
Lecture Notes for

Monad-Based Programming
Recorded by Hans-Peter Deifel (hpd@hpdeifel.de)

Edited by Sergey Goncharov (sergey.goncharov@fau.de)

by PD Dr. Sergey Goncharov

July 19, 2019

mailto:hpd@hpdeifel.de
mailto:sergey.goncharov@fau.de

Contents

1 Semantic Origins 3
1.1 The Untyped Lambda Calculus . 4
1.2 Evaluation Strategies . 6

1.2.1 Standard Evaluation Strategy . 6
1.2.2 Call-by-Name (Lazy) Evaluation Strategy 7
1.2.3 Call-by-Value (Eager) Evaluation Strategy 7
1.2.4 Big-Step Call-by-Name . 8
1.2.5 Big-Step Call-by-Value . 8

1.3 PCF (Programming Computable Functions) 9
1.3.1 Simply-Typed λ-calculus . 9
1.3.2 Call-by-Name Operational Semantics for PCF 11
1.3.3 Call-by-Value Operation Semantics for PCF 12

1.4 Denotational Semantics of PCF . 13
1.4.1 Constructions on Predomains . 14
1.4.2 CBN Denotational Semantics . 17
1.4.3 CBV Denotational Semantics . 19

2 Categories and Monads 23
2.1 Introducing Monads . 23

2.1.1 Products and Coproducts . 24
2.1.2 Functors and Monads . 27
2.1.3 Natural Transformations: Relating Functors 29
2.1.4 Examples of Monads . 33
2.1.5 Dualization, Bi-Functors, Cartesian Closure 35

2.2 Tensorial Strength . 37
2.2.1 Strong Monads . 38
2.2.2 Commutative Monads . 39

2.3 Algebras and CPS-Transormations . 40
2.4 Free Objects and Adjoint Functors . 43

2

1 Semantic Origins

In mathematics we do not distinguish between expressions and their meanings. The
meaning of 2` 2 is 4 and both objects are indistinguishable. In computer science we do
distinguish expressions or terms from their meanings, for which we use semantic brackets

J´K : Terms Ñ Meanings

The style of semantics involving such brackets is called denotational semantics: Deno-
tational semantics has been developed in 70’s by Christopher Strachey and Dana Scott.

Probably the best way to illustrate the essence of the denotational (and other) seman-
tics is by giving semantics of languages based on the λ-calculus.

Classical styles of semantics

• Denotational Semantics (what the program means?)

• Operational Semantics (how the program behaves?)

• Axiomatic Semantics (what properties the program satisfies?)

We stick to the first two styles of semantics, of which we first consider the second one
(which is easier) to approach the first one (which is harder). Example of axiomatic
semantics is Hoare logic (not covered here).

What we do in the course? The course revolves around the triad:

Semantics
Category
Theory

Functional
Programming

3

Starting from one node you will be able to connect to the other nodes, transferring the
knowledge and understanding.

• Denotational semantics is motivated by computation and ultimately involves ad-
vanced mathematical structures, for which category theory is arguably the most natural
language to use. We thus transfer computational intuition from semantics to category
theory to approach the latter.

• Good understanding of semantics helps in functional programming, in particular
Haskell, since it has been designed by computer scientists who took semantics very
seriously. We thus learn Haskell in a semantic-oriented way.

• Category theory influenced semantics, since many abstract, purely mathematical
concepts, such as monads, were utilized in semantics to organize constructions and rea-
soning. We thus use semantics to develop a computational intuition of formal categorical
concepts.

• Similarly, a great amount of abstract categorical concepts was utilized in functional
programming, again, most notably by Haskell. Specifically, monads were introduced to
Haskell as a practical organization tool for writing programs – even writing the ”Hello
World” program in Haskell requires a monad!

• Therefore, in this course, conversely, we use Haskell as a showcase for advanced
categorical concepts, such as monads, adjunctions, Cartesian closure.

• Semantically, Haskell is a statically typed, purely functional lazy programming lan-
guage, which can be regarded as a far-reaching generalization of the typed λ-calculus,
and as such it provides as excellent playground for illustrated various important seman-
tics concepts.

1.1 The Untyped Lambda Calculus

Untyped λ-calculus is a proto-programming language introduced by a mathematician
Alonzo Church in 30’s prior to any actual programming languages and computers.

Variables x, y, z, . . .
Terms t, s :“ x, y, z | λx. t | ts

• α-conversion λx. t ÝÑα λy. try{xs, where y is not free in t (see definition below)

• β-reduction pλx. tqs ÝÑβ trs{xs

• η-reduction] λx.fx ÝÑη f

• Derived reductions

– αβ-reduction is: ÝÑ‹
αβ “ pÑα Y Ñβq

‹

– αβη-reduction is: ÝÑ‹
αβη “ pÑα Y Ñβ Y Ñηq

‹

4

Definition (Free Variables).

• Freepxq “ txu

• Freepstq “ Freepsq Y Freeptq

• Freepλx.sq “ Freepsqr txu

A variable x is free in t, if x P Freeptq. A variable x is bound in t, if x R Freeptq.

Definition (Substitution).

• xrt{xs “ t;

• xrt{ys “ x if x ‰ y;

• ppqqrt{xs “ prt{xsqrt{xs;

• pλx. pqrt{xs “ λx. p;

• pλy. pqrt{xs “ λz. prz{ysrt{xs if z R Freepλy. pq Y Freeptq.

Example. pλx. yxqryx{ys “ λz.pyxqrz{xsryx{ys “ λz.pyzqryx{ys “ λz.pyxqz.

Proposition (Diamond Property, aka Confluence). Independent reductions starting
from the same term can always eventually be joined in the following sense:

t

t1 t2

s

˚

αβ

˚

αβ

˚

αβ

˚

αβ

t

t1 t2

s

˚

αβη

˚

αβη

˚

αβη

˚

αβη

Proposition. ÝÑ‹
αβ is not terminating:

Proof. Since Ω “ pλx. xxqpλx. xxq ÝÑβ pλx. xxqpλx. xxq “ Ω, we obtain and infinite
reduction Ω Ñβ Ω Ñβ . . .

Definition (Fixpoint Combinator).

Y “ λf.pλy.fpyyqqpλx.fpxxqq

Y f ÝÑβ pλy.fpyyqqpλx.fpxxqq ÝÑβ fpY fq

Definition (Church Numerals).

0 “ λf. λz.z

1 “ λf. λz.fz

2 “ λf. λz.ffz

...

In a similar way one can define `, ´, True, False, if-then-else, etc.

5

1.2 Evaluation Strategies

We specify evaluation strategies with rules of structural operational semantics (SOS).

1.2.1 Standard Evaluation Strategy

The order imposed here is called left-most-outermost-ordering.

pλx. pqq ÝÑso prq{xs

p ÝÑso p
1 p ‰ λy. t

pq ÝÑso p
1q

p ÝÑso p
1

λx. p ÝÑso λx. p
1

q ÝÑso q
1 p Óso p ‰ λx. t

pq ÝÑso pq
1

where p Óso means that p is irreducible with respect to ÝÑso, i.e. p is so-normal.
This style of reductions is also called small-step semantics because in order to find an

so-normal form p1 of some p we generally need a chain of reductions p ÝÑso . . . ÝÑso p
1.

Definition. Using these rules, we define p Óso v, if there is a derivation of p ÝÑso v
and v is so-normal.

Example.

pλx. xyqpλx. xq ÝÑso pλx. xqy y Óso y ‰ λx. t

yppλx. xyqpλx. xqq ÝÑso yppλx. xqyq

Proposition (Standardization Theorem1). If s ÝÑ‹
αβ t and t is αβ´normal, then s ÝÑ‹

so t
and t is so-normal.

Note the following.

• The definition of ÝÑso is structural, i.e. a sucessor of a term t w.r. t. ÝÑso is
calculated by structural induction over t.

• The relation ÝÑso is deterministic in the sense that there is only one way to build a
(possibly nonterminating) reduction starting from a given t; this contrasts αβ-reduction:
we both have pλx.λy. yqΩ ÝÑβ λy. y and

pλx.λy. yqΩ ÝÑso pλx.λy. yqΩ ÝÑso ¨ ¨ ¨

• The standartization theorem indicates that all existing αβ-normal forms can be
calculated by the standard evaluation, e.g. pλx.λy. yqΩ ÝÑso λy. y and λy. y Óso.

• As a consequence of the previous clause ÝÑso diverges on a term t iff t does not
have an αβ-normal form.
1Hendrik Pieter Barendregt. The Lambda calculus: Its syntax and semantics. Amsterdam: North-

Holland, 1984.

6

1.2.2 Call-by-Name (Lazy) Evaluation Strategy

Lazy or call-by-name (CBN) evaluation strategy refines and simplifies the standard
evaluation strategy as follows:

pλx. pqq ÝÑcbn prq{xs

p ÝÑcbn p
1

pq ÝÑcbn p
1q

That is, we assume

• no rewriting under λ (therefore λx.Ω Ócbn);

• all terms are closed.

We thus reject η-reduction, in order to capture the fundamental distinction between
computations and values. Roughly, a λ-term p represents a program, and λx. px repre-
sents its program code. While p can diverge, λx. p cannot diverge, because it is just a
text of the program. However λx. p can be executed with β-reduction, which then can
again result in divergence.

Proposition. Like SO, CBN does not diverge on terms which have αβ-normal forms, but
CBN-normal forms need not be αβ-normal forms, e.g. λx. pλy. yqx Ócbn but λx. pλy. yqxÑαβ

λx. x.

Definition (Redex). A redex (=reducible expression) is a subterm of the form pλx. tqs
of a given term, which can be reduced with an evaluation strategy at hand.

Example.

pλx. xxqppλx. xqpλx. xqq

ÝÑcbn ppλx. xqpλx. xqqppλx. xqpλx. xqq

ÝÑcbn pλx. xqppλx. xqpλx. xqq

ÝÑcbn pλx. xqpλx. xq

ÝÑcbn pλx. xq

1.2.3 Call-by-Value (Eager) Evaluation Strategy

Definition (Value). A value is a term of the form λx. t.

