
NoCL 2015/16

Frame Your Reasoning: Introduction to the logic

of Bunched Implications

Tadeusz Litak

January 18, 2016

Informatik 8, FAU Erlangen-Nürnberg

1



• Our next and last major system is once again a

substructural logic . . .

• . . . the logic of Bunched Implications (BI)

• Several foundational papers by Peter O’Hearn and David

Pym around 1999, especially The Logic of Bunched

Implications, BSL 1999

• Monograph by David Pym in 2002: The Semantics and

Proof Theory of the Logic of Bunched Implications

• Also a paper Possible worlds and resources: the semantics

of BI by Pym, O’Hearn and Yang, TCS 2004

• Important intelectual ancestor: John Reynolds

2



• Our next and last major system is once again a

substructural logic . . .

• . . . the logic of Bunched Implications (BI)

• Several foundational papers by Peter O’Hearn and David

Pym around 1999, especially The Logic of Bunched

Implications, BSL 1999

• Monograph by David Pym in 2002: The Semantics and

Proof Theory of the Logic of Bunched Implications

• Also a paper Possible worlds and resources: the semantics

of BI by Pym, O’Hearn and Yang, TCS 2004

• Important intelectual ancestor: John Reynolds

2



• Our next and last major system is once again a

substructural logic . . .

• . . . the logic of Bunched Implications (BI)

• Several foundational papers by Peter O’Hearn and David

Pym around 1999, especially The Logic of Bunched

Implications, BSL 1999

• Monograph by David Pym in 2002: The Semantics and

Proof Theory of the Logic of Bunched Implications

• Also a paper Possible worlds and resources: the semantics

of BI by Pym, O’Hearn and Yang, TCS 2004

• Important intelectual ancestor: John Reynolds

2



• Our next and last major system is once again a

substructural logic . . .

• . . . the logic of Bunched Implications (BI)

• Several foundational papers by Peter O’Hearn and David

Pym around 1999, especially The Logic of Bunched

Implications, BSL 1999

• Monograph by David Pym in 2002: The Semantics and

Proof Theory of the Logic of Bunched Implications

• Also a paper Possible worlds and resources: the semantics

of BI by Pym, O’Hearn and Yang, TCS 2004

• Important intelectual ancestor: John Reynolds

2



• Our next and last major system is once again a

substructural logic . . .

• . . . the logic of Bunched Implications (BI)

• Several foundational papers by Peter O’Hearn and David

Pym around 1999, especially The Logic of Bunched

Implications, BSL 1999

• Monograph by David Pym in 2002: The Semantics and

Proof Theory of the Logic of Bunched Implications

• Also a paper Possible worlds and resources: the semantics

of BI by Pym, O’Hearn and Yang, TCS 2004

• Important intelectual ancestor: John Reynolds

2



• Our next and last major system is once again a

substructural logic . . .

• . . . the logic of Bunched Implications (BI)

• Several foundational papers by Peter O’Hearn and David

Pym around 1999, especially The Logic of Bunched

Implications, BSL 1999

• Monograph by David Pym in 2002: The Semantics and

Proof Theory of the Logic of Bunched Implications

• Also a paper Possible worlds and resources: the semantics

of BI by Pym, O’Hearn and Yang, TCS 2004

• Important intelectual ancestor: John Reynolds

2



• The notion of resource central in the semantics for BI

• Pym often quotes the definition of the notion from an early

textbook on operating systems by B. Hansen (1973)

The word “resource” covers physical

components, processes, procedures and data

structures; in short, any object referenced by

computations.

• Pym: the word “referenced” crucial. Resources can be

shared by more than one computation

• This CS notion of resource is somewhat different to the one

used in linear logic, which is tightly connected to

number-of-uses interpretation

• Correspondingly, BI has quite different formal properties

3



• The notion of resource central in the semantics for BI

• Pym often quotes the definition of the notion from an early

textbook on operating systems by B. Hansen (1973)

The word “resource” covers physical

components, processes, procedures and data

structures; in short, any object referenced by

computations.

• Pym: the word “referenced” crucial. Resources can be

shared by more than one computation

• This CS notion of resource is somewhat different to the one

used in linear logic, which is tightly connected to

number-of-uses interpretation

• Correspondingly, BI has quite different formal properties

3



• The notion of resource central in the semantics for BI

• Pym often quotes the definition of the notion from an early

textbook on operating systems by B. Hansen (1973)

The word “resource” covers physical

components, processes, procedures and data

structures; in short, any object referenced by

computations.

• Pym: the word “referenced” crucial. Resources can be

shared by more than one computation

• This CS notion of resource is somewhat different to the one

used in linear logic, which is tightly connected to

number-of-uses interpretation

• Correspondingly, BI has quite different formal properties

3



• The notion of resource central in the semantics for BI

• Pym often quotes the definition of the notion from an early

textbook on operating systems by B. Hansen (1973)

The word “resource” covers physical

components, processes, procedures and data

structures; in short, any object referenced by

computations.

• Pym: the word “referenced” crucial. Resources can be

shared by more than one computation

• This CS notion of resource is somewhat different to the one

used in linear logic, which is tightly connected to

number-of-uses interpretation

• Correspondingly, BI has quite different formal properties

3



• The notion of resource central in the semantics for BI

• Pym often quotes the definition of the notion from an early

textbook on operating systems by B. Hansen (1973)

The word “resource” covers physical

components, processes, procedures and data

structures; in short, any object referenced by

computations.

• Pym: the word “referenced” crucial. Resources can be

shared by more than one computation

• This CS notion of resource is somewhat different to the one

used in linear logic, which is tightly connected to

number-of-uses interpretation

• Correspondingly, BI has quite different formal properties

3



• The notion of resource central in the semantics for BI

• Pym often quotes the definition of the notion from an early

textbook on operating systems by B. Hansen (1973)

The word “resource” covers physical

components, processes, procedures and data

structures; in short, any object referenced by

computations.

