
Monad-Based Programming SS 2019

Assignment 2
Deadline for solutions: 30.05.2015, 12.15 a.m.

Exercise 1 By far non-Pythagorean numbers (8 Points)

Consider a notion of number which includes all natural numbers and supports the operations of
summation and multiplication. Let us denote by S the set of such numbers. We can extend S
to the numbers of the form

a+
√

2 · b (∗)

with a, b ∈ S and denote the extended numbers as S[
√

2]. Note that depending on S, S may be
equi-expressive with S[

√
2] (e.g. if S are all real numbers) or properly less expressive (e.g. if S

are all rational numbers).

Implement the numbers (∗) in Haskell as an
algebraic data type

Sq2Num a

where a is the type capturing the elements
of S. Ensure that Sq2Num a (under suitable
assumptions) is an instance of the following
type classes: Eq, Ord, Show, Num, Fractional,
e.g. by completing the following declarations:

instance (Num a, Eq a) => Eq (Sq2Num a)

instance (Num a, Eq a) => Ord (Sq2Num a)

instance (Num a, Eq a) => Num (Sq2Num a)

instance (Fractional a, Eq a) => Fractional (Sq2Num a)

Additionally, provide a conversion function

getReal :: Floating a => Sq2Num a -> a

reducing from S[
√

2] to S in such a way that real numbers are converted to themselves.

Hint: For inspiration, use the standard implementation of complex numbers in Haskell [1]. Like
in the case of complex numbers, you need to prove (!) and implement the mathematical fact
that the numbers (∗) are closed under summation and multiplication and additionally under
division, provided that so are the numbers from S.

Exercise 2 Unfolding Y (8 Points)

Recall the call-by-value small-step rule

Y f → f(λx. (Y f)x)



MBProg, SS 2019

where f : (A→ B)→ (A→ B). The soundness theorem implies that

J− ` (Y f) : A→ BK = J− ` f(λx. (Y f)x) : A→ BK

where “−” denotes the empty variable context.

(a) Prove that moreover

JΓ ` (Y f) : A→ BK(ρ) = JΓ ` f(λx. (Y f)x) : A→ BK(ρ) (1)

for every ρ ∈ JΓK, directly using the rules of denotational call-by-value semantics of PCF.

(b) Implement the factorial function fac : Nat → Nat in PCF as a function of the form Y p
for a suitable term p. Prove formally that Jn : Nat ` fac(n) : NatK(3) = 6 under the
call-by-value semantics.

Hint: use (1).

Exercise 3 curry and uncurry (4 Points)

Chose one of the functions curry : AB×C → (AB)C and uncurry : (AB)C → AB×C , defined at
the lecture, as you please, and prove it to be continuous (in particular monotone).

References

[1] https://www.haskell.org/onlinereport/complex.html.

2

https://www.haskell.org/onlinereport/complex.html

	By far non-Pythagorean numbers(8 Points)
	Unfolding Y(8 Points)
	curry and uncurry(4 Points)