Under the same assumption as with CBN we define the call-by-value (CBV) evaluation
strategy:

p ÝÑcbv p
1

pq ÝÑcbv p
1q

q ÝÑcbv q
1 p is a value

pq ÝÑcbv pq
1

q is a value

pλx. pqq ÝÑcbv prq{xs

instead of “p is a value”, one could write p Ócbv.

7

Proposition. CBV calculates properly fewer normal forms than CBN, e.g. pλx.λy. yqΩ Ócbn
λy. y, but

pλx.λy. yqΩ ÝÑcbv pλx.λy. yqΩ ÝÑcbv ¨ ¨ ¨

However, CBV is generally more efficient than CBN.

Example.

pλx. xxqppλx. xqpλx. xqq

ÝÑcbv pλx. xxqpλx. xq

ÝÑcbv pλx. xqpλx. xq

ÝÑcbv pλx. xq

1.2.4 Big-Step Call-by-Name

In big-step styles of semantics we relate a term not to its one-step successor, but
directly to its normal form.

λx. p ócbn λx. p

p ócbn λx. p
1 p1rq{xs ócbn c

pq ócbn c

Proposition. p ÝÑ‹
cbn q and q Ócbn iff p ócbn q.

Proving this requires the following

Lemma. p ÝÑcbn q with q ócbn r imply p ócbn r.

Proof. Induction over the proof of p ÝÑcbn q:
Induction base: p “ λx. t, p “ λx. t. Then r “ λx. t and we are trivially done.
Induction step: p “ st, q “ s1t and s ÝÑcbn s

1. By assumption, s1t ócbn r, which
implies s1 ócbn λx. u, urt{xs ócbn r. By induction, s ócbn λx. u. Hence st ócbn r, as
required.

1.2.5 Big-Step Call-by-Value

Call-by-value requires evaluation of arguments of function application:

λx. p ócbv λx. p

p ócbv λx.p
1 q ócbv q

1 p1rq1{xs ócbv c

pq ócbv c

Proposition. p ÝÑ‹
cbv q and q Ócbv iff p ócbv q.

Example.

λx. xx ócbv λx. xx

λx. x ócbv λx. x λx. x ócbv λx. x λx. x ócbv λx. x

pλx. xqpλx. xq ócbv λx. x pλx. xqpλx. xq ócbv λx. x

pλx. xxqppλx. xqpλx. xqq ócbv λx. x

8

1.3 PCF (Programming Computable Functions)

1.3.1 Simply-Typed λ-calculus

Type :“ A,B,C, . . .
looooomooooon

base types

| 1
loomoon

unit
type

| AˆB | AÑ B

Proposition. Ω “ pλx. xxqpλx. xxq is not typable, and hence not a valid term.

Proof. By contradiction: if x : A then xx : A and x : A Ñ A, hence A “ A Ñ A,
contradiction.

Proposition. ÝÑαβ is strong normalising for simply typed λ-calculus.

PCF is obtained from the simply typed λ-calculus by

• adding the fixpoint combinator YA : pAÑ Aq Ñ A for every type α;

• fixing Nat and Bool as the base types;

• postulating the corresponding signature of arithmetic and logical operations.

Definition (Terms-In-Context). A term in context has the form

Γ $ t : A,

where A is a type and Γ is a context, which is a list of pairs xi : Ai such that xi occur
non-repetitively.

We work only with those Γ $ t : A which are derivable using the following rules:

(Var)
x : A is in Γ

Γ $ x : A
(1I)

Γ $ ‹ : 1
(ˆ I)

Γ $ t : A Γ $ s : B

Γ $ 〈t, s〉 : AˆB

(ˆ E1)
Γ $ t : AˆB

Γ $ fst t : A
(ˆ E2)

Γ $ t : AˆB

Γ $ snd t : B

(Ñ I)
Γ, x : A $ t : B

Γ $ λx. t : AÑ B
(Ñ E)

Γ $ s : AÑ B Γ $ t : A

Γ $ st : B

(Const)
Γ $ c : A

where c P tTrue,Falseu Y t0, 1, . . .u

(Fun)
Γ $ t1 : A1 ¨ ¨ ¨ Γ $ tn : An

Γ $ fpt1, . . . , tnq : B

where f P t^,_, ,`,´, . . .u

9

(Eq)
Γ $ s : A Γ $ t : A A P tBool ,Nat , 1u

Γ $ s “ t : Bool

(If)
Γ $ b : Bool Γ $ s : A Γ $ t : A

Γ $ if b then s else t : A
(Fix)

Γ $ f : AÑ A

Γ $ YAf : A

Definition (Term). A PCF term t is obtained from Γ $ t : A by removing the return
type A and the context Γ.

The PCF syntax corresponds to the Haskell syntax rather accurately, e.g.:

-- | single element () of the unit type ()

() :: ()

-- | first component of a pair

fst :: (a,b) -> a

fst (x,_) = x

-- | second component of a pair

snd :: (a,b) -> b

snd (_,y) = y

-- | logical constants

True :: Bool

False :: Bool

-- | Numeric constants

0 :: Num a => a

42 :: Num a => a

-- | lambda-abstraction, assuming f :: a -> b

\x -> f x :: a -> b

-- | application, assuming f :: a -> b, x :: a

f x :: b

-- | equality

(==) :: Eq a => a -> a -> Bool

-- | if-then-else, assuming b :: Bool, x :: a, y :: a

if b then a else b :: a

-- | fixpoint operator is definable:

10

fix :: (a -> a) -> a

fix f = f(fix f)

1.3.2 Call-by-Name Operational Semantics for PCF

We modify the concept of value as follows.

Definition (Value). A value is a Boolean, a natural number, ‹, a pair of closed terms
or a closed term λx. t.

The call-by-name semantics for PCF is obtained by modifying the call-by-name seman-
tics of λ-calculus. We discuss the most important/nontrivial rules.

t ó 〈p, q〉 p ó c

fst t ó c

t ó 〈p, q〉 q ó c

snd t ó c

which means that pairing is lazy. Note that there is no rule for reducing which 〈t, s〉, is,
by definition, already a value. Hence, in particular, fst〈1,Ω〉 ó 1, but snd〈1,Ω〉 diverges.

b ó True p ó c

if b then p else q ó c

b ó False q ó c

if b then p else q ó c

The rules for application and abstraction are as in the λ-calculus.

p ó c1 q ó c2
p` q ó c1 ` c2

Variant 1 for _: b ó True

b_ c ó True

c ó True

b_ c ó True

b ó False c ó False

b_ c ó False

This is known as “parallel or” and it does make certain sense, but in our case it would

make the semantics unintentionally non-deterministic. So, we use the following one.

Variant 2 for _: b ó True c ó d

b_ c ó True

b ó d c ó True

b_ c ó True

This semantics can be readily tested in Haskell, since it is lazy:

11

fix f = f (fix f) -- fixpoint combinator

omega = fix id -- divergence

success = () -- successful termination

test1 = fst $ (success, omega) -- terminates

test2 = fst $ (success, omega) -- diverges

test3 = True || omega -- terminates

test4 = omega || True -- diverges

test4 = False || omega -- diverges

1.3.3 Call-by-Value Operation Semantics for PCF

Definition (Value). A value is a Boolean, or a natural number, or ‹, or a pair of values
or a closed term λx. t.

p ócbv c1 q ócbv c2
〈p, q〉 ócbv 〈c1, c2〉

p ócbv 〈c1, c2〉
fst p ócbv c1

p ócbv 〈c1, c2〉
snd p ócbv c2

If we used the same rule for the Y -combinator, as for call-by-name, we would diverge:

Y f ÝÑ fpY fq ÝÑ fpfpY fqq ÝÑ ¨ ¨ ¨

(Evaluating the argument would use the same rule on and on). In order to prevent this,
for the CBV semantics:

• we require C in YC to be of the form AÑ B,

• the small-step rule for Y : Y f Ñ fpλx.pY fqxq, or, alternatively, as a big-step rule:

f ócbv λx. g grλy. pY fqy{xs ócbv c

Y f ócbv c

Example (Factorial). Consider the program:

p :“ x : Nat $ pYNatÑNatpλf.λx.if x ď 1 then 1 else x ¨ fpx´ 1q
loooooooooooooooooooooooomoooooooooooooooooooooooon

g

qqpxq

We show that: pλx. pqpnq ó n! (in CBV)

Proof. Induction over n.
Induction base (w = 0):

12

λx. p ó λx. p 0 ó 0

g ó g

g ó g λx.pY gqx ó λx.pY gqx
g “ pλx.if x ď 1 then 1
else x ¨ pλx. ygqxqpx´ 1q ó g

gpλx.pY gqxq ó g

Y g ó g 0 ó 0

g ó g 0 ó 0
¨ ¨ ¨

gr0{xs ó 1

g0 ó 1

pY gq0 ó 1

pλx. pq0 ó 1

Induction step:
Insert lengthy proof of pλx. pqpn` 1q ó pn` 1q!
Insert proof that this is indeed a well-typed term

1.4 Denotational Semantics of PCF

Operational semantics is non-compositional, is the sense that it does not yield a func-
tion J--K from terms to meanings, so that for every n-ary term construct op, Joppt1, . . . , tnqK
could be calculated as a function of Jt1K, . . . , JtnK. In particular, operational semantics
does not directly define meanings of functions, hence we cannot express JftK via JfK
and JtK.

Definition (Exponential). Recall that in set theory the exponential BA (latter also
written as AÑ B) is the set of relations P Ď AˆB, which are

• functional: @x.@y.@z. P px, yq ^ P px, zq ùñ y “ z, and

• total: @x. Dy. P px, yq.

Given A,B, then AB Ď AˆB can be formed and used as a domain for functions.
We could use AB to give the denotational semantic of the PCF function type AÑ B:

JAÑ BK “ JBKJAK, but doesn’t work because of the possibility of divergence.
Another candidate would be JA Ñ BK “ pJBK Z KqJAK, but then B can again be a

function space and we would have an unwanted distinction between divergence K and
everywhere diverging function λx.K.