• Pym: the word “referenced” crucial. Resources can be

shared by more than one computation

• This CS notion of resource is somewhat different to the one

used in linear logic, which is tightly connected to

number-of-uses interpretation

• Correspondingly, BI has quite different formal properties

3



• This interpretation central to the success story of BI in CS

• A starting point: Ishtiaq, O’Hearn (POPL 2001) BI as an

assertion language for mutable data structures

• Assertional core for a Hoare logic promoted by John

Reynolds for reasoning about shared mutable data

structures

• Widely known as separation logic

• We will spend now quite a few slides on motivation

4



• This interpretation central to the success story of BI in CS

• A starting point: Ishtiaq, O’Hearn (POPL 2001) BI as an

assertion language for mutable data structures

• Assertional core for a Hoare logic promoted by John

Reynolds for reasoning about shared mutable data

structures

• Widely known as separation logic

• We will spend now quite a few slides on motivation

4



• This interpretation central to the success story of BI in CS

• A starting point: Ishtiaq, O’Hearn (POPL 2001) BI as an

assertion language for mutable data structures

• Assertional core for a Hoare logic promoted by John

Reynolds for reasoning about shared mutable data

structures

• Widely known as separation logic

• We will spend now quite a few slides on motivation

4



• This interpretation central to the success story of BI in CS

• A starting point: Ishtiaq, O’Hearn (POPL 2001) BI as an

assertion language for mutable data structures

• Assertional core for a Hoare logic promoted by John

Reynolds for reasoning about shared mutable data

structures

• Widely known as separation logic

• We will spend now quite a few slides on motivation

4



• This interpretation central to the success story of BI in CS

• A starting point: Ishtiaq, O’Hearn (POPL 2001) BI as an

assertion language for mutable data structures

• Assertional core for a Hoare logic promoted by John

Reynolds for reasoning about shared mutable data

structures

• Widely known as separation logic

• We will spend now quite a few slides on motivation

4



• The definition of shared mutable data structures by John

Reynolds: structures where an updatable field can be

referenced from more than one point

• Lists (single- or doubly-linked), queues, trees, stacks . . .

• . . . and with these, issues of pointers, heaps, allocation . . .

• Clearly, a subject of immense significance

• Also quite clearly, a major source of errors, issues and bugs:

dangling pointers, memory leaks, segmentation faults . . .

5



• The definition of shared mutable data structures by John

Reynolds: structures where an updatable field can be

referenced from more than one point

• Lists (single- or doubly-linked), queues, trees, stacks . . .

• . . . and with these, issues of pointers, heaps, allocation . . .

• Clearly, a subject of immense significance

• Also quite clearly, a major source of errors, issues and bugs:

dangling pointers, memory leaks, segmentation faults . . .

5



• The definition of shared mutable data structures by John

Reynolds: structures where an updatable field can be

referenced from more than one point

• Lists (single- or doubly-linked), queues, trees, stacks . . .

• . . . and with these, issues of pointers, heaps, allocation . . .

• Clearly, a subject of immense significance

• Also quite clearly, a major source of errors, issues and bugs:

dangling pointers, memory leaks, segmentation faults . . .

5



• The definition of shared mutable data structures by John

Reynolds: structures where an updatable field can be

referenced from more than one point

• Lists (single- or doubly-linked), queues, trees, stacks . . .

• . . . and with these, issues of pointers, heaps, allocation . . .

• Clearly, a subject of immense significance

• Also quite clearly, a major source of errors, issues and bugs:

dangling pointers, memory leaks, segmentation faults . . .

5



• The definition of shared mutable data structures by John

Reynolds: structures where an updatable field can be

referenced from more than one point

• Lists (single- or doubly-linked), queues, trees, stacks . . .

• . . . and with these, issues of pointers, heaps, allocation . . .

• Clearly, a subject of immense significance

• Also quite clearly, a major source of errors, issues and bugs:

dangling pointers, memory leaks, segmentation faults . . .

5



Shared mutable data structures:

whence the pain?



• Perhaps unsurprisingly: such programs notoriously difficult

to reason about

• Examples taken from Peter O’Hearn presentations: by

2000s, impressive practical advances in automatic program

verification

• Microsoft’s SLAM Protocol (mentioned in Bill Gates’ 2002

keynote address): properties of procedure calls in device

drivers, e.g. any call to ReleaseSpinLock is preceded by a

call to AquireSpinLock

• In Nov. 2003, the Astrée static analyzer proved completely

automatically the absence of any RTE in the primary flight

control software of the Airbus A340 fly-by-wire system

see the project webpage

• . . . but even these projects were steering clear of automatic

heap verification!

• The first assumed memory safety

• The second assumed no dynamic pointer allocation

7



• Perhaps unsurprisingly: such programs notoriously difficult

to reason about

• Examples taken from Peter O’Hearn presentations: by

2000s, impressive practical advances in automatic program

verification

• Microsoft’s SLAM Protocol (mentioned in Bill Gates’ 2002

keynote address): properties of procedure calls in device

drivers, e.g. any call to ReleaseSpinLock is preceded by a

call to AquireSpinLock

• In Nov. 2003, the Astrée static analyzer proved completely

automatically the absence of any RTE in the primary flight

control software of the Airbus A340 fly-by-wire system

see the project webpage

• . . . but even these projects were steering clear of automatic

heap verification!

• The first assumed memory safety

• The second assumed no dynamic pointer allocation

7



• Perhaps unsurprisingly: such programs notoriously difficult

to reason about

• Examples taken from Peter O’Hearn presentations: by

2000s, impressive practical advances in automatic program

verification

• Microsoft’s SLAM Protocol (mentioned in Bill Gates’ 2002

keynote address): properties of procedure calls in device

drivers, e.g. any call to ReleaseSpinLock is preceded by a

call to AquireSpinLock

• In Nov. 2003, the Astrée static analyzer proved completely

automatically the absence of any RTE in the primary flight

control software of the Airbus A340 fly-by-wire system

see the project webpage

• . . . but even these projects were steering clear of automatic

heap verification!

