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Regular Languages: Algebraic Perspective

Regular languages = Languages recognizable by finite monoids

A finite monoid M recognizes the language L : Σ∗ → 2

:⇐⇒

∃ monoid morphism e : Σ∗ → M and predicate p : M → 2 with

Σ∗

e
��

L // 2

M

p

>>
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Regular Languages: Topological Perspective

Topological space of profinite words:

Σ̂∗ = limit of all finite quotient monoids e : Σ∗ � M.

Regular languages Σ∗ → 2 ∼= continuous predicates Σ̂∗ → 2
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Stone Spaces

A topological space X is a Stone space if it is

I compact: every open cover has a finite subcover.

I Hausdorff: any x 6= y in X can be separated by disjoint open sets.

I zero-dimensional: has a base of clopen sets

continuous predicates X → 2

.

Stone: category of Stone spaces and continuous maps.

Example: Cantor space

2ω = {0, 1} × {0, 1} × · · · ∈ Stone
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Stone Spaces: Two Key Properties

I Stone spaces = Profinite spaces.

cofiltered limits of finite discrete spaces

Proof: uses Tychonoff’s theorem (⇔ AC).

I Finite discrete spaces = Finitely copresentable objects in Stone.

X
f

continuous map

//

pi
cofiltered limit ��

D
finite discrete space

Xi
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Stone Spaces: Universal Property

Stone is the free completion of Setf under cofiltered limits:

Stone = Pro(Setf )

Stone
∃!F ′

pres. cofiltered limits

// C

has cofiltered limits

Setf
dd

dd

F

==
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Regular Languages: Topological Perspective

Stone space of profinite words:

Σ̂∗ = limit of all finite quotient monoids e : Σ∗ � M.

I Poset Σ∗ �Monf of finite quotient monoids e : Σ∗ � M.

I Codirected diagram

D : Σ∗ �Monf → Stone, (e : Σ∗ � M) 7→ |M| .

I Σ̂∗ = limD with limit cone

Σ̂∗

pe
��

|M|

(e : Σ∗ � M)
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Regular Languages: Topological Perspective

Stone duality

Stoneop ∼= BoolAlg

X 7→ { continuous predicates X → 2 }

Σ̂∗ 7→ { regular languages Σ∗ → 2 }

Pippenger 1997

Gehrke, Grigorieff, Pin 2008

Adámek, Chen, Milius, Myers, Urbat 2014–2017
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Nominal Sets

A = fixed countably infinite set of names

I Nominal set: set X with a renaming operator, i.e. group action

Perm(A)× X → X , (π, x) 7→ π · x ,

such that every x ∈ X has finite support

suppX (x) ⊆ A.

I Orbit-finite nominal set: finite up to renaming.

I Nom: category of nominal sets and equivariant maps.

Example: X = A∗ (finite words over A)

(bc) · abbc = accb and suppA∗(abbc) = {a, b, c}
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Data Languages

I Data language: equivariant map L : Σ∗ → 2 with Σ ∈ Nom.

I Nominal monoid: nominal set M with equivariant monoid structure.

I Regular data language: recognizable by an orbit-finite nom. monoid.

Σ∗

e
��

L // 2

M

p

>>

Equivalent descriptions: rigid MSO and single-use register automata.

Goal: Topological perspective

15



Data Languages: Topological Perspective

For classical regular languages, topological view based on

Pro(Setf ) = Stone.

For regular data languages: try to prove

Pro(Nomof) = Nominal Stone spaces (?).

Pro(Nomof)
U

pres. cofiltered limits

// Nom

Nomof

ff

ff

::

::

/ U not faithful!
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The Issue With Pro(Nomof)

Consider ωop-cochain in Nomof :

A#0 ← A#1 ← A#2 ← · · · · · ·A#n ← · · ·

where

A#n = { (a1, . . . , an) ∈ An : ai 6= aj for i 6= j }.

Limit in Nom is ∅ – but limit in Pro(Nomof) is nontrivial!

/ Issue: Elements of A#0,A#1,A#2, . . . have unbounded support.

, Remedy: Restrict to bounded cofiltered diagrams!
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Bounded Diagrams

A nominal set X is n-bounded (n ∈ N) if

∀x ∈ X . |suppX (x)| ≤ n.

A diagram D : I → Nom is n-bounded if each Di (i ∈ I ) is n-bounded.

Observation

D n-bounded cofiltered =⇒ limD is n-bounded and formed in Set.

We will show the following result:

Pro(Nomof,n)

n-bounded orbit-finite sets

= n-bounded nominal Stone spaces.
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Stone Spaces

A topological space X is a Stone space if it is

I compact: every open cover has a finite subcover.