The right idea is to use complete partial orders (cpos)!

Definition (Partial Orders). A partial order pA,vq is a relation satisfying the following
axioms:

• a v a;

• a v b^ b v cñ a v c;

• a v b^ b v añ a “ b.

Definition (Complete Partial Orders). A(n ω-)cpo is a partial order pA,vq, such that
for any infinite chain

a1 v a2 v . . . ,

there is an a, such that

13

1. @i. ai v a;

2. @i. ai v bñ a v b.

We denote such a by
Ů

i ai. More, generally we write
Ů

iPI ai for any least upper bound
(not necessarily of a chain) if @i. ai v

Ů

iPI ai and
Ů

iPI ai v b once @i. ai v b.

Definition (Pointed Cpos). A cpo pA,vq is pointed if it contains such an element K,
that @a P A.K v a

Every set A is trivially a cpo pA,vq with a v b iff a “ b.

Definition (Monotonicity, Continuity, Strictness). A function f : AÑ B between par-
tial orders is monotone if a v bñ fpaq v fpbq; a monotone function f : AÑ B between
cpos pA,vq and pB,vq is (Scott-)continuous if for any chain a1 v a2 v . . .:

f
´

ğ

i
ai

¯

“
ğ

i
fpaiq

A function f : A Ñ B is strict if fpKq “ K. This extends to the multi-ary functions in
the obvious way, e.g. if-then-else is strict in the first argument, but not in the second
and the third.

Definition ((Pre-)Domain). We agree to refer to cpos as pre-domains, and to pointed
cpos as domains.

1.4.1 Constructions on Predomains

Product of Predomains AˆB “ tpa, bq | a P A, b P Bu

pa1, b1q v pa2, b2q if a1 v a2 and b1 v b2

Properties:

• Continuity of pairing:
Ů

ipai, biq “
`
Ů

i ai,
Ů

j bj
˘

;

• Continuity of projections: fst : A ˆ B Ñ A and snd : A ˆ B Ñ B are continuous,
i.e.: fst

`
Ů

j aj
˘

“
Ů

j fst aj , snd
`
Ů

j aj
˘

“
Ů

j snd aj ;

• Products of domains are again domains with pK,Kq as the least element.

Lifting Predomains and Functions The correspondence A ÞÑ AK defines a lifing of A
where AK “ AZ tKu “ tp‹, aq | a P Au Y tpK, ‹qu.

a v b if a “ K or a P A, b P A and a v b

Let for any a P A: bac “ p‹, aq P AK.
Let B be a domain and let f : AÑ B be continuous. Then we define f‹ : AK Ñ B as

follows:

f‹pxq “

#

fpyq if x “ byc
K if x “ K

The result f‹ is the lifting of f .

14

Example (Flat Domains). : Given a set A, AK is called the flat domain over A, regarded
as a trivially ordered set (i.e. v is “).

BoolK:

True False

K

NatK:

0 1 2 ¨ ¨ ¨

K

Non-example 1K ˆ 1K:

p‹,Kq

p‹, ‹q

pK, ‹q

pK,Kq

Notation. We use the point-full notation pletx -p in qq alongside with the point-free one
pλx. qq‹ppq where λx. q : AÑ B and p : AK.

Properties:

• b--c is continuous:
⌊
Ů

i ai
⌋
“

Ů

ibaic.

• Lifting is continuous:
`
Ů

i fi
˘‹
“

Ů

i f
‹
i where continuous functions are compared

pointwise, that is f v g if fpxq v gpxq for any x (see the definition of function
spaces bellow).

For every op : X ˆ Y Ñ Z with X,Y, Z being sets, we define the strict extension:

opK : XK ˆ YK Ñ ZK

opKpp, qq “ letx - p in let y - q inboppx, yqc

Function Spaces Let pA,vq and pB,vq be two predomains. Then pA Ñ B,vq is the
function space predomain, where

AÑ B “ tf : AÑ B | f is continuousu

and
f v g ô @x. fpxq v gpxq (pointwise)

15

We define two operations:

curry : pAˆB Ñ Cq Ñ pAÑ pB Ñ Cqq

pcurry fqpxqpyq “ fpx, yq

uncurry : pAÑ pB Ñ Cqq Ñ pAˆB Ñ Cq

puncurry fqpx, yq “ fpxqpyq

from which we can derive

ev “ uncurryppAÑ Bq Ñ pAÑ Bqq : pAÑ Bq ˆAÑ B

Properties:

• curry and uncurry are continuous.

• If B is a domain then so is AÑ B with the bottom element being the completely
undefined function λx.K.

Theorem 1 (Kleene’s Fixpoint Theorem). Let f be a continuous function f : D Ñ D
over a domain D. Then

1. There is µf P D—the least fixpoint of f , i.e.

a) fpµfq “ µf

b) @x P D. fpxq “ xñ µf v x

2. µf “
Ů

i f
ipKq, where f0pxq “ K, f i`1pxq “ fpf ipxqq

3. µf P D is moreover the least pre-fixpoint of f , i.e.

a) fpµfq v µf

b) @x P D. fpxq v xñ µf v x

Proof. Let us first show that µf as defined in clause 2 is a fixpoint of f . Indeed,

fpµfq “ f
´

Ů

i f
ipKq

¯

“

´

Ů

i f
i`1pKq

¯

“ µf . Hence is it also a prefixpoint. Let us

show that it is the least one. Suppose that c is another prefixpoint, i.e. fpcq v c. From
K v c, inductively, f ipKq v f ipcq “ c, hence µf “

Ů

i f
ipKq v c. Since µf is the least

prefixpoint and a fixpoint, it is in particular the least prefixpoint.

Example.

f0pxq “ Kp@xq

f1p0q “ 1, f1pxq “ Kpx ą 0q

f2p0q “ 1, f2p1q “ 1, f2pxq “ Kpx ą 1q

f3p0q “ 1, f3p1q “ 1, f3p2q “ 2, f3pxq “ Kpx ą 2q

f4p0q “ 1, f4p1q “ 1, f4p2q “ 2, f4p3q “ 6, f4pxq “ Kpx ą 2q

...

16

It’s easy to see that every fi is continuous.
It’s also easy to prove that fi v fi`1 for any i. Let

f “
ğ

i
fi

By Kleene’s fixpoint theorem we can argue that f captures the semantics of the factorial
function n ÞÑ n!. Note that

fi`1 “ F pfiq @pi P Nq

where

F pgqpxq “

#

1 if x “ 1

x ¨ gpx´ 1q x ą 1

which is the definition of the factorial. By Kleene’s theorem this definition is indeed
correct:

f “ µF “
ğ

i
F ipKq “

ğ

i
fi

Proposition. µ : pD Ñ Dq Ñ D is continuous.

Definition (Cond). Let cond : BoolK ˆX ˆX Ñ X:

condpb, x, yq “

$

’

&

’

%

x if b “ bTruec
y if b “ bFalsec
K otherwise

Proposition. cond is continuous.

1.4.2 CBN Denotational Semantics

We assign to every type A a domain JAK as follows:

• J1K “ 1K;

• JNatK “ NatK;

• JBoolK “ BoolK;

• JAˆBK “ JAKˆ JBK;

• JAÑ BK “ JAK Ñ JBK.

Now, given a term in context Γ $ t : A where Γ “ x1 : A1, . . . , xn : An the semantics
JΓ $ t : AK is a continuous function JA1K ˆ . . . ˆ JAnK Ñ JAK recursively computed
according to the following clauses where J¨ ¨ ¨Kρ reads as J¨ ¨ ¨Kpρq:

• JΓ $ xi : AiKρ “ pripρq;

17

• JΓ $ n : NatKρ “ bnc;
• JΓ $ b : BoolKρ “ bbc;
• JΓ $ fpt, sq : AKρ “ fKpJΓ $ t : BKρ, JΓ $ s : CKρq (f P t^,Ñ,`,´,ˆ,“u);

• JΓ $ if b then s else t : AKρ “ condpJΓ $ b : BoolKρ, JΓ $ s : AKρ, JΓ $ t : AKρq;

• JΓ $ 〈t, s〉 : AˆBKρ “ 〈JΓ $ t : AKρ, JΓ $ s : BKρ〉;
• JΓ $ fst t : AKρ “ fstJΓ $ t : A1 ˆA2Kρ;

• JΓ $ snd t : BKρ “ sndJΓ $ t : A1 ˆA2Kρ;

• JΓ $ λx. t : AÑ BKρ “ pcurry JΓ, x : A $ t : BKqpρq;

• JΓ $ s t : BKρ “ evpJΓ $ s : AÑ BKρ, JΓ $ t : AKρq;

• JΓ $ YA f : AKρ “ µJΓ $ f : AÑ AKρ.

Lemma (Substitution Lemma). Given Γ $ q : A, Γ, x : A $ p : B and ρ P JΓK

JΓ $ prq{xs : BKρ “ JΓ, x : A $ p : BKpρ, JΓ $ q : AKρq

Proof. Induction over the structure of p. Let us consider the there last clauses in the
semantics for p, which are the only non-trivial ones.

• p “ λy. t with some Γ, y : C $ t : D and then B “ C Ñ D. It follows by assumption
that x ‰ y. Then, by induction,

JΓ $ prq{xs : BKρ “ JΓ $ λy. trq{xs : BKρ
“ pcurryJΓ, y : C $ trq{xs : DKqpρq
“ pcurrypJΓ, y : C, x : A $ t : DK ˝ pid, JΓ, y : C $ q : AKqqqpρq
“ pcurryJΓ, x : A, y : C $ t : DKqpρ, JΓ $ q : AKρq
“ JΓ, x : A $ λy. t : BKpρ, JΓ $ q : AKρq
“ JΓ, x : A $ p : BKpρ, JΓ $ q : AKρq.