• The first assumed memory safety

• The second assumed no dynamic pointer allocation

7



• Perhaps unsurprisingly: such programs notoriously difficult

to reason about

• Examples taken from Peter O’Hearn presentations: by

2000s, impressive practical advances in automatic program

verification

• Microsoft’s SLAM Protocol (mentioned in Bill Gates’ 2002

keynote address): properties of procedure calls in device

drivers, e.g. any call to ReleaseSpinLock is preceded by a

call to AquireSpinLock

• In Nov. 2003, the Astrée static analyzer proved completely

automatically the absence of any RTE in the primary flight

control software of the Airbus A340 fly-by-wire system

see the project webpage

• . . . but even these projects were steering clear of automatic

heap verification!

• The first assumed memory safety

• The second assumed no dynamic pointer allocation

7



• Perhaps unsurprisingly: such programs notoriously difficult

to reason about

• Examples taken from Peter O’Hearn presentations: by

2000s, impressive practical advances in automatic program

verification

• Microsoft’s SLAM Protocol (mentioned in Bill Gates’ 2002

keynote address): properties of procedure calls in device

drivers, e.g. any call to ReleaseSpinLock is preceded by a

call to AquireSpinLock

• In Nov. 2003, the Astrée static analyzer proved completely

automatically the absence of any RTE in the primary flight

control software of the Airbus A340 fly-by-wire system

see the project webpage

• . . . but even these projects were steering clear of automatic

heap verification!

• The first assumed memory safety

• The second assumed no dynamic pointer allocation

7



• Perhaps unsurprisingly: such programs notoriously difficult

to reason about

• Examples taken from Peter O’Hearn presentations: by

2000s, impressive practical advances in automatic program

verification

• Microsoft’s SLAM Protocol (mentioned in Bill Gates’ 2002

keynote address): properties of procedure calls in device

drivers, e.g. any call to ReleaseSpinLock is preceded by a

call to AquireSpinLock

• In Nov. 2003, the Astrée static analyzer proved completely

automatically the absence of any RTE in the primary flight

control software of the Airbus A340 fly-by-wire system

see the project webpage

• . . . but even these projects were steering clear of automatic

heap verification!

• The first assumed memory safety

• The second assumed no dynamic pointer allocation

7



• Perhaps unsurprisingly: such programs notoriously difficult

to reason about

• Examples taken from Peter O’Hearn presentations: by

2000s, impressive practical advances in automatic program

verification

• Microsoft’s SLAM Protocol (mentioned in Bill Gates’ 2002

keynote address): properties of procedure calls in device

drivers, e.g. any call to ReleaseSpinLock is preceded by a

call to AquireSpinLock

• In Nov. 2003, the Astrée static analyzer proved completely

automatically the absence of any RTE in the primary flight

control software of the Airbus A340 fly-by-wire system

see the project webpage

• . . . but even these projects were steering clear of automatic

heap verification!

• The first assumed memory safety

• The second assumed no dynamic pointer allocation

7



• And why (shared) mutable data structures are so

problematic?

• Let us quote from O’Hearn, Reynolds and Yang:

• The main difficulty is not one of finding an in-principle

adequate axiomatization of pointer operations . . .

• rather there is a mismatch between simple intuitions about

the way that pointer operations work and the complexity of

their axiomatic treatments . . .

• For example, pointer assignment is operationally simple,

but when there is aliasing, arising from several pointers to

a given cell, then an alteration to that cell may affect the

values of many syntactically unrelated expressions . . .

8



• And why (shared) mutable data structures are so

problematic?

• Let us quote from O’Hearn, Reynolds and Yang:

• The main difficulty is not one of finding an in-principle

adequate axiomatization of pointer operations . . .

• rather there is a mismatch between simple intuitions about

the way that pointer operations work and the complexity of

their axiomatic treatments . . .

• For example, pointer assignment is operationally simple,

but when there is aliasing, arising from several pointers to

a given cell, then an alteration to that cell may affect the

values of many syntactically unrelated expressions . . .

8



• And why (shared) mutable data structures are so

problematic?

• Let us quote from O’Hearn, Reynolds and Yang:

• The main difficulty is not one of finding an in-principle

adequate axiomatization of pointer operations . . .

• rather there is a mismatch between simple intuitions about

the way that pointer operations work and the complexity of

their axiomatic treatments . . .

• For example, pointer assignment is operationally simple,

but when there is aliasing, arising from several pointers to

a given cell, then an alteration to that cell may affect the

values of many syntactically unrelated expressions . . .

8



• And why (shared) mutable data structures are so

problematic?

• Let us quote from O’Hearn, Reynolds and Yang:

• The main difficulty is not one of finding an in-principle

adequate axiomatization of pointer operations . . .

• rather there is a mismatch between simple intuitions about

the way that pointer operations work and the complexity of

their axiomatic treatments . . .

• For example, pointer assignment is operationally simple,

but when there is aliasing, arising from several pointers to

a given cell, then an alteration to that cell may affect the

values of many syntactically unrelated expressions . . .

8



• And why (shared) mutable data structures are so

problematic?

• Let us quote from O’Hearn, Reynolds and Yang:

• The main difficulty is not one of finding an in-principle

adequate axiomatization of pointer operations . . .

• rather there is a mismatch between simple intuitions about

the way that pointer operations work and the complexity of

their axiomatic treatments . . .

• For example, pointer assignment is operationally simple,

but when there is aliasing, arising from several pointers to

a given cell, then an alteration to that cell may affect the

values of many syntactically unrelated expressions . . .

8



• Consider the following code:� �
PROC appendlist(x,y)

LOCAL t, u;

IF (x == nil) THEN x := y ELSE

t := x; u := t ->n;

WHILE not (u == nil) DO t := u; u := t ->n END;

t ->n := y

ENDIF

ENDPROC
� �

• Assume the assertion language contains a predicate

ls (x, t) meaning a linked list segment:

there is a path from x to t and (x 6= t or t = nil)

• A complete linked list: ls (x, nil)

• Is this a valid triple?

