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Regular Languages: Algebraic Perspective

Regular languages = Languages recognizable by finite monoids

A finite monoid M recognizes the language L: ¥* — 2
<
4 monoid morphism e: ¥* — M and predicate p: M — 2 with
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Regular Languages: Topological Perspective

Topological space of profinite words:

Y * = limit of all finite quotient monoids e : X" — M.

~

Regular languages ¥* — 2 = continuous predicates T2



A topological space X is a Stone space if it is

» compact: every open cover has a finite subcover.
» Hausdorff: any x # y in X can be separated by disjoint open sets.

» zero-dimensional: has a base of clopen sets .

continuous predicates X — 2

Stone: category of Stone spaces and continuous maps.

Example: Cantor space
2 ={0,1} x {0,1} x --- € Stone



Stone Spaces: Two Key Pro

» Stone spaces =  Profinite spaces.

cofiltered limits of finite discrete spaces

Proof: uses Tychonoff’s theorem (< AC).

» Finite discrete spaces = Finitely copresentable objects in Stone.

continuous map

X—D~«
finite discrete space
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Stone Spaces: Universal Property

Stone is the free completion of Sets under cofiltered limits:

Stone = Pro(Sety)

pres. cofiltered limits ) o
has cofiltered limits



Regular Languages: Topological Perspective

Stone space of profinite words:

Y * = limit of all finite quotient monoids e : X" — M.

» Poset 2* | Mony of finite quotient monoids e: >* — M.
» Codirected diagram

D:¥* | Mons — Stone, (e: X* — M) — [M].
» * = lim D with limit cone
T+
Jpe (e: ¥ - M)
M
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Regular Languages: Topological Perspective

Stone space of profinite words:

¥+ = limit of all finite quotient monoids e : X" — M.
Regular languages ¥* — 2 = continuous predicates 2
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Regular Languages: Topological Perspective

Stone duality

Stone®® = BoolAlg

X —  { continuous predicates X — 2}

Pay —  {regular languages ¥* — 2}

Pippenger 1997
Gehrke, Grigorieff, Pin 2008
Adamek, Chen, Milius, Myers, Urbat 2014-2017
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Nominal Sets

A = fixed countably infinite set of names

» Nominal set: set X with a renaming operator, i.e. group action
Perm(A) x X — X, (m,x)+— 7 x,
such that every x € X has finite support
suppx(x) € A.

» Orbit-finite nominal set: finite up to renaming.

» Nom: category of nominal sets and equivariant maps.

Example: X = A* (finite words over A)
(bc) - abbc = acch and suppa~(abbc) = {a, b, c}
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Data Languages

» Data language: equivariant map L: ¥* — 2 with ¥ € Nom.
» Nominal monoid: nominal set M with equivariant monoid structure.

» Regular data language: recognizable by an orbit-finite nom. monoid.

y* Lo

| A

M

Equivalent descriptions: rigid MSO and single-use register automata.
Goal: Topological perspective

ii5)



Data Languages: Topological Perspective

For classical regular languages, topological view based on

Pro(Setf) = Stone.

For regular data languages: try to prove

Pro(Nomy) = Nominal Stone spaces (7).

pres. cofiltered limits

Pro(Nomys) — — - = - — — — +Nom

a—re
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Data Languages: Topological Perspective

For classical regular languages, topological view based on

Pro(Setf) = Stone.

For regular data languages: try to prove

Pro(Nomy) = Nominal Stone spaces (7).

pres. cofiltered limits

Pro(Nomys) — — - = - — — — +Nom

\N / ® U not faithful!
OMyf
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The Issue With Pro(Nom,y)

Consider w°P-cochain in Nomgs:

where
A#" = {(a1,...,a,) €A™ : a;#ajfori#j}.

Limit in Nom is ) — but limit in Pro(Noms) is nontrivial!

® lIssue: Elements of A#9 A#1 A#2 . have unbounded support.

© Remedy: Restrict to bounded cofiltered diagrams!
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Bounded Diagrams

A nominal set X is n-bounded (n € IN) if
Vx € X. |suppx(x)| < n.

A diagram D: | — Nom is n-bounded if each D; (i € I) is n-bounded.

Observation
D n-bounded cofiltered == |im D is n-bounded and formed in Set.