• p “ s t with some Γ, x : A $ t : C and Γ, x : A $ s : C Ñ B. Then, by induction,

JΓ $ prq{xs : BKρ “ JΓ $ psrq{xsq ptrq{xsq : BKρ
“ JΓ $ srq{xs : C Ñ BKρpJΓ $ trq{xs : CKρq
“ pJΓ, x : A $ s : C Ñ BKpρ, JΓ $ q : AKρqq
pJΓ, x : A $ t : CKpρ, JΓ $ q : AKρqq

“ JΓ, x : A $ s t : BKpρ, JΓ $ q : AKρq
“ JΓ, x : A $ p : BKpρ, JΓ $ q : AKρq.

18

• p “ YB f with some Γ, x : A $ f : B Ñ B. Analogously to the previous clauses:

JΓ $ prq{xs : BKρ “ JΓ $ pYB fqrq{xs : BKρ
“ JΓ $ YB f rq{xs : BKρ
“ µJΓ $ f rq{xs : B Ñ BKρ
“ µpJΓ, x : A $ f : B Ñ BKpρ, JΓ $ q : AKρqq
“ JΓ, x : A $ µf : BKpρ, JΓ $ q : AKρq
“ JΓ, x : A $ p : BKpρ, JΓ $ q : AKρq.

Definition (Soundness). A denotational semantics is sound if

p ó cñ JpK “ JcK

Definition (Adequacy). A denotational semantics is adequate, if

JpK “ JcK ñ p ó c if the type of p is either 1 or Bool or Nat

Proposition. The presented call-by-name denotational semantics is sound and adequate
with respect to ócbn.

1.4.3 CBV Denotational Semantics

We we assign to every type A a predomain JAK as follows:

• J1K “ 1;

• JNatK “ Nat ;

• JBoolK “ Bool ;

• JAˆBK “ JAKˆ JBK;

• JAÑ BK “ JAK Ñ JBKK.

Now, the semantics of a term in context Γ $ t : A with Γ “ px1 : A1, . . . , xn : Anq is a
continuous function JA1Kˆ . . .ˆJAnK Ñ JAKK defined by structural induction as follows.

• JΓ $ xi : AiKρ “ bpripρqc;
• JΓ $ n : NatKρ “ bnc;
• JΓ $ b : BoolKρ “ bbc;
• JΓ $ fpt, sq : AKρ “ fKpJΓ $ t : BKρ, JΓ $ s : CKρq (f P t^,Ñ,`,´,ˆ,“u);

• JΓ $ if b then s else t : AKρ “ condpJΓ $ b : BoolKρ, JΓ $ s : AKρ, JΓ $ t : AKρq;

• JΓ $ 〈t, s〉 : AˆBKρ “ letx - JΓ $ t : AKρ in let y - JΓ $ s : BKρ inb〈x, y〉c;
• JΓ $ fst t : AKρ “ let v - JΓ $ t : AˆBKρ inbfst vc;

19

• JΓ $ snd t : BKρ “ let v - JΓ $ t : AˆBKρ inbsnd vc;
• JΓ $ λx. t : AÑ BKρ “ bpcurry JΓ, x : A $ t : BKqpρqc;
• JΓ $ s t : BKρ “ let v - JΓ $ t : AKρ in let f - JΓ $ s : AÑ BKρ in evpf, vq;

• JΓ $ YAÑB f : AÑ BKρ “ µg where

– gpp : pJAK Ñ JBKKqKq “ leth - JΓ $ f : pAÑ Bq Ñ pAÑ BqKρ inhpuppqq,

– upp : pJAK Ñ JBKKqKqpx : JAKq “ leth - p inhpxq.

The analogue of the substitution lemma is as follows.

Lemma (Substitution Lemma). Given Γ $ q : A, Γ, x : A $ p : B and ρ P JΓK,

JΓ $ prq{xs : BKρ “ let v - JΓ $ q : AKρ inJΓ, x : A $ p : BKpρ, vq

provided that q is of the form λz. r.

In contrast to the call-by-name case, the assumption that q “ λz. r is essential. For
example, if q diverges, but p does not depend on x, we would have JΓ $ p : BK on the
left-hand side and K on the right-hand side.

Proof. The proof is by structural induction over p. Again, only the last three clauses
in the definition of semantics of p are sophisticated. Still the other ones require some
properties of the let-construct (commutativity and copyability).

Assume that Γ, z : E $ r : F , i.e. A “ E Ñ F .

• p “ λy. t with some Γ, y : C, x : A $ t : D and then B “ C Ñ D. It follows
by assumption that x ‰ y. Let us fix c P JCK, ρ P JΓK and let s “ let v - JΓ $

q : AKρ inJΓ, x : A $ p : BKpρ, vq. It is easy to check that s “ bgc for some g. Then

JΓ, y : C $ trq{xs : DKpρ, cq
“ let v - JΓ, y : C $ q : AKpρ, cq inJΓ, y : C, x : A $ t : DKpρ, c, vq
“ let v - JΓ $ q : AKρ inJΓ, x : A, y : C $ t : DKpρ, v, cq
“ let v - JΓ $ q : AKρ in let f - JΓ, x : A $ p : BKpρ, vq in fpcq
“ let f - plet v - JΓ $ q : AKρ inJΓ, x : A $ p : BKpρ, vqq in fpcq
“ let f - bgc in fpcq
“ gpcq

using the fact that q does not depend on y. Now

JΓ $ prq{xs : BKρ
“ JΓ $ λy. trq{xs : BKρ
“ bpcurryJΓ, y : C $ trq{xs : DKqpρqc
“ bgc
“ s.

20

• p “ s t with some Γ, x : A $ t : C and Γ, x : A $ s : C Ñ B. Then, by induction,

JΓ $ prq{xs : BKρ “ JΓ $ psrq{xsq ptrq{xsq : BKρ
“ let v - JΓ $ trq{xs : CKρ

in let f - JΓ $ srq{xs : C Ñ BKρ in fpvq
“ letw - JΓ $ q : AKρ in let v - JΓ, x : A $ t : CKpρ, wq

in let f - JΓ, x : A $ s : C Ñ BKpρ, wq in fpvq
“ letw - JΓ $ q : AKρ inJΓ, x : A $ s t : BKpρ, wq.

• p “ YB f with some Γ, x : A $ f : pC Ñ Dq Ñ pC Ñ Dq, hence B “ pC Ñ Dq.
Note that for a suitable w, JΓ $ q : AKρ “ bwc. Then

JΓ $ prq{xs : BKρ “ JΓ $ pYB fqrq{xs : BKρ
“ JΓ $ YB f rq{xs : BKρ
“ µpgq

“ JΓ, x : A $ YBf : BKpρ, wq
“ let v - JΓ $ q : AKρ inJΓ, x : A $ p : BKpρ, vq.

where gppq “ leth - JΓ, x : A $ f : B Ñ BKpρ, wq inhpuppqq and uppqpxq “ leth - p inhpxq

Proposition. The CBV semantics of PCF is sound and adequate.

Proposition (let-unit-1). letx - btc in p “ prt{xs.

Proof.

letx - btc in p “ pλx. pq‹btc “

#

pλx. pqpsq if btc “ bsc
K otherwise

“

#

pλx. pqt

prt{xs

Proposition (let-unit-2). letx - p inbxc “ p.

Proof. letx - p inbxc “ pλx. bxcq‹ppq “ pλx. xqppq “ p.

Proposition (let-assoc).

letx - p inplet y - q in rq “ let y - pletx - p in qq in r.

where x R Freeprq.

Alternatively, the three laws for the let-operator can be presented in the pointfree form
as follows:

f‹η “ η η‹ “ id f‹g‹ “ pf‹gq‹

21

where η : AÑ AK sends x to bxc. These are known as monad laws, and they identify the
map A ÞÑ AK as a monad whose unit is b--c and whose Kleisli lifting is the operation p--q‹.

Thus, a monad can be understood as a certain type constructor that transforms val-
ues to computations and induces a notion of generalized function, carrying a certain
(side-)effect in contrast to “normal functions”. The side-effect of the lifting monad is
divergence. Further side-effects that can be abstracted in monads include

• abortion,

• non-determinism,

• store,

• input/output,

and in fact many others. In order to make these considerations rigorous, we proceed with
the basic concepts of category theory. As we will see, monads is a genuinely categorical
concept.

22

2 Categories and Monads

Let us consider the do-notation, as a generalization of our previous let-notation. The
idea is to capture the most abstract properties of computation, e.g. the let-notation also
satisfies the following commutativity property:

letx - p in let y - q inb〈x, y〉c “ let y - q in letx - p inb〈x, y〉c,

but this is not abstract enough: if p writes to a store and q reads from that store the
order in which p and q are executed obviously matters.

Essentially we introduce two term constructs:

doxÐ p
loomoon

TA

: f
loomoon

AÑTB

pxq ret : AÑ TA

In conjunction with other (obvious) term constructs this forms what is known as (first-
order) computational metalanguage whose syntax is Haskell’s do-notation.

2.1 Introducing Monads

Definition (Category). A Category C consists of a collection of objects ObpCq and
a collection of morphisms HomCpA,Bq for any A,B P ObpCq, such that the following
properties hold:

• for every A P ObpCq there is an identity morphism idA P HomCpA,Aq;

• for any f P HomCpB,Cq and g P HomCpA,Bq we can form a composition f ˝ g P
HomCpA,Cq;

• id ˝ f “ f , f ˝ id “ f , pf ˝ gq ˝ h “ f ˝ pg ˝ hq.

We also write f : AÑ B instead of f P HomCpA,Bq “ HompA,Bq.
A “collection” in the definition of a category is in fact a “class”, i.e. something generally

larger than a set, e.g. the “set of all sets” does not make sense, but “all sets” form a class.
Categories in which any HompA,Bq is a set are called locally small and the categories
in which ObpCq is a set are called small. Most of our examples of categories are locally
small but not small.

Example. Examples of categories:

• Sets: ObpSetsq “ “all sets” and HompA,Bq “ “functions from A to B”.