{ ls(x, nil) and ls(y, nil)}

appendlist(x,y)

{ ls(x, nil)}

9



• Consider the following code:� �
PROC appendlist(x,y)

LOCAL t, u;

IF (x == nil) THEN x := y ELSE

t := x; u := t ->n;

WHILE not (u == nil) DO t := u; u := t ->n END;

t ->n := y

ENDIF

ENDPROC
� �
• Assume the assertion language contains a predicate

ls (x, t) meaning a linked list segment:

there is a path from x to t and (x 6= t or t = nil)

• A complete linked list: ls (x, nil)

• Is this a valid triple?

{ ls(x, nil) and ls(y, nil)}

appendlist(x,y)

{ ls(x, nil)}

9



• Consider the following code:� �
PROC appendlist(x,y)

LOCAL t, u;

IF (x == nil) THEN x := y ELSE

t := x; u := t ->n;

WHILE not (u == nil) DO t := u; u := t ->n END;

t ->n := y

ENDIF

ENDPROC
� �
• Assume the assertion language contains a predicate

ls (x, t) meaning a linked list segment:

there is a path from x to t and (x 6= t or t = nil)

• A complete linked list: ls (x, nil)

• Is this a valid triple?

{ ls(x, nil) and ls(y, nil)}

appendlist(x,y)

{ ls(x, nil)}

9



• Consider the following code:� �
PROC appendlist(x,y)

LOCAL t, u;

IF (x == nil) THEN x := y ELSE

t := x; u := t ->n;

WHILE not (u == nil) DO t := u; u := t ->n END;

t ->n := y

ENDIF

ENDPROC
� �
• Assume the assertion language contains a predicate

ls (x, t) meaning a linked list segment:

there is a path from x to t and (x 6= t or t = nil)

• A complete linked list: ls (x, nil)

• Is this a valid triple?

{ ls(x, nil) and ls(y, nil)}

appendlist(x,y)

{ ls(x, nil)}

9



• x cannot be a sublist of y : we have to be able to state that

• but also, y cannot be a sublist of x. Is this enough?

• x and y should not have a common final segment . . .

• . . . in short, they should operate in disjoint areas of memory

• And now think of the loop invariants

• And remember you should not only be able to state all the

information, but have some way to reason about, decide

and infer such assertions

10



• x cannot be a sublist of y : we have to be able to state that

• but also, y cannot be a sublist of x. Is this enough?

• x and y should not have a common final segment . . .

• . . . in short, they should operate in disjoint areas of memory

• And now think of the loop invariants

• And remember you should not only be able to state all the

information, but have some way to reason about, decide

and infer such assertions

10



• x cannot be a sublist of y : we have to be able to state that

• but also, y cannot be a sublist of x. Is this enough?

• x and y should not have a common final segment . . .

• . . . in short, they should operate in disjoint areas of memory

• And now think of the loop invariants

• And remember you should not only be able to state all the

information, but have some way to reason about, decide

and infer such assertions

10



• x cannot be a sublist of y : we have to be able to state that

• but also, y cannot be a sublist of x. Is this enough?

• x and y should not have a common final segment . . .

• . . . in short, they should operate in disjoint areas of memory

• And now think of the loop invariants

• And remember you should not only be able to state all the

information, but have some way to reason about, decide

and infer such assertions

10



• x cannot be a sublist of y : we have to be able to state that

• but also, y cannot be a sublist of x. Is this enough?

• x and y should not have a common final segment . . .

• . . . in short, they should operate in disjoint areas of memory

• And now think of the loop invariants

• And remember you should not only be able to state all the

information, but have some way to reason about, decide

and infer such assertions

10



• x cannot be a sublist of y : we have to be able to state that

• but also, y cannot be a sublist of x. Is this enough?

• x and y should not have a common final segment . . .

• . . . in short, they should operate in disjoint areas of memory

• And now think of the loop invariants

• And remember you should not only be able to state all the

information, but have some way to reason about, decide

and infer such assertions

10



• And now try to reason about a bigger program using

appendlist

• It can use many other data structures and areas of the heap

• When appendlist is invoked, the Floyd-Hoare reasoning

can only use information in the contract

• Pre- and postconditions should allow us to infer that

nothing outside the area occupied now by x changed . . .

• In short, we are staring in the face of . . .

11



• And now try to reason about a bigger program using

appendlist

• It can use many other data structures and areas of the heap

• When appendlist is invoked, the Floyd-Hoare reasoning

can only use information in the contract

• Pre- and postconditions should allow us to infer that

nothing outside the area occupied now by x changed . . .

• In short, we are staring in the face of . . .

11



• And now try to reason about a bigger program using

appendlist

• It can use many other data structures and areas of the heap

• When appendlist is invoked, the Floyd-Hoare reasoning

can only use information in the contract

• Pre- and postconditions should allow us to infer that

nothing outside the area occupied now by x changed . . .

• In short, we are staring in the face of . . .

11



• And now try to reason about a bigger program using

appendlist

• It can use many other data structures and areas of the heap

• When appendlist is invoked, the Floyd-Hoare reasoning

can only use information in the contract

• Pre- and postconditions should allow us to infer that

nothing outside the area occupied now by x changed . . .

• In short, we are staring in the face of . . .

11



• And now try to reason about a bigger program using

appendlist

• It can use many other data structures and areas of the heap

• When appendlist is invoked, the Floyd-Hoare reasoning

can only use information in the contract

• Pre- and postconditions should allow us to infer that

nothing outside the area occupied now by x changed . . .

• In short, we are staring in the face of . . .

11



The frame problem



• The term the frame problem appeared in early days of (the

philosophy of) Artificial Intelligence

• McCarthy and Hayes, Some philosophical problems from

the standpoint of Artificial Intelligence, 1969

• Try to formalize, say, the obvious fact that P can get into

conversation with Q by looking up Q’s number in the

phone book and then dialling it up

• Whatever formalization you are going to write, it is almost

certain in the end you will be missing some hypotheses like

if a person has a telephone he still has it after looking up a

number in the telephone book . . .

