
Monad-Based Programming SS 2019

Assignment 3
Deadline for solutions: 13.06.2019, 12.15 a.m.

Exercise 1 From Monoids to Monads (10 Points)

A monoid in a Cartesian category is a triple (M, ε,�) where M is an object; � (multiplication)
is a morphism M×M →M and ε (unit) is a morphism 1→M such that the following diagrams
commute:

M × 1 M ×M 1×M

M

id×ε

pr1
�

ε×id

pr2

M × (M ×M) (M ×M)×M

M ×M M M ×M

α

id×� �×id

� �

where α = 〈id× pr1, pr2pr2〉 : X × (Y × Z)→ (X × Y )× Z is the associativity morphism∗.

The left diagram consists of two triangles expressing two unit laws: x � ε = x and ε � x = x;
the right diagram expresses associativity law: x� (y � z) = (x� y)� z.

1. A monoid M gives rise to a monad TM , which we call an M -module monad, for which
TMX = M×X; ηX = 〈ε ◦ !, id〉 : X →M×X; f∗ = (�× id)◦α◦(id×f) : M×X →M×Y
for any f : X →M × Y . Prove that TM is indeed a monad by diagram chasing.

You can use without a proof that the following diagram commutes:

X × (Y × (Z ×W )) (X × Y )× (Z ×W ) ((X × Y )× Z)×W

X × ((Y × Z)×W ) (X × (Y × Z))×W

α

id×α

α

α×id

α

Hint: reformulate the definition of the monad structure in terms of monad multiplication,
using the definitions from the lecture.

2. Implement M -module monads in Haskell as a type class MonoidModule m parametrized
by a monoid m and make it an instance of the standard type classes Functor, Monad,
consistently with the previous clauses 1), 2), by completing the following declaration:

instance Functor (MonoidModule m)

instance Monoid m => Monad (MonoidModule m)

(note that m need not be a monoid in the first declaration.) You can use the standard
implementation of monoids in Haskell [2].

∗Here f × g with f : A1 → B1, g : A2 → B2 denotes 〈f ◦ pr1, g ◦ pr2〉 : A1 ×A2 → B1 ×B2.
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Exercise 2 Counting Monads (10 Points)

1. Declare a Haskell type class

class Monad m => CountMonad m where

inc :: () -> m ()

where inc is a function determining the value used for incrementing the internal counter.

2. Make MonoidModule n from Excessice 1 an instance of CountMonad by completing the
declaration

instance (Num n, Monoid n) => CountMonad (MonoidModule n) where

Here we use n both as a monoid type and as a number type to specify a counter. The
function inc must set the counter to 1.

3. Implement a recursive binary search function

findFirst :: (a -> Bool) -> Tree a -> IntCountMonad (Maybe a)

where IntCountMonad is an alias for MonoidModule (Sum Int), over the following data
structures:

data Tree a = Leaf a | Node (Tree a) (Tree a) deriving Show

searching for the first occurrence of the number satisfying the given predicate. Make sure
to run inc before every recursive call of findFirst, e.g. as follows:

inc () >> findFirst n t

4. How can you interpret the value of the counter returned by findFirst?
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