• Cpo: ObpCpoq “ “all cpos” and HompA,Bq “ “continuous functions from A to B”.

23

• Rel: ObpRelq “ “all sets” and HompA,Bq “ “relations R Ď AˆB” with

idA “tpx, xq | x P Au

R ˝ S “tpx, zq P Aˆ C | Dy P B. px, yq P R, py, zq P Su

• PFun: ObpPFunq “ “all sets” and HompA,Bq “ “partial functions from A to B”.

Definition (Commutative Diagrams). We consider diagrams whose nodes are labeled
with objects and whose edges are oriented and labelled with morphisms. A diagram
commutes if all paths with the same start and endpoint produce equal morphisms (the
morphism are formed by composing the labels along paths).

For example, the axioms for identity can be stated as follows:

A A A

B

id

f

f

id

f

Curiously, we cannot express associativity of composition in this way, because it is
already baked in to the diagrammatic language.

In category theory, it is customary to prove equations between morphisms f “ g “by
diagram chasing”, that is, by producing a commutative diagram, from which a chain
of equations f “ f 1 “ f2 “ . . . “ g1 “ g can be read out. Importantly, not every
commutative diagram produces a proof like this. For example, the diagram

‚ ‚

‚

‚ ‚

a

c b

d

does not prove the equation ba “ dc even though all the triangles commute.

2.1.1 Products and Coproducts

Definition (Products). A product of objects A,B in a category C is a triple pA ˆ
B P ObpCq, fst : A ˆ B Ñ A, snd : A ˆ B Ñ Bq, such that for any C P ObpCq with
f : C Ñ A, g : C Ñ B, there is a unique (!) morphism 〈f, g〉 : C Ñ AˆB, such that the
following diagram commutes:

C

A AˆB B

f

〈f,s〉
g

fst snd

As a text: fst ˝ 〈f, g〉 “ f , snd ˝ 〈f, g〉 “ g. The morphisms fst and snd are called (left
and right) projections and the operation f, g ÞÑ 〈f, g〉 is called pairing.

24

Example.

• In Sets, products are Cartesian products.

• In Cpo, products are products of Cpos.

Definition (Terminal Object). A terminal object is an object 1 P ObpCq, such that for
any A P ObpCq, there is a unique morphism: !A : AÑ 1

Definition (Cartesian Category). A Cartesian category is a category with a terminal
object and products.

Equivalently, a Cartesian category is the one which has all finite products: products of
a nonempty finite number of components are obviously induced by binary products, the
product of the empty family of components is the terminal object.

Examples: Sets and functions, Cpos and continuous functions, . . .

Definition (Isomorphism). An isomorphism between objects A and B in a category C
is given by a pair of morphisms: f : AÑ B, g : B Ñ A, such that the following diagram
commutes:

A B

A B

f

idA

idBg

f

Example. In Sets, an isomorphism is a bijection.

Here is a translation table, between the different languages of set theory, category
theory and Haskell.

Set Categories Haskell

function morphism program
set object type
singleton set terminal object unit type
Cartesian product (Cartesian) product product type
element morphism 1 Ñ X —
predicate — —
bijection isomorphism —

Theorem 2. Let A,B,C P ObpCq. A triple pC, fst : C Ñ A, snd : C Ñ Bq, is a product
of A and B if there is an operation

f : D Ñ A g : D Ñ B

〈f, g〉 : D Ñ C

such that

fst ˝ 〈f, g〉 “ f, snd ˝ 〈f, g〉 “ g, 〈fst, snd〉 “ id, 〈f, g〉 ˝ h “ 〈f ˝ h, g ˝ h〉.

25

Proof. The proof consist of the soundness (ñ) and completeness (ð) directions.
(ñ) We need to show the claimed identities. The first two are obvious by definition.

The other two are by diagram chasing:

AˆB

A AˆB B

fst snd

〈fst,snd〉

fst snd

D

C

A AˆB B

h g˝hf˝h

f g

〈f,g〉

fst snd

The first identity holds because in the left diagram replacing 〈fst, snd〉 with id would
produce a diagram, which still commutes, but 〈fst, snd〉 is unique, hence 〈fst, snd〉 “ id.

The second identity holds analogously because by the second diagram 〈f, g〉˝h satisfies
the characteristic property of 〈f ˝ h, g ˝ h〉.

(ð) Suppose, conversely, the identities hold and for some h : D Ñ C the diagram:

D

A C B

f

h g

fst snd

commutes. Then

h “ id ˝h “ 〈fst, snd〉 ˝ h “ 〈fst ˝h, snd ˝h〉 “ 〈f, g〉.

Products are defined not uniquely, but only uniquely up to (a unique) isomorphism. Let
e.g. pAˆA, fst, sndq be a product of A,A. Then pAˆA, snd, fstq is also a product of A,A:

swapA : AˆA AˆA
〈snd,fst〉

AˆA AˆA
swap

swap

The pair pswapA, swapA,Aq is an isomorphism of AˆA and AˆA:

swap ˝ swap “ 〈snd, fst〉 ˝ 〈snd, fst〉
“ 〈snd ˝〈snd, fst〉, fst ˝〈snd, fst〉〉
“ 〈fst, snd〉 “ id.

Theorem 3. Products (if they exists) are unique up to isomorphism.

Proof. Let pA ˆ B, fst, sndq be a product of A,B and let pA�B, fst1, snd1q be another
product. Then the following diagram commutes:

AˆB

A�B

A AˆB B

〈fst,snd〉 sndfst

〈fst1,snd1〉

snd1fst1

fst snd

26

Hence,

f
hkkkikkkj

〈fst, snd〉 ˝

g
hkkkkikkkkj

〈fst1 snd1〉 “ id (because both morphisms satisfy the same characteristic
property). Because of symmetry, also g ˝f “ id. Hence pf, gq is an isomorphism between
AˆB and A�B.

Definition (Coproducts). An object A ` B together with morphisms inl : A Ñ A ` B
and inr : B Ñ A`B called left and right injections is a coproduct of A and B if for any
f : A Ñ C, g : B Ñ C, there is a unique morphism rf, gs : A ` B Ñ C, such that the
following diagram commutes:

C

A A`B B

f

inl
rf,gs

g

inr

Intuitively, rf, gs is defined by case distinction: if we are on the left of A ` B then we
apply f ; if we are on the right of A`B then we apply g.

Example. In Sets A`B is the disjoint union of A and B.

Dually to products we have a complete axiomatization for coproducts:

1. rf, gs ˝ inl “ f ;

2. rf, gs ˝ inr “ g;

3. rinl, inrs “ id;

4. h ˝ rf, gs “ rh ˝ f, h ˝ gs.

2.1.2 Functors and Monads

Definition (Functor). A (covariant) functor between categories C and D is a cor-
respondence sending any A P ObpCq to FA P ObpDq and any f P HomCpA,Bq to
Ff P HomDpFA,FBq in such a way that:

F pidAq “ idFA, F pf ˝ gq “ pFfq ˝ pFgq.

Example (Forgetful Functor). Forgetful functor is an informal concept: this is a functor
that “forgets” some information about the category. One example is

G : Cpo Ñ Set

GpA,vq “ A

Gpfq “ f

G is a typical name for forgetful functors (to remember: forGetful).

27

Example (Endofunctor). An endofunctor is a functor from a category into itself. E.g.,

F : Set Ñ Set

FX “ X ` E

pFfqpinlxq “ inlpfxq

pFfqpinr eq “ inrpeq

Example (Finite Lists). Another endofunctor over Set:

F : Set Ñ Set

FX “ rXs (finite lists over X)

pFfqrx1, . . . , xns “ rfx1, . . . , fxns

Definition (Monad/Kleisli Triple). A Monad in a category C is given by a triple pT, η, ‹q
(Kleisli triple) where

• T : ObpCq Ñ ObpCq,
• η is a family pηX : X Ñ TXqXPObpCq (unit),

• for any f : AÑ TB, f‹ : TAÑ TB ((Kleisli) lifting)

and the following laws are satisfied:

η‹ “ id, f‹η “ f, pf‹gq‹ “ f‹g‹.

Example (Exception monad). TX “ X ` E is a monad with:

ηXpaq “ inl a f‹pinl aq “ fa f‹pinr eq “ inr e

This works in any category C with coproducts, TX “ X `E extends to a monad under
the following definitions:

ηX “ inl : X Ñ X ` E

f‹ “ rf, inrs : X ` E Ñ Y ` E where f : X Ñ Y ` E

Intuitively, f is a function, which may raise an exception, and f‹ completes the definition
of f by the clause: “if an exception has already been raised before, pass it as the result”.

It is easy to check that T from a monad pT, η,´‹q is a functor. We call it the functorial
part of the monad.

Definition (Kleisli Category). Given a monad T over a category C, the Kleisli cate-
gory CT of T is defined as follows:

• ObpCT q “ ObpCq;
• HomCT pA,Bq “ HomCpA, TBq;

28

• identity morphisms in CT are ηX P HomCT pX,Xq “ HomCpX,TXq;

• composition of f : AÑ TB and g : B Ñ TC is Kleisli composition: g‹f : AÑ TC.

Theorem 4. CT is a category:

1. η‹f “ id ˝ f “ f

2. f‹η “ f

3. f‹pg‹hq “ pf‹g‹qh “ pf‹gq‹h

Let f ˆ g denote 〈f ˝ fst, g ˝ snd〉 : Aˆ B Ñ A1 ˆ B1 where f : A Ñ A1 and g : B Ñ B1.
It is easy to check some obvious properties of this notation like pf ˆ gq ˝ pf 1 ˆ g1q “
pf ˝ f 1q ˆ pg ˝ g1q and pf ˆ gq ˝ 〈f 1, g1〉 “ 〈f ˝ f 1, g ˝ g1〉.

Let

αA,B,C “ 〈idˆ fst, snd ˝ snd〉 : Aˆ pB ˆ Cq Ñ pAˆBq ˆ C;

α-1
A,B,C “ 〈fst ˝ fst, sndˆid〉 : pAˆBq ˆ C Ñ Aˆ pB ˆ Cq.