• . . . or that if P looks up Q’s phone-number in the book, he

will know it

• And then of course there are all sorts of special-case

scenarios you need to exclude. Quoting McCarthy and

Hayes still further . . .

13



• The term the frame problem appeared in early days of (the

philosophy of) Artificial Intelligence

• McCarthy and Hayes, Some philosophical problems from

the standpoint of Artificial Intelligence, 1969

• Try to formalize, say, the obvious fact that P can get into

conversation with Q by looking up Q’s number in the

phone book and then dialling it up

• Whatever formalization you are going to write, it is almost

certain in the end you will be missing some hypotheses like

if a person has a telephone he still has it after looking up a

number in the telephone book . . .

• . . . or that if P looks up Q’s phone-number in the book, he

will know it

• And then of course there are all sorts of special-case

scenarios you need to exclude. Quoting McCarthy and

Hayes still further . . .

13



• The term the frame problem appeared in early days of (the

philosophy of) Artificial Intelligence

• McCarthy and Hayes, Some philosophical problems from

the standpoint of Artificial Intelligence, 1969

• Try to formalize, say, the obvious fact that P can get into

conversation with Q by looking up Q’s number in the

phone book and then dialling it up

• Whatever formalization you are going to write, it is almost

certain in the end you will be missing some hypotheses like

if a person has a telephone he still has it after looking up a

number in the telephone book . . .

• . . . or that if P looks up Q’s phone-number in the book, he

will know it

• And then of course there are all sorts of special-case

scenarios you need to exclude. Quoting McCarthy and

Hayes still further . . .

13



• The term the frame problem appeared in early days of (the

philosophy of) Artificial Intelligence

• McCarthy and Hayes, Some philosophical problems from

the standpoint of Artificial Intelligence, 1969

• Try to formalize, say, the obvious fact that P can get into

conversation with Q by looking up Q’s number in the

phone book and then dialling it up

• Whatever formalization you are going to write, it is almost

certain in the end you will be missing some hypotheses like

if a person has a telephone he still has it after looking up a

number in the telephone book . . .

• . . . or that if P looks up Q’s phone-number in the book, he

will know it

• And then of course there are all sorts of special-case

scenarios you need to exclude. Quoting McCarthy and

Hayes still further . . .

13



• The term the frame problem appeared in early days of (the

philosophy of) Artificial Intelligence

• McCarthy and Hayes, Some philosophical problems from

the standpoint of Artificial Intelligence, 1969

• Try to formalize, say, the obvious fact that P can get into

conversation with Q by looking up Q’s number in the

phone book and then dialling it up

• Whatever formalization you are going to write, it is almost

certain in the end you will be missing some hypotheses like

if a person has a telephone he still has it after looking up a

number in the telephone book . . .

• . . . or that if P looks up Q’s phone-number in the book, he

will know it

• And then of course there are all sorts of special-case

scenarios you need to exclude. Quoting McCarthy and

Hayes still further . . .

13



• The term the frame problem appeared in early days of (the

philosophy of) Artificial Intelligence

• McCarthy and Hayes, Some philosophical problems from

the standpoint of Artificial Intelligence, 1969

• Try to formalize, say, the obvious fact that P can get into

conversation with Q by looking up Q’s number in the

phone book and then dialling it up

• Whatever formalization you are going to write, it is almost

certain in the end you will be missing some hypotheses like

if a person has a telephone he still has it after looking up a

number in the telephone book . . .

• . . . or that if P looks up Q’s phone-number in the book, he

will know it

• And then of course there are all sorts of special-case

scenarios you need to exclude. Quoting McCarthy and

Hayes still further . . .
13



• The page with Q’s number may be torn out.

• P may be blind.

• Someone may have deliberately inked out Qs number.

• The telephone company may have made the entry

incorrectly.

• Q may have got the telephone only recently.

• The phone system may be out of order.

• Q may be incapacitated suddenly . . .

14



• The page with Q’s number may be torn out.

• P may be blind.

• Someone may have deliberately inked out Qs number.

• The telephone company may have made the entry

incorrectly.

• Q may have got the telephone only recently.

• The phone system may be out of order.

• Q may be incapacitated suddenly . . .

14



• The page with Q’s number may be torn out.

• P may be blind.

• Someone may have deliberately inked out Qs number.

• The telephone company may have made the entry

incorrectly.

• Q may have got the telephone only recently.

• The phone system may be out of order.

• Q may be incapacitated suddenly . . .

14



• The page with Q’s number may be torn out.

• P may be blind.

• Someone may have deliberately inked out Qs number.

• The telephone company may have made the entry

incorrectly.

• Q may have got the telephone only recently.

• The phone system may be out of order.

• Q may be incapacitated suddenly . . .

14



• The page with Q’s number may be torn out.

• P may be blind.

• Someone may have deliberately inked out Qs number.

• The telephone company may have made the entry

incorrectly.

• Q may have got the telephone only recently.

• The phone system may be out of order.

• Q may be incapacitated suddenly . . .

14



• The page with Q’s number may be torn out.

• P may be blind.

• Someone may have deliberately inked out Qs number.

• The telephone company may have made the entry

incorrectly.

• Q may have got the telephone only recently.

• The phone system may be out of order.

• Q may be incapacitated suddenly . . .

14



• The page with Q’s number may be torn out.

• P may be blind.

• Someone may have deliberately inked out Qs number.

• The telephone company may have made the entry

incorrectly.

• Q may have got the telephone only recently.

• The phone system may be out of order.

• Q may be incapacitated suddenly . . .

14



• When formally describing a change in a system, how do we

specify what parts of the state of the system are not affected

by that change?

as paraphrased later by Kassios

• The fact that an analogous problem arises with formal

specifications using Floyd-Hoare logics discussed (in the

context of OO code: inheritance issues etc.) by

Borgida, Mylopoulos and Reiter. On the frame problem in procedure

specifications. IEEE Transactions of Software Engineering, 1995

• Hoare-style formalisms invented in the noughties for shared

mutable data structures use the term frame very

prominently . . .

