
Monad-Based Programming SS 2019

Assignment 1
Deadline for solutions: 16.05.2019

Exercise 1 Small-step v.s. Big-step (8 Points)

Consider the following rules for the small-step and big-step call-by-value semantics of untyped
λ-calculus:

Small-step semantics:

pÑcbv p
1

pq Ñcbv p
1q

(l-red)
q Ñcbv q

1 p is a value

pq Ñcbv pq
1

(r-red)
q is a value

pλx. pqq Ñcbv prq{xs
(β)

Big-step semantics:

λx. p ócbv λx. p
(value)

p ócbv λx. p
1 q ócbv q

1 p1rq1{xs ócbv v

pq ócbv v
(app)

Recall that a λ-term p is a value if and only if it has the form λx. t.

Prove that for any closed λ-term p, p Ñ‹
cbv q with q being a value iff p ócbv q. To this end, use

(without a proof) the following

Well-founded Tree Induction Principle: given a set of rules S and a predicate P with the
following properties:

1. P ptq for any rule from S of the form

t

2. whenever P pt1q, . . . , P ptnq and the rule

t1 . . . tn
t

belongs to S then P ptq.

Then P ptq for any t that can be derived using S.

Hint: For one direction of the equivalence use the lemma: pÑcbv q ^ q ócbv cñ p ócbv c.

Exercise 2 PCF with coproducts (6 Points)

A disjoint union of sets A and B is the set

A`B “ t〈a, ˚〉 | a P Au Y t〈˚, b〉 | b P Bu

MBProg, SS 2019

where ˚ R AYB. It comes equipped with the following structure: inl : AÑ A`B, inr : B Ñ A`B
and the copairing brackets sending any f : A Ñ C and g : B Ñ C to rf, gs : A ` B Ñ C as
follows:

inlpaq “ 〈a, ˚〉 inrpbq “ 〈˚, b〉 rf, gspa, ˚q “ fpaq rf, gsp˚, bq “ gpbq

The Haskell counterpart of disjoint unions if the sum type

data Either a b = Left a | Right b

where the constructors Left and Right are the counterparts of inl and inr and the case-construct
case is the counterpart of copairing.

1. Design an extension of PCF by adding a sum type A ` B and providing appropriate
introduction and elimination rules for the corresponding term constructs in the Haskell
style.

2. Design call-by-name small-step and big-step operational semantics for the new term con-
structs. Demonstrate that this semantics is consistent with the behaviour of Haskell pro-
grams using the divergence combinator omega.

3. Can the conditional branching operator (if) be shown to be superfluous in presence of the
new term constructs? Justify your answer using the rules of the operational semantics.

Exercise 3 Pythagorean triples in Haskell (6 Points)

A triple of natural numbers 〈a, b, c〉 is called Pythagorean if it satisfies the angled triangle
property:

a2 ` b2 “ c2.

We say that a triple 〈a, b, c〉 is smaller than 〈a1, b1, c1〉 if c ă c1.

1. Write a Haskell-program that outputs all Pythagorean triples in order.

2. Write a Haskell-program to calculate the pair of Pythagorean triples 〈a, b, c〉 and 〈a1, b1, c〉
of least possible c such that ta, bu ‰ ta1, b1u.

Hint: Be lazy. Use (list) comprehension.

2