Obviously, α and α-1 are mutualy inverse. Analogously, we define unitors:

λA “
`

Aˆ 1
fst
ÝÑ A

˘

, ρA “
`

1ˆA
snd
ÝÝÑ A

˘

for which λ-1
A “ 〈idA, !〉, ρ-1A “ 〈!, idA〉.

Theorem 5 (Mac Lane’s Coherence Theorem1). Any diagram with labels composed
from id,ˆ, α, α-1, λ, λ-1, ρ, ρ-1 commutes.

2.1.3 Natural Transformations: Relating Functors

Associativity morphisms αA,B,C are examples of natural transformations, which are a
categorical formalization of parametric dependency.

Definition (Natural Transformation). Let C,D be categories and F,G : C Ñ D be
functors. A natural transformation ϑ : F Ñ G is a family of morphisms in D:

pϑC : FC Ñ GCqCPObpCq,

such that, for any f : C Ñ C 1 in C, the following (naturality) diagram commutes:

FC GC

FC 1 GC 1

ϑC

Ff Gf

ϑC1

1simplified version

29

The morphisms ϑC : FC Ñ GC are called components of ϑ : F Ñ G.
Intuitively, natural transformations are such morphisms ϑC : FC Ñ GC that do not

use any information about C. Instead of saying “ϑ : F Ñ G is a natural transformation”
one often uses equivalent formulation “ϑC : FC Ñ GC is a morphism natural in C”.

Semantically, naturality corresponds to a specific form of parametric polymorphism.
Haskell functions are automatically polymorphic in the corresponding type variables, but
not necessarily natural. E.g. Haskell’s function

reverse :: [a] -> [a]

for list reversal is polymorphic in a as well as natural it in the categorical sense, but

sort :: Ord a => [a] -> [a]

for sorting lists is not natural, which is indicated by the type constraint ”Ord a =>”
telling that sorting is not independent of the type a – the result depends on the fact
that a is an ordered type and on that how it is ordered.

Another example of a natural transformation:

maybeToList :: Maybe a -> [a]

maybeToList (Just a) = [a]

maybeToList Nothing = []

Definition. For any functor F and natural transformation ϑ : GÑ H we define natural
transformations ϑF : GF Ñ HF and Fϑ : FGÑ FH as follows:

pϑF qX “ ϑFX

pFϑqX “ F pϑXq.

(Easy) exercise: show that ϑF and Fϑ are indeed natural transformations.

Remark A natural transformation F
ξ
ÝÑ G is often drawn as C D

F

G

ξ . This would

be consistent with the notation ξ : F ñ G, which is often used for natural transforma-
tions. We simply write ξ : F Ñ G instead, for, after all, natural transformations are just
morphisms in the functor category rF,Gs.

Theorem 6. Cat is defined as follows:

• ObpCatq are small Categories C (that is, those for which ObpCq is a set).

30

• HompC,Dq is the class of all functors from C to D.

Cat is itself a category with id : C Ñ C being the identity functor and F ˝G being functor

composition C D EG F .

Proof. trivial.

Theorem 7. Given two categories C and D, rC ñ Ds (or rC,Ds), defined as follows:

• ObprC ñ Dsq are functors from C to D
• HompF,Gq are natural transformations ξ : F Ñ G.

is again a category.

Proof.

1. id ˝ ξ “ ξ: For any f : AÑ B

FA GA GA

FB GB GB

Ff

ξA

ξA

Gf

idA

Gf

ξB

ξB

idB

2. ξ ˝ id “ ξ

3. ξ ˝ pθ ˝ σq “ pξ ˝ θq ˝ σ

Properties 2 and 3 are analogous to proof.

Pointwise composition of natural transformations (pξ ˝ θqA “ ξA ˝ θA) is called vertical
composition:

C D

F

H

G
θ

ξ

Definition (Horizontal composition). Given ξ : F Ñ F 1 and θ : GÑ G1,

ξ ˝ θ : GF Ñ G1F 1

is defined by the diagram:

C D E
F

F 1

G

G1

ξ θ

31

Notation. Given ξ : F Ñ G, we can form:

Hξ : HF Ñ HG

ξU : FU Ñ GU

with

pHξqA “ HpξAq

pξU qA “ ξUA

Proposition. Given ξ : F Ñ F 1 and θ : GÑ G1 then ξ ˝ θ “ pθF 1q ˝ pGξq

Example. elemsA : rAs Ñ PpAq defined as follows:

elemsAprl1, . . . , l2sq “ tl1, . . . , lnu

yields a natural transformation elems : r s Ñ P of endofunctors over Sets.
Naturality: Let f : AÑ B. Then

pPfq ˝ elems ˝prl1, . . . , lnsq “ pPfq ˝ tl1, . . . , lnu “ tfpl1q, . . . , fplnqu.

On the other hand:

pelemsB ˝rf sqrl1, . . . , lns “ elemsBprfpl1q, . . . , fplnqsq “ tfpl1q, . . . , fplnqu.

Notation (Natural transformation in two arguments). The natural transformation

τA,B : Aˆ TB Ñ T pAˆBq

can be defined as τ : F Ñ G where F and G are functors F,G : C ˆ C Ñ C, where C ˆ C
is the product category :

F pA,Bq “ Aˆ TB

GpA,Bq “ T pAˆBq

and similar definitions for morphisms.

Proposition. Let F,G : C ˆD Ñ E , then ξA,B : F Ñ G is natural (in A,B), iff

F pAˆBq GpAˆBq

F pA1 ˆB1q GpA1 ˆB1q

ξA,B

F pfˆgq Gpfˆgq

ξA1,B1

commutes for any f : AÑ A1 and g : B Ñ B1.

We now can give a new (equivalent) definition of a monad.

32

Definition (Monad). A monad on a category C consists of an endofunctor T : C Ñ C,
and natural transformations

η : IdÑ T
looooomooooon

unit

, µ : T ˝ T Ñ T
looooooomooooooon

multiplication

satisfying triangle identities:

TTTX TTX

TTX TX

µTX

TµX µX

µX

TX TTX TX

TX

ηTX

idTX

µµX
idTX

T pηXq

i.e. the equations

µ ˝ µT “ µ ˝ Tµ

µ ˝ ηT “ id “ µ ˝ Tη.

Proposition. Given a Kleisli-Triple pT 1, η1, ‹q satisfying the monad laws, one obtains
a monad in the sense defined above in the following way:

Tf “ pη ˝ fq‹ for f : X Ñ Y

TX “ T 1X

ηX “ η1X

µX “ pidTXq
‹

2.1.4 Examples of Monads

IO Monad

Example.

instance Monad IO

getLine : IO String » 1 Ñ IO String

putString : String » StringÑ IO 1

do x <- getLine; putStr $ x ++ "!"

Rough intuition: IOA “ World Ñ pAˆWorldq

getLine : 1 Ñ pWorldÑ pStringˆ Worldqq

getLinepxqpwq “ pextrstrpwq, wq

putStringpsqpwq “ p1, sendToWorldps, wqq

33

State Monad
TS “ S Ñ pX ˆ Sq » pX ˆ SqS

This works in Sets, Cpos and more generally in Cartesian closed categories.

ηX : X Ñ pX ˆ SqS

ηXpxqpsq “ 〈x, s〉
f : X Ñ pY ˆ SqS

f‹ : pX ˆ SqS Ñ pY ˆ SqS

f‹ppqpsq “ let〈x, s1〉 - ppsq in fpxqps1q

With let being defined like this:

let〈x, y〉 “ p in q “ qrfst p{x, snd {ys

The state monad supports the following operations:

put : S Ñ T1 putpsqps1q “ p˚, sq

get : 1 Ñ TS getp˚qpsq “ ps, sq

Example (Writer Moand).

TX “M ˆX (where M is a Monoid)

Example (Reader Monad).
TX “ XS

The Reader Monad is a submonad of the State monad:

αX : XS Ñ pX ˆ SqS

αXppqpsq “ pppsq, sq

Theorem 8. TX “ XS is a monad.

Continuation Monad In Sets: TX “ pX Ñ Rq
loooomoooon

Continuation

Ñ R
loomoon

Result

ηXpxq “ λk. kpxq

pf : X Ñ pRY Ñ Rqq‹pp : RX Ñ Rq “ λk : Y Ñ R. ppλx.fpxqpkq
looooomooooon

XÑR

q

The following lemma helps to prove that the continuation monad is indeed a monad in
an abstract way.

34

Lemma. Let F : C Ñ D be a functor and let T be a map ObpCq Ñ ObpCq. Suppose that
for any X,Y P ObpCq, the hom-sets HompX,TY q and HompFX,FY q are isomorphic
naturally in X. Then T is a monad with the following induced structure

η “ qid f‹ “
}

pf pid

where pf : FX Ñ FY and qg : X Ñ TY are the obvious isomorphic images of f : X Ñ TY
and g : FX Ñ FY correspondingly.

Moreover, the Kleisli category of T is isomorphic to the full subcategory of D over the
objects of the form FX.

Proof. The naturality condition means precisely that f̂pFhq “ xfh for any h : X Ñ Y

and f : Y Ñ TY . This entails that gpFhq “ qgh for g “ qf and moreover,

f‹g “
}

pf pidg “

pf pidFg “
~

pf xid g “
}

pf pg .

Therefore,

η‹ “
}

p

qid pid “
q

pid “ id

f‹η “
}

pf pη “
q

pf “ f

pf‹gq‹ “

p pf pgq pid “

pf ppg pidq “ f‹
}

pg pid “ f‹ g‹,

and we are done.

This can be instantiated as follows.

Example. For the state monad TX “ pX ˆSqS , HomCpX,TY q–HomCpX ˆS, Y ˆSq.
For the continuation monad TX “ pX Ñ Rq Ñ R, HomCpX,TY q – HomCoppRX , RY q “

HomCpR
Y , RXq.