15



• When formally describing a change in a system, how do we

specify what parts of the state of the system are not affected

by that change?

as paraphrased later by Kassios

• The fact that an analogous problem arises with formal

specifications using Floyd-Hoare logics discussed (in the

context of OO code: inheritance issues etc.) by

Borgida, Mylopoulos and Reiter. On the frame problem in procedure

specifications. IEEE Transactions of Software Engineering, 1995

• Hoare-style formalisms invented in the noughties for shared

mutable data structures use the term frame very

prominently . . .

15



• When formally describing a change in a system, how do we

specify what parts of the state of the system are not affected

by that change?

as paraphrased later by Kassios

• The fact that an analogous problem arises with formal

specifications using Floyd-Hoare logics discussed (in the

context of OO code: inheritance issues etc.) by

Borgida, Mylopoulos and Reiter. On the frame problem in procedure

specifications. IEEE Transactions of Software Engineering, 1995

• Hoare-style formalisms invented in the noughties for shared

mutable data structures use the term frame very

prominently . . .

15



• In separation logic (Reynolds, Ishtiaq, O’Hearn . . . ,

1999–2002 and developed since), a central Hoare rule

(proposed by O’Hearn) is the frame rule

It has to be either assumed as an axiom or derived.

Separation logic also found to be useful in the context of concurrency and

other forms of resource sharing. Extended with abstract predicates by

Parkinson and Bierman 2005

• An alternative approach proposed by Kassios in 2006:

dynamic frames. A later relative: implict dynamic frames

(Smans, Jacobs, Piessens 2009)

Dynamic frames intended to use also in the OO context. Implicit dynamic

frames are closer in spirit to separation logic

16



• In separation logic (Reynolds, Ishtiaq, O’Hearn . . . ,

1999–2002 and developed since), a central Hoare rule

(proposed by O’Hearn) is the frame rule

It has to be either assumed as an axiom or derived.

Separation logic also found to be useful in the context of concurrency and

other forms of resource sharing. Extended with abstract predicates by

Parkinson and Bierman 2005

• An alternative approach proposed by Kassios in 2006:

dynamic frames. A later relative: implict dynamic frames

(Smans, Jacobs, Piessens 2009)

Dynamic frames intended to use also in the OO context. Implicit dynamic

frames are closer in spirit to separation logic

16



• A central idea of separation logic: suspend thinking of the

global heap when writing/reading specifications

• Quoting Berdine, Calcagno, O’Hearn: think of heaplets,

portions of heap.

• a spec {P} C {Q} says that if C is given a heaplet

satisfying P then it will never try to access heap outside of

P (other than cells allocated during execution) and it will

deliver a heaplet satisfying Q if it terminates

• (Of course, this has implications for how C acts on the

global heap.)

In the dynamic frames approach, one does think in terms of global heap,

using instead: “reads/modifies” clauses in assertions, “swinging pivot

postconditions” and permission masks

17



• A central idea of separation logic: suspend thinking of the

global heap when writing/reading specifications

• Quoting Berdine, Calcagno, O’Hearn: think of heaplets,

portions of heap.

• a spec {P} C {Q} says that if C is given a heaplet

satisfying P then it will never try to access heap outside of

P (other than cells allocated during execution) and it will

deliver a heaplet satisfying Q if it terminates

• (Of course, this has implications for how C acts on the

global heap.)

In the dynamic frames approach, one does think in terms of global heap,

using instead: “reads/modifies” clauses in assertions, “swinging pivot

postconditions” and permission masks

17



• A central idea of separation logic: suspend thinking of the

global heap when writing/reading specifications

• Quoting Berdine, Calcagno, O’Hearn: think of heaplets,

portions of heap.

• a spec {P} C {Q} says that if C is given a heaplet

satisfying P then it will never try to access heap outside of

P (other than cells allocated during execution) and it will

deliver a heaplet satisfying Q if it terminates

• (Of course, this has implications for how C acts on the

global heap.)

In the dynamic frames approach, one does think in terms of global heap,

using instead: “reads/modifies” clauses in assertions, “swinging pivot

postconditions” and permission masks

17



• A central idea of separation logic: suspend thinking of the

global heap when writing/reading specifications

• Quoting Berdine, Calcagno, O’Hearn: think of heaplets,

portions of heap.

• a spec {P} C {Q} says that if C is given a heaplet

satisfying P then it will never try to access heap outside of

P (other than cells allocated during execution) and it will

deliver a heaplet satisfying Q if it terminates

• (Of course, this has implications for how C acts on the

global heap.)

In the dynamic frames approach, one does think in terms of global heap,

using instead: “reads/modifies” clauses in assertions, “swinging pivot

postconditions” and permission masks

17



• Assertions about disjoint heaplets are combined using the

spatial conjunction A1 ∗A2 . . .

• . . . a.k.a. the separating conjunction or the independent

conjunction

• As you can already see, for substructural logicians it’s a

special case of fusion or multiplicative conjunction

• Reynolds was rather inspired by an early work of Burstall:

Some techniques for proving correctness of programs which alter data

structures, 1972

18



• Assertions about disjoint heaplets are combined using the

spatial conjunction A1 ∗A2 . . .

• . . . a.k.a. the separating conjunction or the independent

conjunction

• As you can already see, for substructural logicians it’s a

special case of fusion or multiplicative conjunction

• Reynolds was rather inspired by an early work of Burstall:

Some techniques for proving correctness of programs which alter data

structures, 1972

18



• Assertions about disjoint heaplets are combined using the

spatial conjunction A1 ∗A2 . . .

• . . . a.k.a. the separating conjunction or the independent

conjunction

• As you can already see, for substructural logicians it’s a

special case of fusion or multiplicative conjunction

• Reynolds was rather inspired by an early work of Burstall:

Some techniques for proving correctness of programs which alter data

structures, 1972

18



• Assertions about disjoint heaplets are combined using the

spatial conjunction A1 ∗A2 . . .

