Nominal Topology for Data Languages

Henning Urbat Friedrich-Alexander-Universität Erlangen-Nürnberg May 5, 2020

Regular languages = Languages recognizable by finite monoids

A finite monoid M recognizes the language $L\colon \Sigma^*\to 2$

 $: \iff$

 \exists monoid morphism $e \colon \Sigma^* \to M$ and predicate $p \colon M \to 2$ with

Topological space of profinite words:

 $\widehat{\Sigma^*} = \text{limit of all finite quotient monoids } e : \Sigma^* \twoheadrightarrow M.$

A topological space X is a Stone space if it is

- **compact:** every open cover has a finite subcover.
- **Hausdorff**: any $x \neq y$ in X can be separated by disjoint open sets.
- > zero-dimensional: has a base of clopen sets .

continuous predicates $X \rightarrow 2$

Stone: category of Stone spaces and continuous maps.

Example: Cantor space $2^{\omega} = \{0, 1\} \times \{0, 1\} \times \cdots \in$ **Stone** ► Stone spaces = Profinite spaces.
Cofiltered limits of finite discrete spaces

Proof: uses Tychonoff's theorem (\Leftrightarrow AC).

► Finite discrete spaces = Finitely copresentable objects in **Stone**.

► Stone spaces = Profinite spaces.
Cofiltered limits of finite discrete spaces

Proof: uses Tychonoff's theorem (\Leftrightarrow AC).

► Finite discrete spaces = Finitely copresentable objects in **Stone**.

Stone is the free completion of **Set**_{*f*} under cofiltered limits:

 $Stone = Pro(Set_f)$

Stone space of profinite words:

 $\widehat{\Sigma^*} = \text{limit of all finite quotient monoids } e : \Sigma^* \to M.$

Poset Σ* ↓ Mon_f of finite quotient monoids e: Σ* → M.
 Codirected diagram

 $D \colon \Sigma^* \downarrow \operatorname{Mon}_f \to \operatorname{Stone}, \quad (e \colon \Sigma^* \twoheadrightarrow M) \mapsto |M|.$

• $\widehat{\Sigma^*} = \lim D$ with limit cone

$$\widehat{\Sigma^*} \ \downarrow p_e \qquad (e \colon \Sigma^* woheadrightarrow M) \ M \mid$$

Stone space of profinite words:

 $\widehat{\Sigma^*} = \text{limit of all finite quotient monoids } e : \Sigma^* \to M.$

$$\begin{array}{ccc} \Sigma^* \stackrel{L}{\longrightarrow} 2 & & & \widehat{\Sigma^*} \stackrel{\widehat{L}}{\longrightarrow} 2 \\ & \implies & & \end{array}$$

Stone space of profinite words:

 $\widehat{\Sigma^*} = \text{limit of all finite quotient monoids } e : \Sigma^* \twoheadrightarrow M.$

Stone space of profinite words:

 $\widehat{\Sigma^*} = \text{limit of all finite quotient monoids } e : \Sigma^* \to M.$

Stone space of profinite words:

 $\widehat{\Sigma^*} = \text{limit of all finite quotient monoids } e : \Sigma^* \twoheadrightarrow M.$

Stone duality

$\textbf{Stone}^{op} \hspace{0.1in} \cong \hspace{0.1in} \textbf{BoolAlg}$

 $X \mapsto \{ \text{ continuous predicates } X \to 2 \}$

$\widehat{\Sigma^*} \qquad \mapsto \quad \{ \text{ regular languages } \Sigma^* \to 2 \}$

Pippenger 1997 Gehrke, Grigorieff, Pin 2008 Adámek, Chen, Milius, Myers, Urbat 2014–2017

Nominal Sets

$\mathbb{A}=\mathsf{fixed}$ countably infinite set of names

 \blacktriangleright Nominal set: set X with a renaming operator, i.e. group action

$$\mathsf{Perm}(\mathbb{A}) \times X \to X, \quad (\pi, x) \mapsto \pi \cdot x,$$

such that every $x \in X$ has finite support

 $\operatorname{supp}_X(x) \subseteq \mathbb{A}.$

• Orbit-finite nominal set: finite up to renaming.

Nom: category of nominal sets and equivariant maps.