2.1.5 Dualization, Bi-Functors, Cartesian Closure

Definition (Dual Category). Given a category C, the dual category Cop is defined as
follows:

• ObpCopq “ ObpCq;
• HomCoppX,Y q “ HomCpY,Xq.

Example. Let C be a poset category, i.e. HomCpX,Y q “ t‹u iff X ď Y . Then Cop is the
dually ordered poset: HomCoppX,Y q “ t‹u iff X ě Y .

For example, we now can formally state that products are dual to coproducts.

35

Proposition. For every C, a binary product Cop is a binary coproduct of Cop.

Definition (Contravariant Functor). A functor F : Cop Ñ D is said to be a contravariant
functor from C to D.

Small categories themselves form a category with finite products: the final object is
the category of one object and one arrow, and a product of categories C and D is the
category C ˆD with

• ObpC ˆDq “ ObpCq ˆ ObpDq,
• HomCˆDppX,Y q, pX

1, Y 1qq “ HomCpX,X
1q ˆ HomDpY, Y

1q.

The category of all categories is not a category, more precisely, the locally small categories
do not form a locally small category (but they form a category in a higher sense). Still,
products of locally small categories make perfect sense regardless of this issue.

Definition (Bi-Functor). A bifunctor is a functor C ˆ D Ñ E for which one also uses
the notation F pA,Bq instead of F pAˆBq and F pf, gq instead of F pf ˆ gq.

Example (Product Functor). Let C have binary products. Then F : Cˆ C Ñ C sending
A,B to AˆB is a bi-functor with F pf, gq “ f ˆ g.

Example (Hom-Functor). The hom-functor is the bi-functor Homp--, --q : CopˆC Ñ Set.

Now, instead of saying that α : F Ñ G is a natural transformation, one often says
that a family αA : FA Ñ GA is natural in A, e.g. for bi-functors, F : C ˆ D Ñ E ,
naturality of αA,B : F pAˆBq Ñ GpAˆBq in A and B. Another example: associativity
αA,B,C : Aˆ pB ˆ Cq Ñ pAˆBq ˆ C is natural in A,B,C.

Definition (Cartesian Closure). A category C is Cartesian closed (CCC) if it is Carte-
sian, and for any objects B and C there is an object BC , called an exponential, for which
we have an isomorphism

curry : HompAˆB,Cq – HompA,CBq

which is natural natural in A, meaning that

HompAˆB,Cq HompA,CBq

HompA1 ˆB,Cq HompA1, CBq

curry

HompfˆB,Cq Hompf, CBq

curry

On the left side we go from AˆB Ñ C to A1 ˆB Ñ C 1 by post-composing with f ˆ id
where f : A1 Ñ A. On the right side we post-compose with f , i.e. the diagram expresses
the following equation, where g : AˆB Ñ C:

pcurry gq ˝ f “ currypg ˝ pf ˆ idqq

36

It is easy to see that the naturality condition for uncurry “ curry-1

uncurrypg ˝ fq “ puncurry gq ˝ pf ˆ idq

is derivable.

Again, we can define the evaluation transformation

ev “ uncurrypid : CB Ñ CBq : CB ˆB Ñ C.

Proposition. In any CCC C, AB extends to a bi-functor p--qp--q : Cop ˆ C Ñ C sending
f : A1 Ñ A and g : B Ñ B1 to

currypBA ˆA1
idˆf
ÝÝÝÑ BA ˆA

ev
ÝÑ B

g
ÝÑ B1q : BA Ñ B1A

1

.

Proposition. In any CCC curry and uncurry are natural in all parameters.

2.2 Tensorial Strength

We can generalize the call-by-value semantics of PCF along the following lines:

• replace p--qK with T ;

• replace “let” with the “do”;

• replace b´c with return.

This should work for any CCC with suitable carriers JBoolK, JNatK and a fixpoint oper-
ator fix : pTAÑ TAq Ñ TA. Recall the semantics of types:

• J1K “ 1;

• JAˆBK “ JAKˆ JBK;

• JAÑ BK “ JAK Ñ T JBK.

Now, the semantics of a term in context Γ $ t : A with Γ “ px1 : A1, . . . , xn : Anq must be
a morphism JA1Kˆ. . .ˆJAnK Ñ T JAK. This works alright, and we could also incorporate
the do-notation in the language (modulo replacing TX with X in the return types):

Γ $ p : A Γ, x : A $ q : B

Γ $ dox - p; q : B

Here we have:

f “ JΓ $ p : AK : JΓK Ñ T JAK
g “ JΓ, x : A $ q : BK : JΓKˆ JAK Ñ T JBK

from which we expect to obtain:

JΓ $ dox - p; q : BK : JΓK Ñ T JBK

We would expect to have

JΓK
〈id,f〉
ÝÝÝÑ JΓKˆ T JAK ?

ÝÝÝÑ T pJΓKˆ JAKq g‹
ÝÑ T JBK

That is, we need means to incorporate the context Γ into a computation of type A.

37

2.2.1 Strong Monads

We arrive at the following notion.

Definition (Tensorial Strength). A strong functor is a functor F : C Ñ D between
Cartesian categories C and D, plus strength, which is a natural transformation τA,B : Aˆ
FB Ñ F pAˆBq, such that

1ˆ FX FX

F p1ˆXq

τ

snd

F snd

pX ˆ Y q ˆ FZ F ppX ˆ Y q ˆ Zq

X ˆ pY ˆ FY q X ˆ F pY ˆ Zq F pX ˆ pY ˆ Zqq

assoc

τ

Fassoc

Xˆτ τ

Strong natural transformations are those that preserve strength in the obvious sense.
Given a strong functor pF, τq, note that pId, id : X ˆ Y Ñ X ˆ Y q and pFF, pFτqτ : X ˆ
FFY Ñ FF pX ˆ Y qq are again strong functors.

Now, a monad is strong if it is strong as a functor and η, µ are strong natural trans-
formations, concretely,

X ˆ Y T pX ˆ Y q

X ˆ TY

idˆη

η

τ

X ˆ TTY X ˆ TY

T pX ˆ TY q TT pX ˆ Y q T pX ˆ Y q

τ

idˆµ

τ

Tτ µ

The reason why we do not see strength when programming in Haskell is because Haskell
functors F : C Ñ C are indeed natural transformations AB Ñ FAFB (as opposed to
categorical functors HompA,Bq Ñ HompFA,FBq). Categorically, this is in fact, a quite
specific condition.

Definition (Functorial Strength). An endofunctor F : C Ñ C on a CCC C is functorially
strong, if it comes with a functorial strength, i.e. a family of morphisms

ρA,B : BA Ñ FBFA,

such that

Homp1ˆA,Bq HompA,Bq HompFA,FBq Homp1ˆ FA,FBq

Homp1, BAq Homp1, FBFAq

–

curry

F –

curry

Homp1, ρA,Bq

Moreover, ρ must respect internal units (currypsndq : 1 Ñ AA) and composition (BA ˆ

CB Ñ CA) in an obvious sense.

38

Analogously, we can internalise natural transformations and define “functorialy strong
monad” as those functorially strong functors, for which there are internalized version
of η and µ.

It turns out however that tensorial strength and functorial strength are equivalent:

τA,B “ uncurry
`

A
curry id
ÝÝÝÝÑ pAˆBqB

ρ
ÝÑ T pAˆBqTB

˘

,

ρA,B “ curry
`

BA ˆ TA
τ
ÝÑ T pBA ˆAq

T ev
ÝÝÑ TB

˘

.

Example. Every endofunctor and every monad on Set are strong with the functorial
strength being just the functorial action, because there is no distinction between hom-
sets HompA,Bq and exponentials BA. Hence τA,Bpx P A, p P TBq “ pTλy. 〈x, y〉qppq
(now we see, what this expression actually means!)

Every monad on predomains is thus also strong – this amounts to verifying that the
above τ is continuous.

Categorically, the right setup for these considerations is enriched categories. These
generalize standard categories by replacing hom-sets with hom-objects of a yet another
category V, in which the original category is said to be enriched. This produces the
whole spectrum of derived notions: V-functors, V-natural transormations, V-monads,
etc. From this perspective our categories are Set-categories, i.e. categories enriched
in Set. Every Cartesian closed category can be regarded as enriched over itself, because
we can use exponentials AB instead of hom-sets HompB,Aq. In that sense strong functors
turn out to be precisely the enriched functors and strong monads turn out to be precisely
the enriched monads. As a slogan: in CCC strength is equivalent to enrichment2.

Is there non-strong monads? They are not easy to meet in the wild.

Example (Non-Strong Monad). In the category of two-sorted sets Set2 “ SetˆSet the
monad pX,Y q ÞÑ pX,Y `Xq is not strong.

2.2.2 Commutative Monads

We can classify computational effects according the equations they satisfy. Recall that
the lifting monad satisfies the commutativity property:

letx - p in let y - q inb〈x, y〉c “ let y - q in letx - p inb〈x, y〉c,
Definition (Commutative Monad). A strong monad T is commutative if

TAˆ TB T pTAˆBq TT pAˆBq

T pAˆ TBq

TT pAˆBq T pAˆBq

τ

τ̂

T τ̂

µ

Tτ

µ

2Anders Kock. “Strong Functors and Monoidal Monads”. In: Archiv der Mathematik 23.1 (1972),
pp. 113–120.

39

This is the same as claiming

dox - p; do y - q; return〈x, y〉 “ do y - q; dox - p; return〈x, y〉.

Further important properties:

• copyability: dox - p; do y - p; return〈x, y〉 “ dox - p; return〈x, x〉;
• discardability: dox - p; return ‹ “ return ‹.

Example. Powerset monad is commutative, but neither copyable, nor discardable.

Example (Probabilistic Computations). The following is a probability distribution
monad on Set:

• DX “ td : X Ñ r0, 1s |
ř

d “ 1u (it follows that the set tx | dpxq ‰ 0u is
countable);

• pηxqpxq “ 1 and pηxqpyq “ 0 if x ‰ y (Dirac’s distribution);

• pf : X Ñ DY q‹pd : X Ñ r0, 1sqpy P Y q “
ř

xPX dpxq ¨ fpxqpyq.

