Assignment 2

Deadline for solutions: $30.05 .2015, \mathbf{1 2 . 1 5}$ a.m.

Exercise 1 By far non-Pythagorean numbers

Consider a notion of number which includes all natural numbers and supports the operations of summation and multiplication. Let us denote by S the set of such numbers. We can extend S to the numbers of the form

$$
\begin{equation*}
a+\sqrt{2} \cdot b \tag{*}
\end{equation*}
$$

with $a, b \in S$ and denote the extended numbers as $S[\sqrt{2}]$. Note that depending on S, S may be equi-expressive with $S[\sqrt{2}]$ (e.g. if S are all real numbers) or properly less expressive (e.g. if S are all rational numbers).
Implement the numbers $(*)$ in Haskell as an algebraic data type

Sq2Num a
where a is the type capturing the elements of S. Ensure that Sq2Num a (under suitable assumptions) is an instance of the following type classes: Eq, Ord, Show, Num, Fractional, e.g. by completing the following declarations:

```
instance (Num a, Eq a) => Eq (Sq2Num a)
instance (Num a, Eq a) => Ord (Sq2Num a)
instance (Num a, Eq a) => Num (Sq2Num a)
instance (Fractional a, Eq a) => Fractional (Sq2Num a)
```

Additionally, provide a conversion function

```
getReal :: Floating a => Sq2Num a -> a
```

reducing from $S[\sqrt{2}]$ to S in such a way that real numbers are converted to themselves.
Hint: For inspiration, use the standard implementation of complex numbers in Haskell [1]. Like in the case of complex numbers, you need to prove (!) and implement the mathematical fact that the numbers $(*)$ are closed under summation and multiplication and additionally under division, provided that so are the numbers from S.

Exercise 2 Unfolding Y

Recall the call-by-value small-step rule

$$
Y f \rightarrow f(\lambda x .(Y f) x)
$$

where $f:(A \rightarrow B) \rightarrow(A \rightarrow B)$. The soundness theorem implies that

$$
\llbracket-\vdash(Y f): A \rightarrow B \rrbracket=\llbracket-\vdash f(\lambda x .(Y f) x): A \rightarrow B \rrbracket
$$

where "-" denotes the empty variable context.
(a) Prove that moreover

$$
\begin{equation*}
\llbracket \Gamma \vdash(Y f): A \rightarrow B \rrbracket(\rho)=\llbracket \Gamma \vdash f(\lambda x .(Y f) x): A \rightarrow B \rrbracket(\rho) \tag{1}
\end{equation*}
$$

for every $\rho \in \llbracket \Gamma \rrbracket$, directly using the rules of denotational call-by-value semantics of PCF.
(b) Implement the factorial function $f a c: N a t \rightarrow N a t$ in PCF as a function of the form $Y p$ for a suitable term p. Prove formally that $\llbracket n: N a t \vdash f a c(n): N a t \rrbracket(3)=6$ under the call-by-value semantics.
Hint: use (1).

Exercise 3 curry and uncurry

Chose one of the functions curry : $A^{B \times C} \rightarrow\left(A^{B}\right)^{C}$ and uncurry : $\left(A^{B}\right)^{C} \rightarrow A^{B \times C}$, defined at the lecture, as you please, and prove it to be continuous (in particular monotone).

References

[1] https://www.haskell.org/onlinereport/complex.html.