• . . . a.k.a. the separating conjunction or the independent

conjunction

• As you can already see, for substructural logicians it’s a

special case of fusion or multiplicative conjunction

• Reynolds was rather inspired by an early work of Burstall:

Some techniques for proving correctness of programs which alter data

structures, 1972

18



• Recall the problem with

{ ls(x, nil) and ls(y, nil)}

appendlist(x,y)

{ ls(x, nil)}

• This is looking much better:

{ ls(x, nil) * ls (y, nil)}

appendlist(x,y)

{ ls(x, nil)}

19



• Recall the problem with

{ ls(x, nil) and ls(y, nil)}

appendlist(x,y)

{ ls(x, nil)}

• This is looking much better:

{ ls(x, nil) * ls (y, nil)}

appendlist(x,y)

{ ls(x, nil)}

19



• We can also state the frame rule:

{A}C{B} no variable free in A′ modified by C

{A ∗A′}C{B ∗A′}

• The second premise, of course, is suitably formalized

20



• We can also state the frame rule:

{A}C{B} no variable free in A′ modified by C

{A ∗A′}C{B ∗A′}
• The second premise, of course, is suitably formalized

20



• BI has also other connectives, like the the magic wand −∗

• This is precisely multiplicative implication in the BI setting

• It is useful, e.g., for deriving weakest preconditions

one as a rule uses some form of implication in weakest preconditions

• However, BI unlike linear logic has also additive implication

. . . which is precisely the implication of intuitionistic logic

21



• BI has also other connectives, like the the magic wand −∗
• This is precisely multiplicative implication in the BI setting

• It is useful, e.g., for deriving weakest preconditions

one as a rule uses some form of implication in weakest preconditions

• However, BI unlike linear logic has also additive implication

. . . which is precisely the implication of intuitionistic logic

21



• BI has also other connectives, like the the magic wand −∗
• This is precisely multiplicative implication in the BI setting

• It is useful, e.g., for deriving weakest preconditions

one as a rule uses some form of implication in weakest preconditions

• However, BI unlike linear logic has also additive implication

. . . which is precisely the implication of intuitionistic logic

21



• BI has also other connectives, like the the magic wand −∗
• This is precisely multiplicative implication in the BI setting

• It is useful, e.g., for deriving weakest preconditions

one as a rule uses some form of implication in weakest preconditions

• However, BI unlike linear logic has also additive implication

. . . which is precisely the implication of intuitionistic logic

21



• Thus, BI combines intuitionistic logic for additive

connectives . . .

∧,∨,→,>,⊥

• . . . with multiplicative connectives of linear logic:

∗, −∗, 1

Note the absence of multiplicative 0 or disjunction

Neither absence is coincidental. It’s possible to combine BI with classical

linear logic, but this kills the most intended semantics

• Would be straightforward to define semantically if we did

category theory . . .

Bicartesian DCC’s (doubly closed categories): combining two monoidal

closed structures, one of which is bicartesian

• . . . or at least algebra

Heyting algebras equipped with an additional structure of residuated

commutative monoid: could call these BI-algebras

22



• Thus, BI combines intuitionistic logic for additive

connectives . . .

∧,∨,→,>,⊥
• . . . with multiplicative connectives of linear logic:

∗, −∗, 1

Note the absence of multiplicative 0 or disjunction

Neither absence is coincidental. It’s possible to combine BI with classical

linear logic, but this kills the most intended semantics

• Would be straightforward to define semantically if we did

category theory . . .

Bicartesian DCC’s (doubly closed categories): combining two monoidal

closed structures, one of which is bicartesian

• . . . or at least algebra

Heyting algebras equipped with an additional structure of residuated

commutative monoid: could call these BI-algebras

22



• Thus, BI combines intuitionistic logic for additive

connectives . . .

∧,∨,→,>,⊥
• . . . with multiplicative connectives of linear logic:

∗, −∗, 1

Note the absence of multiplicative 0 or disjunction

Neither absence is coincidental. It’s possible to combine BI with classical

linear logic, but this kills the most intended semantics

• Would be straightforward to define semantically if we did

category theory . . .

Bicartesian DCC’s (doubly closed categories): combining two monoidal

closed structures, one of which is bicartesian

• . . . or at least algebra

Heyting algebras equipped with an additional structure of residuated

commutative monoid: could call these BI-algebras

22



• Thus, BI combines intuitionistic logic for additive

connectives . . .

∧,∨,→,>,⊥
• . . . with multiplicative connectives of linear logic:

∗, −∗, 1

Note the absence of multiplicative 0 or disjunction

Neither absence is coincidental. It’s possible to combine BI with classical

linear logic, but this kills the most intended semantics

• Would be straightforward to define semantically if we did

category theory . . .

Bicartesian DCC’s (doubly closed categories): combining two monoidal

closed structures, one of which is bicartesian

• . . . or at least algebra

Heyting algebras equipped with an additional structure of residuated

commutative monoid: could call these BI-algebras

22



• What we are going to see instead is a simplified Kripke

semantics: preordered resource monoids

• But we will begin with proof-theoretical approach

much like in the linear logic case

• There are some obvious difficulties here though

• For example, as we have already learned, having the

additive implication forces distributivity laws for additive

connectives: how does the system reflect that without

collapsing multiplicatives?

• More basically and prosaically, how do we distinguish

introduction rules for multiplicative and additive

implication?

23



• What we are going to see instead is a simplified Kripke

semantics: preordered resource monoids

• But we will begin with proof-theoretical approach

much like in the linear logic case

• There are some obvious difficulties here though

• For example, as we have already learned, having the

additive implication forces distributivity laws for additive

connectives: how does the system reflect that without

collapsing multiplicatives?

• More basically and prosaically, how do we distinguish

introduction rules for multiplicative and additive

implication?

23



• What we are going to see instead is a simplified Kripke

semantics: preordered resource monoids

• But we will begin with proof-theoretical approach

much like in the linear logic case

• There are some obvious difficulties here though

• For example, as we have already learned, having the

additive implication forces distributivity laws for additive

connectives: how does the system reflect that without

collapsing multiplicatives?

• More basically and prosaically, how do we distinguish

introduction rules for multiplicative and additive

implication?

