Assignment 1

Deadline for solutions: 16.05.2019

Exercise 1 Small-step v.s. Big-step

Consider the following rules for the small-step and big-step call-by-value semantics of untyped λ-calculus:

Small-step semantics:

$$
\frac{p \rightarrow_{c b v} p^{\prime}}{p q \rightarrow_{c b v} p^{\prime} q}(\mathbf{l} \text {-red }) \quad \frac{q \rightarrow_{c b v} q^{\prime} \quad p \text { is a value }}{p q \rightarrow_{c b v} p q^{\prime}} \quad(\mathbf{r - r e d}) \quad \frac{q \text { is a value }}{(\lambda x \cdot p) q \rightarrow_{c b v} p[q / x]}
$$

Big-step semantics:

$$
\frac{\overline{\lambda x . p} \Downarrow_{c b v} \lambda x . p}{} \text { (value) } \quad \frac{p \Downarrow_{c b v} \lambda x . p^{\prime}}{} \quad q \Downarrow_{c b v} q^{\prime} \quad p^{\prime}\left[q^{\prime} / x\right] \Downarrow_{c b v} v(\text { (app) }
$$

Recall that a λ-term p is a value if and only if it has the form λ x.t.
Prove that for any closed λ-term $p, p \rightarrow_{c b v}^{\star} q$ with q being a value iff $p \Downarrow_{c b v} q$. To this end, use (without a proof) the following

Well-founded Tree Induction Principle: given a set of rules S and a predicate P with the following properties:

1. $P(t)$ for any rule from S of the form

$$
\bar{t}
$$

2. whenever $P\left(t_{1}\right), \ldots, P\left(t_{n}\right)$ and the rule

belongs to S then $P(t)$.
Then $P(t)$ for any t that can be derived using S.
Hint: For one direction of the equivalence use the lemma: $p \rightarrow_{c b v} q \wedge q \Downarrow_{c b v} c \Rightarrow p \Downarrow_{c b v} c$.

Exercise 2 PCF with coproducts

A disjoint union of sets A and B is the set

$$
A+B=\{\langle a, *\rangle \mid a \in A\} \cup\{\langle *, b\rangle \mid b \in B\}
$$

where $* \notin A \cup B$. It comes equipped with the following structure: inl : $A \rightarrow A+B$, inr : $B \rightarrow A+B$ and the copairing brackets sending any $f: A \rightarrow C$ and $g: B \rightarrow C$ to $[f, g]: A+B \rightarrow C$ as follows:

$$
\operatorname{inl}(a)=\langle a, *\rangle \quad \operatorname{inr}(b)=\langle *, b\rangle \quad[f, g](a, *)=f(a) \quad[f, g](*, b)=g(b)
$$

The Haskell counterpart of disjoint unions if the sum type

```
data Either a b = Left a | Right b
```

where the constructors Left and Right are the counterparts of inl and inr and the case-construct case is the counterpart of copairing.

1. Design an extension of PCF by adding a sum type $A+B$ and providing appropriate introduction and elimination rules for the corresponding term constructs in the Haskell style.
2. Design call-by-name small-step and big-step operational semantics for the new term constructs. Demonstrate that this semantics is consistent with the behaviour of Haskell programs using the divergence combinator omega.
3. Can the conditional branching operator (if) be shown to be superfluous in presence of the new term constructs? Justify your answer using the rules of the operational semantics.

Exercise 3 Pythagorean triples in Haskell

(6 Points)

A triple of natural numbers $\langle a, b, c\rangle$ is called Pythagorean if it satisfies the angled triangle property:

$$
a^{2}+b^{2}=c^{2} .
$$

We say that a triple $\langle a, b, c\rangle$ is smaller than $\left\langle a^{\prime}, b^{\prime}, c^{\prime}\right\rangle$ if $c<c^{\prime}$.

1. Write a Haskell-program that outputs all Pythagorean triples in order.
2. Write a Haskell-program to calculate the pair of Pythagorean triples $\langle a, b, c\rangle$ and $\left\langle a^{\prime}, b^{\prime}, c\right\rangle$ of least possible c such that $\{a, b\} \neq\left\{a^{\prime}, b^{\prime}\right\}$.

Hint: Be lazy. Use (list) comprehension.