Example: $X = \mathbb{A}^*$ (finite words over \mathbb{A}) (*bc*) \cdot *abbc* = *accb* and supp $_{\mathbb{A}^*}(abbc) = \{a, b, c\}$

- ▶ Data language: equivariant map $L: \Sigma^* \to 2$ with $\Sigma \in \mathbf{Nom}$.
- ▶ Nominal monoid: nominal set *M* with equivariant monoid structure.
- ▶ Regular data language: recognizable by an orbit-finite nom. monoid.

Equivalent descriptions: rigid MSO and single-use register automata.

Goal: Topological perspective

Data Languages: Topological Perspective

For classical regular languages, topological view based on

 $Pro(\mathbf{Set}_f) = \mathbf{Stone}.$

For regular data languages: try to prove

$$Pro(Nom_{of}) = Nominal Stone spaces (?).$$

Data Languages: Topological Perspective

For classical regular languages, topological view based on

 $Pro(\mathbf{Set}_f) = \mathbf{Stone}.$

For regular data languages: try to prove

$$Pro(Nom_{of}) = Nominal Stone spaces (?).$$

Consider ω^{op} -cochain in **Nom**of:

$$\mathbb{A}^{\#0} \leftarrow \mathbb{A}^{\#1} \leftarrow \mathbb{A}^{\#2} \leftarrow \cdots \cdot \mathbb{A}^{\#n} \leftarrow \cdots$$

where

$$\mathbb{A}^{\# n} = \{ (a_1, \ldots, a_n) \in \mathbb{A}^n : a_i \neq a_j \text{ for } i \neq j \}.$$

Limit in **Nom** is \emptyset – but limit in $Pro(Nom_{of})$ is nontrivial!

Issue: Elements of A^{#0}, A^{#1}, A^{#2}, ... have unbounded support.
 Remedy: Restrict to bounded cofiltered diagrams!

A nominal set X is *n*-bounded $(n \in \mathbb{N})$ if

 $\forall x \in X. |\operatorname{supp}_X(x)| \le n.$

A diagram $D: I \rightarrow Nom$ is *n*-bounded if each D_i ($i \in I$) is *n*-bounded.

Observation D *n*-bounded cofiltered \implies lim *D* is *n*-bounded and formed in **Set**.

We will show the following result:

$$Pro(Nom_{of,n}) = n$$
-bounded nominal Stone spaces.

A topological space X is a Stone space if it is

- **compact:** every open cover has a finite subcover.
- **Hausdorff**: any $x \neq y$ in X can be separated by disjoint open sets.
- ▶ zero-dimensional: has a base of clopen sets .

continuous predicates $X \rightarrow 2$

Now: Introduce nominal analogues of these notions.

A topological space X is a Stone space if it is

- **compact:** every open cover has a finite subcover.
- **Hausdorff**: any $x \neq y$ in X can be separated by disjoint open sets.
- ▶ zero-dimensional: has a base of clopen sets .

continuous predicates $X \rightarrow 2$

Now: Introduce nominal analogues of these notions.

Nominal topological space: nominal set X with a family

 $\tau \subseteq_{\mathsf{eq}} \mathcal{P}_{\mathsf{fs}}X$

of open sets closed under finite intersection and finite-supported union:

$$U_1,\ldots,U_n\in\tau$$
 \Rightarrow $\bigcap_{i=1}^n U_i\in\tau$ and $\tau'\subseteq\tau$ f.s. \Rightarrow $\bigcup\tau'\in\tau$.

An equivariant map $f: X \to Y$ is continuous if

$$U \subseteq Y$$
 open $\Rightarrow f^{-1}[U] \subseteq X$ open.

NomTop: Nominal topological spaces and equivariant continuous maps.

A topological space X is a Stone space if it is

- **compact:** every open cover has a finite subcover.
- ▶ Hausdorff: any $x \neq y$ in X can be separated by disjoint open sets.
- > zero-dimensional: has a base of clopen sets .

continuous predicates $X \rightarrow 2$

Now: Introduce nominal analogues of these notions.

Nominal Topological Spaces: Compactness

X : Nominal topological space with topology $\tau \subseteq_{eq} \mathcal{P}_{fs} X$.

▶ Open cover: finitely supported set $C \subseteq \tau$ of open sets with

$$\bigcup \mathcal{C} = X.$$

▶ Subcover of C: finitely supported set $C' \subseteq C$ with

$$\bigcup \mathcal{C}' = X.$$

• Orbit-finite cover: meets only finitely many orbits of τ .