I Hausdorff: any x 6= y in X can be separated by disjoint open sets.

I zero-dimensional: has a base of clopen sets

continuous predicates X → 2

.

Now: Introduce nominal analogues of these notions.
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Nominal Topological Spaces

Nominal topological space: nominal set X with a family

τ ⊆eq PfsX

of open sets closed under finite intersection and finite-supported union:

U1, . . . ,Un ∈ τ ⇒
n⋂

i=1

Ui ∈ τ and τ ′ ⊆ τ f.s. ⇒
⋃
τ ′ ∈ τ.

An equivariant map f : X → Y is continuous if

U ⊆ Y open ⇒ f −1[U] ⊆ X open.

NomTop: Nominal topological spaces and equivariant continuous maps.
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Nominal Topological Spaces: Compactness

X : Nominal topological space with topology τ ⊆eq PfsX .

I Open cover: finitely supported set C ⊆ τ of open sets with⋃
C = X .

I Subcover of C: finitely supported set C′ ⊆ C with⋃
C′ = X .

I Orbit-finite cover: meets only finitely many orbits of τ .

The space X is compact if every open cover has an orbit-finite subcover.
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Nominal Topological Spaces: Compactness

Example

X orbit-finite =⇒ X compact.

Example: Tychonoff fails!

Aω is not compact: the open sets

Ui ,j = { (an)n∈N ∈ Aω : ai = aj } (i 6= j)

cover Aω, but there is no (orbit-)finite subcover.
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Nominal Compactness vs. Classical Compactness

X : Nominal topological space with topology τ ⊆eq PfsX .

For each S ⊆fin A, get ordinary topological space |X |S with

I same underlying set as X ;

I open sets of |X |S = open sets of X with support S .

This gives forgetful functors

|−|S : NomTop→ Top (S ⊆fin A).

Lemma

X compact ⇐⇒ |X |S compact for each S ⊆fin A.
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Stone Spaces
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Nominal Topological Spaces: Hausdorff Property

x ≡S y iff ∃π ∈ PermS(A)

permutations fixing S

. x = π · y .

A nominal topological space X is Hausdorff if, for S ⊆fin A and x , y ∈ X ,

x 6≡S y =⇒ ∃ disjoint open sets U,V of support S with x ∈ U, y ∈ V .

Example

X discrete (i.e. τ = PfsX ) =⇒ X Hausdorff.
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Nominal Topological Spaces: Representable Sets

X : Nominal topological space with topology τ ⊆eq PfsX .

A representable set C ⊆ X is one of the form

C = f −1[d ]

where

f : X → D continuous, D discrete & orbit-finite, d ∈ D.

Note

C representable =⇒ C clopen

6⇐=

X is zero-dimensional if it has a base of representable sets.
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Nominal Stone Spaces

A nominal topological space X is a nominal Stone space if it is

I compact: every open cover has a orbit-finite subcover.

I Hausdorff: x 6≡S y ⇒ ∃ disj. S-supported open sets separating x , y .

I zero-dimensional: has a base of representable sets.

Example

X orbit-finite & discrete =⇒ X Stone.

6= Gabbay, Litak, Petrişan 2011
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Nominal Stone Spaces: Universal Property

Theorem

Pro(Nomof,n)

n-bounded orbit-finite sets

= NomStonen

n-bounded nominal Stone spaces

NomStonen
∃!F ′

pres. cofiltered limits

// C

has cofiltered limits

Nomof,n

gg

gg

F

;;
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Nominal Stone Spaces: Two Key Properties

I n-bounded nominal Stone spaces = n-bounded pro-orbit-finite spaces.

cofiltered limits of n-bounded orbit-finite discrete spaces

Proof: uses classical (!) Tychonoff theorem.

I n-bounded orbit-finite discrete spaces

= finitely copresentable objects in NomStonen.

X
f

continuous map

//

pi
n-bounded cofiltered limit ��

D
orbit-finite discrete space

Xi

∃f ′

??
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Data Languages: Topological Perspective

Nominal Stone space of n-bounded pro-orbit-finite words over Σ ∈ Nom:

Σ̂∗n = limit of all n-bounded orbit-finite quotient monoids e : Σ∗ � M.

Theorem

n-regular

recognizable by n-bounded orbit-finite monoids

data languages Σ∗ → 2 ∼= continuous predicates Σ̂∗n → 2

Proof: As in classical case, use that 2 is finitely copresentable.

33



Data Languages: Dual Perspective

For classical regular languages: duality theory based on

Stoneop ∼= BoolAlg.

Candidate for nominal Stone duality:

NomStoneop
n

∼= n-atomic nominal boolean algebras.

6= Gabbay, Litak, Petrişan 2011
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