## Exercise sheet 2

Submission deadline: Friday 20<sup>th</sup> December, 2019

Submission: by e-mail to paul.wild@fau.de. Feel free to ask questions!

## LTL model checking

- 1. Use the construction from the tutorials ([1], Theorem 5.37) to build a generalized Büchi automaton for the LTL formula  $a \cup (Xa \cup a)$ . (Hint: the final automaton should consist of five states.)
- 2. Consider the Büchi automaton  $\mathcal{B}$  and the transition system  $\mathcal{M}$  below:



We assume that the set of atomic propositions is  $\mathcal{A} = \{a, b, c\}$ . In the diagram for  $\mathcal{B}$ , an edge labelled by a propositional formula denotes a set of edges, one for each set  $A \in \mathcal{PA}$  satisfying that formula. For instance, the edge with label  $\neg b \land c$  corresponds to two edges labelled with  $\{c\}$  and  $\{a, c\}$ , respectively.

- (a) Put  $\varphi = (a \cup \neg b) \land (b \cup c)$ . Show that  $\mathcal{B}$  is an automaton for  $\varphi$ , that is its accepted language is exactly Words $(\varphi) \subseteq (\mathcal{P}\mathcal{A})^{\omega}$  (see [1], Definition 5.6 for a precise definition).
- (b) Build the product automaton  $\mathcal{B} \otimes \mathcal{M}$ . Instead of the definition in [1] (where states of  $\mathcal{M}$  are paired with the *next* state in  $\mathcal{B}$ ), use the following:

$$(s,q) \xrightarrow{A} (s',q')$$
 in  $\mathcal{B} \otimes \mathcal{M} \quad :\Leftrightarrow \quad s \to s'$  in  $\mathcal{M}$  and  $q \xrightarrow{A} q'$  in  $\mathcal{B}$  and  $L(s) = A$ .

What should the sets of initial and final states be in this case?

(c) Use the automaton  $\mathcal{B} \otimes \mathcal{M}$  to show that  $s_0 \neq \varphi$ .

## References

 C. Baier and J.-P. Katoen. Principles of Model Checking (Representation and Mind Series). The MIT Press, 2008.