We will show the following result:

Pro(Nomy,) = n-bounded nominal Stone spaces.

n-bounded orbit-finite sets
18



A topological space X is a Stone space if it is

» compact: every open cover has a finite subcover.
» Hausdorff: any x £ y in X can be separated by disjoint open sets.

» zero-dimensional: has a base of clopen sets .

continuous predicates X — 2

Now: Introduce nominal analogues of these notions.
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Nominal Topological Spaces

Nominal topological space: nominal set X with a family
T geq Prs X

of open sets closed under finite intersection and finite-supported union:
n

Up,....U,eT = ﬂU,‘GT and 7 Crfs. = UT/ET.
i=1

An equivariant map f: X — Y is continuous if
UCYopen = f1U]C X open.

NomTop: Nominal topological spaces and equivariant continuous maps.
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Nominal Topological Spaces: Compactness

X : Nominal topological space with topology 7 Ceq Prs X.

» Open cover: finitely supported set C C 7 of open sets with

Je=x.

» Subcover of C: finitely supported set C' C C with

e =x.

» Orbit-finite cover: meets only finitely many orbits of 7.

The space X is compact if every open cover has an orbit-finite subcover.

23



Nominal Topological Spaces: Compactness

Example
X orbit-finite =— X compact.

Example: Tychonoff fails!

AY is not compact: the open sets
Uij={(an)new € A* : a; =3;} (i # )

cover A, but there is no (orbit-)finite subcover.

24



Nominal Compactness vs. Classical Compactness

X : Nominal topological space with topology 7 Ceq Prs X.

For each S Cg, A, get ordinary topological space | X|s with

» same underlying set as X;

» open sets of |X|s = open sets of X with support S.

This gives forgetful functors

|—|s : NomTop — Top (S Chin A).

Lemma

X compact <= |X|s compact for each S Cgin A.
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A topological space X is a Stone space if it is
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Nominal Topological Spaces: Hausdorff Property

x=gy iff Im € Perms(A). x=m-y.

permutations fixing S

A nominal topological space X is Hausdorff if, for S Cgi, A and x,y € X,

x #Zsy = ddisjoint open sets U, V of support S with x € U, y € V.

u v

Example
X discrete (i.e. 7 =PeX) == X Hausdorff.
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Nominal Topological Spaces: Representable Sets

X : Nominal topological space with topology 7 Ceq Pt X.

A representable set C C X is one of the form
C =f'[d]
where

f: X — D continuous, D discrete & orbit-finite, d € D.

Note
C representable —- C clopen

4=

X is zero-dimensional if it has a base of representable sets.
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Nominal Stone Spaces

A nominal topological space X is a nominal Stone space if it is

» compact: every open cover has a orbit-finite subcover.
» Hausdorff: x 5 y = d disj. S-supported open sets separating x, y.

» zero-dimensional: has a base of representable sets.

Example
X orbit-finite & discrete = X Stone.

# Gabbay, Litak, Petrisan 2011
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Nominal Stone Spaces: Universal Property

Theorem

Pro(Nomy,) = NomStone,

n-bounded orbit-finite sets n-bounded nominal Stone spaces

pres. cofiltered limits ) o
has cofiltered limits

NomStone, - - — - - — — — +C
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Nominal Stone Spaces: Two Key Properties

» n-bounded nominal Stone spaces = n-bounded pro-orbit-finite spaces.

cofiltered limits of n-bounded orbit-finite discrete spaces
Proof: uses classical (!) Tychonoff theorem.

» n-bounded orbit-finite discrete spaces
= finitely copresentable objects in NomStone,,.

continuous map
J bl orbit-finite discrete space

n-bounded cofiltered limit
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Data Languages: Topological Perspective

Nominal Stone space of n-bounded pro-orbit-finite words over > € Nom:

i\f, = limit of all n-bounded orbit-finite quotient monoids e : ¥* — M.
Theorem
n-regular data languages ~* — 2 = continuous predicates f% — 2

recognizable by n-bounded orbit-finite monoids

Proof: As in classical case, use that 2 is finitely copresentable.
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Data Languages: Dual Perspective

For classical regular languages: duality theory based on

Stone®® = BoolAlg.

Candidate for nominal Stone duality:

NomStone)” = n-atomic nominal boolean algebras.

# Gabbay, Litak, Petrisan 2011
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