The space X is compact if every open cover has an orbit-finite subcover.

Example X orbit-finite $\implies X$ compact.

Example: Tychonoff fails!

 ${\rm A}^\omega$ is not compact: the open sets

$$U_{i,j} = \{ (a_n)_{n \in \mathbb{N}} \in \mathbb{A}^{\omega} : a_i = a_j \} \qquad (i \neq j)$$

cover \mathbb{A}^{ω} , but there is no (orbit-)finite subcover.

X : Nominal topological space with topology $\tau \subseteq_{eq} \mathcal{P}_{fs}X$.

For each $S \subseteq_{fin} \mathbb{A}$, get ordinary topological space $|X|_S$ with

- ▶ same underlying set as X;
- open sets of $|X|_S$ = open sets of X with support S.

This gives forgetful functors

$$|-|_{S}: \mathsf{NomTop} \to \mathsf{Top} \qquad (S \subseteq_{\mathsf{fin}} \mathbb{A}).$$

Lemma

$$X \text{ compact } \iff |X|_S \text{ compact for each } S \subseteq_{\text{fin}} \mathbb{A}.$$

A topological space X is a Stone space if it is

- **compact:** every open cover has a finite subcover.
- **Hausdorff**: any $x \neq y$ in X can be separated by disjoint open sets.
- > zero-dimensional: has a base of clopen sets .

continuous predicates $X \rightarrow 2$

Now: Introduce nominal analogues of these notions.

Nominal Topological Spaces: Hausdorff Property

$$x \equiv_S y$$
 iff $\exists \pi \in \operatorname{Perm}_S(\mathbb{A}). \ x = \pi \cdot y.$
permutations fixing S

A nominal topological space X is Hausdorff if, for $S \subseteq_{fin} \mathbb{A}$ and $x, y \in X$,

 $x \not\equiv_S y \implies \exists$ disjoint open sets U, V of support S with $x \in U, y \in V$.

Example

X discrete (i.e. $\tau = \mathcal{P}_{fs}X) \implies X$ Hausdorff.

A topological space X is a Stone space if it is

- **compact:** every open cover has a finite subcover.
- ▶ Hausdorff: any $x \neq y$ in X can be separated by disjoint open sets.
- ► zero-dimensional: has a base of clopen sets .

continuous predicates $X \rightarrow 2$

Now: Introduce nominal analogues of these notions.

Nominal Topological Spaces: Representable Sets

X : Nominal topological space with topology $\tau \subseteq_{eq} \mathcal{P}_{fs} X$.

A representable set $C \subseteq X$ is one of the form

$$C = f^{-1}[d]$$

where

 $f: X \rightarrow D$ continuous, D discrete & orbit-finite, $d \in D$.

X is zero-dimensional if it has a base of representable sets.

A nominal topological space X is a nominal Stone space if it is

- **compact:** every open cover has a orbit-finite subcover.
- ► Hausdorff: $x \neq_S y \Rightarrow \exists$ disj. S-supported open sets separating x, y.
- ► zero-dimensional: has a base of representable sets.

Example

X orbit-finite & discrete \implies X Stone.

\neq Gabbay, Litak, Petrişan 2011

Nominal Stone Spaces: Universal Property

Nominal Stone Spaces: Two Key Properties

n-bounded nominal Stone spaces = n-bounded pro-orbit-finite spaces.

cofiltered limits of *n*-bounded orbit-finite discrete spaces

Proof: uses classical (!) Tychonoff theorem.

- *n*-bounded orbit-finite discrete spaces
 - = finitely copresentable objects in **NomStone**_n.

Nominal Stone space of *n*-bounded pro-orbit-finite words over $\Sigma \in \mathbf{Nom}$:

 $\widehat{\Sigma_n^*} = \text{limit of all } n\text{-bounded orbit-finite quotient monoids } e : \Sigma^* \to M.$

Theorem

n-regular data languages $\Sigma^* \to 2 \cong$ continuous predicates $\widehat{\Sigma_n^*} \to 2$

recognizable by *n*-bounded orbit-finite monoids

Proof: As in classical case, use that 2 is finitely copresentable.

For classical regular languages: duality theory based on

Stone^{op} \cong BoolAlg.

Candidate for nominal Stone duality:

NomStone_n^{op} \cong *n*-atomic nominal boolean algebras.

\neq Gabbay, Litak, Petrişan 2011