This monad is commutative and discardable, but not copyable.

2.3 Algebras and CPS-Transormations

Definition (Monad Algebras). An (Eilenberg-Moore) algebra for a monad T , or a T -
algebra is a tuple pA, a : TAÑ Aq satisfying the following conditions:

A TA

A

ηA

a

TTA TA

TA A

Ta

µA a

a

We call the object A of a T -algebra pA, a : TA Ñ Aq the carrier of the latter and
the morphism a : TA Ñ A the corresponding structure. As expected, morphisms of
T -algebras are those morphisms of carrier that preserve the structure:

TA TB

A B

Th

a b

h

We thus a category of T -algebras, of the Eilenberg-Moore category of T .

Example (Pointed Sets). Let T be the maybe-monad TX “ X`1. Then pA, a : A` 1 Ñ Aq
is a T -algebra iff

A A` 1

A

inl

a

pA` 1q ` 1 A` 1

A` 1 A

a`1

rid,inrs a

a

40

The former diagram means precisely that a is of the form rid, ps for some p : 1 Ñ A
and the latter diagram commutes automatically. Therefore, to give a maybe-algebra
over A is to give a morphism 1 Ñ A, i.e. specify a point in A. A morphism of algebras
h : pA, a : A ` 1 Ñ Aq Ñ pB, b : B ` 1 Ñ Bq is exactly a morphism h : A Ñ B of the
carriers that respects the points.

Example (Monoids). Let TX be the list monad over Set: TX “ X‹. It can be shown
that the category of list-algebras is isomorphic to the category of monoids, defined as
follows:

• objects are monoids pM,d : M ˆM ÑM, e PMq;

• morphisms from pM,d, eq to pM 1,d1, e1q are those maps h : M ÑM 1, which preserve
the monoid structure: hpad bq “ hpaq d1 hpbq, hpeq “ e1.

Definition (Free Algebras). A free T -algebra on an object A P ObpCq is the tuple
pTA, µA : TTAÑ TAq.

The axioms of T -algebras are automatics for free algebras.

Definition (Strong Monad Morphisms). Given two monads S and T on the same cat-
egory, a natural transformation α : S Ñ T is a monad morphism if

X SX

TX

ηX

ηX
αX

SSX TSX TTX

SX TX

µX

αSX TαX

µX

αX

A monad morphism between two strong monads is strong if it is a strong natural trans-
formation.

Monad algebras, strong monad morphisms and continuations are connected in the
following theorem.

Theorem 9 (Dubuc’s Theorem34). Given a strong monad T , T -algebra structures over
pA, a : TAÑ Aq are in one-to-one correspondence with strong monad morphisms α : T Ñ
p-- Ñ Aq Ñ A as follows:

• given pA, a : TAÑ Aq,

αX “ curry
´

TX ˆ pX Ñ Aq
–
ÝÑ pX Ñ Aq ˆ TX

pT evqτ
ÝÝÝÝÑ TA

a
ÝÑ A

¯

;

• given α : T Ñ p-- Ñ Aq Ñ A,

a “
´

TA
〈id, curry snd〉
ÝÝÝÝÝÝÝÝÑ TAˆ pAÑ Aq

uncurryα
ÝÝÝÝÝÑ A

¯

.

3Eduardo J Dubuc. “Enriched semantics-structure (meta) adjointness”. In: Rev. Union Math. Ar-
gentina 25 (1970), pp. 5–26.

4simplified version

41

If A is a free T -algebra A “ TR then αpp : TXqpf : X Ñ TRq “ f‹ppq. Moreover,
αpp : TRqpη : R Ñ TRq “ η‹ppq “ p. This can be illustrated with a series of Haskell
programs. The program over the list monad

ex1 :: [Int]

ex1 = do

a <- return 2

b <- return 2

return $ a+b

forms a list [4]. We can use just the same code for this purpose:

ex2 :: Cont String Int

ex2 = do

a <- return 2

b <- return 2

return $ a+b

However, since the result type is String, in the end we will need to convert from Int to
String, e.g. with runCont ex2 show. In contrast to the list monad we now can ”escape”
from the computation:

ex3 :: Cont String Int

ex3 = do

cont (\r -> "escape")

a <- return 2

b <- return 2

return $ a+b

Now, if we start with the program

ex4 :: [Int]

ex4 = do

a <- [1,2]

b <- [1,2]

return $ a + b

which yields [2,3,3,4], we can use the CPS-transform of the list monad to convert to
the continuation monad:

42

i x = cont (\r -> x >>= r)

ex5 :: Cont [Int] Int

ex5 = do

a <- i [1,2]

b <- i [1,2]

return $ a + b

Here [Int] is the free list-algebra on Int and i is the induced monad morphism. With
runCont ex5 return we obtain [42] like in the original case of the list monad. But
now we also can escape from the computation:

ex6 :: Cont [Int] Int

ex6 = do

cont (\r -> [42])

a <- i [1,2]

b <- i [1,2]

return $ a + b

The same can be achieved with the library function callCC :: MonadCont m => ((a

-> m b) -> m a) -> m a (=call with current continuation):

ex7 :: Cont [Int] Int

ex7 = callCC $ \k -> do

k 42

a <- i [1,2]

b <- i [1,2]

return $ a + b

2.4 Free Objects and Adjoint Functors

Definition (Free Objects). Given a functor G : C Ñ D, a free C-object on X P ObpDq
consists of an object Y P ObpCq together with a morphism ηX : X Ñ GY in D such
that for any other Z P ObpCq and morphism f : X Ñ GZ in D, there exists a unique
f : : Y Ñ Z in C such that

GZ

X GY

Gf:

f

ηX

43

Example (Exponentials). Let C “ D and let GX “ XA. Then ηX : X Ñ XˆA is a free
object on A and evpf ˆAq : X ˆAÑ Z is the universal map induced by f : X Ñ ZA.

Example (Free Monoids). Let C be the category of monoids over C and let G be the
obvious forgetful functor. Then η : X Ñ X˚ is a free monoid on X and for every
f : X Ñ Y , f : : X‹ Ñ Y is a unique extension of f to a monoid map from X‹ to Y .

Example (Free Algebras). Let C be the category of T -algebras over D and G : C Ñ D
a forgetful functor. Let F : D Ñ C be the free T -algebra functor. Then pFX, ηX : X Ñ

GFX “ TXq is the free object on X.

Definition (Adjointness). A functor F : D Ñ C is a left adjoint of G : C Ñ D if
HompFX, Y q –HompX,GY q naturally in X and Y . This is written as F % G or G $ F
and G is called a right adjoint to F .

Theorem 10. A functor G : C Ñ D has a left adjoint F : D Ñ C iff there exist free
algebras pFX, ηX : X Ñ GFXq for every X:

• from an adjunction HompFX, Y q – HompX,GY q we obtain a correspondence

pf : X Ñ GY q ÞÑ pf : : FX Ñ Y q

such that pηX : X Ñ GFXq: “ idFX for a suitable ηX ;

• from free algebras pFX, ηX : X Ñ GFXq, we obtain the maps

pf : FX Ñ Y q ÞÑ ppGfqη : X Ñ GY q,

pf : X Ñ GY q ÞÑ pf : : FX Ñ Y q.

Theorem 10 allows us to switch between two equivalent ways of defining categorical
structures: by adjunctions or by free objects. The latter way is more fine grained, because
we can speak about existence of specific free objects, while the adjoint formulation is
only sensible when all free objects exist.

Example (Exponential). Existence of exponentials, now can be reformulated as p--q ˆ
A % p--qA. Theorem 10 show that this definition is equivalent the the definition via free
objects.

By Theorem 10, we now see that F % G for F being the free T -algebra functor and G
being the corresponding forgetful functor. This is called the Eilenberg-Moore adjunction.
Because of Theorem 10, it is easy to see that we could just as well consider the category
of free T -algebras instead of the category of all algebras. The resulting adjunction is
called the Kleisli adjunction. The reason for it is the following

Proposition. The Kleisli category of a monad is isomorphic to the category of all free
algebras of that monad. The relevant isomorphism is defined as follows:

• (from Kleisli for free algebras):

X ÞÑ pTX, µAq, pf : X Ñ TY q ÞÑ pf‹ TX Ñ TY q;

• (from free algebras to Kleisli):

pTX, µAq ÞÑ X pf : pTX, µXq Ñ pTY, µY qq ÞÑ pfη X Ñ TY q

44

Bibliography

Barendregt, Hendrik Pieter. The Lambda calculus: Its syntax and semantics. Amsterdam:
North-Holland, 1984.

Dubuc, Eduardo J. “Enriched semantics-structure (meta) adjointness”. In: Rev. Union
Math. Argentina 25 (1970), pp. 5–26.

Kock, Anders. “Strong Functors and Monoidal Monads”. In: Archiv der Mathematik
23.1 (1972), pp. 113–120.

45

	Semantic Origins
	The Untyped Lambda Calculus
	Evaluation Strategies
	Standard Evaluation Strategy
	Call-by-Name (Lazy) Evaluation Strategy
	Call-by-Value (Eager) Evaluation Strategy
	Big-Step Call-by-Name
	Big-Step Call-by-Value

	PCF (Programming Computable Functions)
	Simply-Typed -calculus
	Call-by-Name Operational Semantics for PCF
	Call-by-Value Operation Semantics for PCF

	Denotational Semantics of PCF
	Constructions on Predomains
	CBN Denotational Semantics
	CBV Denotational Semantics

	Categories and Monads
	Introducing Monads
	Products and Coproducts
	Functors and Monads
	Natural Transformations: Relating Functors
	Examples of Monads
	Dualization, Bi-Functors, Cartesian Closure

	Tensorial Strength
	Strong Monads
	Commutative Monads

	Algebras and CPS-Transormations
	Free Objects and Adjoint Functors

