 9

Tutorial procedure

Homework

50% of your grade comes from homework exercises

exercise sheets will appear regularly

submission by e-mail, usually until before the next tutorial

Class

homework presentation, comparison of solutions, discussion of
problems

we will experiment with the tools during class

active participation required



FMSoft 3 / 9

Model Checking and Temporal Logics

Model-based verification techniques

describe a system and its behaviour in a mathematically precise and
unambiguous manner

use algorithms to explore all possible states of the models

model checking: exhaustive search

simulation: experiments with a restrictive set of scenarios

testing: experiments on a “real” implementation of the model



FMSoft 4 / 9

Model Checking and Temporal Logics

Model Checking

Model checker: internals taken
as a black box for the moment

model of system

System

TL formula

Property

“Yes” “No” + counter-example



FMSoft 5 / 9

Overview of LTSmin tools

The tools of LTSmin are made up of three layers:

Language front-ends that support different specification languages
for models and translate them to the PINS interface.

PINS2PINS wrappers that transform the models, enabling various
optimizations and model checking.

Algorithmic backends offering various algorithms for reachability and
model-checking (both explicit-state and symbolic).



FMSoft 6 / 9

Basic syntax of Promela

Manuals

Promela is the modelling language of the Spin model checker.
Documentation can be found here:

http://spinroot.com/spin/Man/

http://spinroot.com/spin/Man/


FMSoft 7 / 9

Basic syntax of Promela

#define __instances_A 1

#define __instances_B 1

byte state = 1;

proctype A()

{ byte tmp;

(state ==1) -> tmp = state; tmp = tmp+1; state = tmp

}

proctype B()

{ byte tmp;

(state ==1) -> tmp = state; tmp = tmp -1; state = tmp

}

init

{ atomic { run A(); run B() }

}



FMSoft 8 / 9

LTL model checking for Promela models

Compile the model into PINS format:

$ spins example.prm

Check an LTL formula and store a counterexample:

prom2lts -seq \

--ltl="! <>(state ==0 && <>(state ==1))" \

--trace=trace.gcf example.prm.spins

Print a trace containing a counterexample:

ltsmin -printtrace trace.gcf | grep action



FMSoft 9 / 9

Dining Philosophers

Setting

n philosophers are sitting around a circular dining table and there
are n forks, one between each pair of adjacent philosophers.

Whenever a philosopher is hungry, they first grab the fork to their
left, then the fork to their right, and then they eat.

When they are done they release both forks.

Modelling in Promela

We will now try to model this in Promela.

The philosophers will be modelled as processes (proctype).

The forks will be modelled as channels (chan).

What are some properties of this system that we may want to check?