23



• What we are going to see instead is a simplified Kripke

semantics: preordered resource monoids

• But we will begin with proof-theoretical approach

much like in the linear logic case

• There are some obvious difficulties here though

• For example, as we have already learned, having the

additive implication forces distributivity laws for additive

connectives: how does the system reflect that without

collapsing multiplicatives?

• More basically and prosaically, how do we distinguish

introduction rules for multiplicative and additive

implication?

23



• What we are going to see instead is a simplified Kripke

semantics: preordered resource monoids

• But we will begin with proof-theoretical approach

much like in the linear logic case

• There are some obvious difficulties here though

• For example, as we have already learned, having the

additive implication forces distributivity laws for additive

connectives: how does the system reflect that without

collapsing multiplicatives?

• More basically and prosaically, how do we distinguish

introduction rules for multiplicative and additive

implication?

23



• A solution found in proof theory of earlier substructural

logics with distributive additives

• Comma on the left plays the role of multiplicative

conjunction?

• Well, introduce another symbol — say, ; — which will play

the same role wrt additive conjunction

• Then we have two different introduction rules we wanted:

Γ, φ⇒ ψ

Γ⇒ φ−∗ψ
vs.

Γ;φ⇒ ψ

Γ⇒ φ→ ψ

24



• A solution found in proof theory of earlier substructural

logics with distributive additives

• Comma on the left plays the role of multiplicative

conjunction?

• Well, introduce another symbol — say, ; — which will play

the same role wrt additive conjunction

• Then we have two different introduction rules we wanted:

Γ, φ⇒ ψ

Γ⇒ φ−∗ψ
vs.

Γ;φ⇒ ψ

Γ⇒ φ→ ψ

24



• A solution found in proof theory of earlier substructural

logics with distributive additives

• Comma on the left plays the role of multiplicative

conjunction?

• Well, introduce another symbol — say, ; — which will play

the same role wrt additive conjunction

• Then we have two different introduction rules we wanted:

Γ, φ⇒ ψ

Γ⇒ φ−∗ψ
vs.

Γ;φ⇒ ψ

Γ⇒ φ→ ψ

24



• A solution found in proof theory of earlier substructural

logics with distributive additives

• Comma on the left plays the role of multiplicative

conjunction?

• Well, introduce another symbol — say, ; — which will play

the same role wrt additive conjunction

• Then we have two different introduction rules we wanted:

Γ, φ⇒ ψ

Γ⇒ φ−∗ψ
vs.

Γ;φ⇒ ψ

Γ⇒ φ→ ψ

24



• This means that the left side of ⇒ is no longer just a list or

a multiset

• It is a rather special tree

• Internal nodes are labelled with semicolons and commas

• Leafs are labelled with actual formulas

• Such beasts have long been known to another tribe of

substructural logicians: relevant logicians . . .

• . . . under the name of bunches

• Yes, this is where the name of BI comes from

25



• This means that the left side of ⇒ is no longer just a list or

a multiset

• It is a rather special tree

• Internal nodes are labelled with semicolons and commas

• Leafs are labelled with actual formulas

• Such beasts have long been known to another tribe of

substructural logicians: relevant logicians . . .

• . . . under the name of bunches

• Yes, this is where the name of BI comes from

25



• This means that the left side of ⇒ is no longer just a list or

a multiset

• It is a rather special tree

• Internal nodes are labelled with semicolons and commas

• Leafs are labelled with actual formulas

• Such beasts have long been known to another tribe of

substructural logicians: relevant logicians . . .

• . . . under the name of bunches

• Yes, this is where the name of BI comes from

25



• This means that the left side of ⇒ is no longer just a list or

a multiset

• It is a rather special tree

• Internal nodes are labelled with semicolons and commas

• Leafs are labelled with actual formulas

• Such beasts have long been known to another tribe of

substructural logicians: relevant logicians . . .

• . . . under the name of bunches

• Yes, this is where the name of BI comes from

25



• This means that the left side of ⇒ is no longer just a list or

a multiset

• It is a rather special tree

• Internal nodes are labelled with semicolons and commas

• Leafs are labelled with actual formulas

• Such beasts have long been known to another tribe of

substructural logicians: relevant logicians . . .

• . . . under the name of bunches

• Yes, this is where the name of BI comes from

25



• This means that the left side of ⇒ is no longer just a list or

a multiset

• It is a rather special tree

• Internal nodes are labelled with semicolons and commas

• Leafs are labelled with actual formulas

• Such beasts have long been known to another tribe of

substructural logicians: relevant logicians . . .

• . . . under the name of bunches

• Yes, this is where the name of BI comes from

25



• This means that the left side of ⇒ is no longer just a list or

a multiset

• It is a rather special tree

• Internal nodes are labelled with semicolons and commas

• Leafs are labelled with actual formulas

• Such beasts have long been known to another tribe of

substructural logicians: relevant logicians . . .

• . . . under the name of bunches

• Yes, this is where the name of BI comes from

25



• Note: even the empty antecedent on the left must get split

into multiplicative and additive emptiness: ∅m vs. ∅a

• First corresponds to 1, the other to >
• We have reached the stage where slides are no longer useful

• Time to switch off slides and get the blackboard dirty

26



• Note: even the empty antecedent on the left must get split

into multiplicative and additive emptiness: ∅m vs. ∅a
• First corresponds to 1, the other to >

• We have reached the stage where slides are no longer useful

• Time to switch off slides and get the blackboard dirty

26



• Note: even the empty antecedent on the left must get split

into multiplicative and additive emptiness: ∅m vs. ∅a
• First corresponds to 1, the other to >
• We have reached the stage where slides are no longer useful

• Time to switch off slides and get the blackboard dirty

26



• Note: even the empty antecedent on the left must get split

into multiplicative and additive emptiness: ∅m vs. ∅a
• First corresponds to 1, the other to >
• We have reached the stage where slides are no longer useful

• Time to switch off slides and get the blackboard dirty

26


	Shared mutable data structures: whence the pain?
	The frame problem

