Lecture Notes for

Monad-Based Programming

Recorded by Hans-Peter Deifel (hpd@hpdeifel.de)
Edited by Sergey Goncharov (sergey.goncharov@fau.de)

by PD Dr. Sergey Goncharov

July 19, 2019

mailto:hpd@hpdeifel.de
mailto:sergey.goncharov@fau.de

Contents

1 Semantic Origins 3
1.1 The Untyped Lambda Calculus 4
1.2 Evaluation Strategies oL Lo 6

1.2.1 Standard Evaluation Strategy 6
1.2.2 Call-by-Name (Lazy) Evaluation Strategy 7
1.2.3 Call-by-Value (Eager) Evaluation Strategy 7
1.2.4 Big-Step Call-by-Name, 8
1.2.5 Big-Step Call-by-Value 8
1.3 PCF (Programming Computable Functions) 9
1.3.1 Simply-Typed A-calculus. 9
1.3.2 Call-by-Name Operational Semantics for PCF 11
1.3.3 Call-by-Value Operation Semantics for PCF 12
1.4 Denotational Semantics of PCF 13
1.4.1 Constructions on Predomains 14
1.4.2 CBN Denotational Semantics 17
1.4.3 CBV Denotational Semantics 19

2 Categories and Monads 23

2.1 Introducing Monads 23
2.1.1 Products and Coproducts, 24
2.1.2 Functors and Monads 27
2.1.3 Natural Transformations: Relating Functors 29
2.1.4 Examples of Monadso 33
2.1.5 Dualization, Bi-Functors, Cartesian Closure 35

2.2 Tensorial Strength o 37
2.2.1 Strong Monads 38
2.2.2 Commutative Monads 39

2.3 Algebras and CPS-Transormations 40

2.4 Free Objects and Adjoint Functors 43

1 Semantic Origins

In mathematics we do not distinguish between ezpressions and their meanings. The
meaning of 2 4+ 2 is 4 and both objects are indistinguishable. In computer science we do
distinguish expressions or terms from their meanings, for which we use semantic brackets

[—]: Terms — Meanings

The style of semantics involving such brackets is called denotational semantics: Deno-
tational semantics has been developed in 70’s by Christopher Strachey and Dana Scott.

Probably the best way to illustrate the essence of the denotational (and other) seman-
tics is by giving semantics of languages based on the A-calculus.

Classical styles of semantics

e Denotational Semantics (what the program means?)
e Operational Semantics (how the program behaves?)
e Axiomatic Semantics (what properties the program satisfies?)
We stick to the first two styles of semantics, of which we first consider the second one

(which is easier) to approach the first one (which is harder). Example of axiomatic
semantics is Hoare logic (not covered here).

What we do in the course? The course revolves around the triad:

Category
Theory

Semantics

Functional
Programming

Starting from one node you will be able to connect to the other nodes, transferring the
knowledge and understanding.

e Denotational semantics is motivated by computation and ultimately involves ad-
vanced mathematical structures, for which category theory is arguably the most natural
language to use. We thus transfer computational intuition from semantics to category
theory to approach the latter.

e Good understanding of semantics helps in functional programming, in particular
Haskell, since it has been designed by computer scientists who took semantics very
seriously. We thus learn Haskell in a semantic-oriented way.

e Category theory influenced semantics, since many abstract, purely mathematical
concepts, such as monads, were utilized in semantics to organize constructions and rea-
soning. We thus use semantics to develop a computational intuition of formal categorical
concepts.

e Similarly, a great amount of abstract categorical concepts was utilized in functional
programming, again, most notably by Haskell. Specifically, monads were introduced to
Haskell as a practical organization tool for writing programs — even writing the ”Hello
World” program in Haskell requires a monad!

e Therefore, in this course, conversely, we use Haskell as a showcase for advanced
categorical concepts, such as monads, adjunctions, Cartesian closure.

e Semantically, Haskell is a statically typed, purely functional lazy programming lan-
guage, which can be regarded as a far-reaching generalization of the typed A-calculus,
and as such it provides as excellent playground for illustrated various important seman-
tics concepts.

1.1 The Untyped Lambda Calculus

Untyped A-calculus is a proto-programming language introduced by a mathematician
Alonzo Church in 30’s prior to any actual programming languages and computers.

Variables z,y,z,...
Terms t,s:=2x,y,2| A\x.t]ts
e a-conversion Az.t —, Ay.t[y/z], where y is not free in ¢ (see definition below)

f-reduction (Az.t)s —g t[s/z]

n-reduction] \z.fx —, f

Derived reductions

— af-reduction is: —7% 5 = (—q U —p)"

— afn-reduction is: —*

aBn = (—)a U —)ﬁ U] 4)17)*

Definition (Free Variables).

o Free(z) = {x}

o Free(st) = Free(s) u Free(t)

e Free(Ax.s) = Free(s) \ {z}
A variable x is free in t, if x € Free(t). A variable x is bound in t, if = ¢ Free(t).
Definition (Substitution).

o x[t/z] =1t;

t/yl =z if © # y;

(pq)[t/z] = p[t/z]q[t/x];

(. p)[t/a] = A

(Ay.p)[t/z] = Az.p[z/y][t/x] if = ¢ Free(\y.p) U Free(t).

Example. (Az.yz)[yz/y] = Xz.(yz)[2/z][yz/y] = Az.(y2)[yz/y] = Az.(yz)=.

[
[

e I

Proposition (Diamond Property, aka Confluence). Independent reductions starting
from the same term can always eventually be joined in the following sense:

t t
N ?/ \?4,8 of 7Z/ \1577
* * * *
t1 to t1 to

~ - ~
~ - ~ -
N * N *
N -

Y g N P
o™ < ap apn™ < apn

Proposition. ‘);6 is not terminating;:

Proof. Since Q = (Az.zx)(Ax.xx) —3 (Av.zx)(Az.zx) =), we obtain and infinite
reduction Q2 —g Q —g ... O

Definition (Fixpoint Combinator).

Y = M.(Ay-f(yy) Az f(zz))
Yf—p Ay flyy) Az f(zz)) —p f(Y])

Definition (Church Numerals).

Af.Az.z
Af. Az fz
A Az ffz

0
1
2

In a similar way one can define +, —, True, False, if-then-else, etc.

1.2 Evaluation Strategies

We specify evaluation strategies with rules of structural operational semantics (SOS).

1.2.1 Standard Evaluation Strategy

The order imposed here is called left-most-outermost-ordering.

P —so p/ p #F)\y t P —so p/
(Az.p)q —s0 Pla/x] Pq —s0 P'q AZ.p —g0 AT D

/

4 —s0 q P lso p# Av.t
Pq —s0 D¢’

where p |s, means that p is irreducible with respect to —4,, i.e. p is so-normal.
This style of reductions is also called small-step semantics because in order to find an
so-normal form p’ of some p we generally need a chain of reductions p —¢, ... —¢ P’

Definition. Using these rules, we define p |, v, if there is a derivation of p —4, v
and v is so-normal.

Example.

Az. zy)(A\x.) —50 (Az.)Y Y Iso Yy # Ax.t
y((Az. zy)(Az. x)) —s0 y((Az. 2)y)

Proposition (Standardization Theorem®). If s — 5 tand tis af—normal, then s —, ¢
and ¢ is so-normal.

Note the following.
e The definition of ——, is structural, i.e. a sucessor of a term ¢ w.r.t. —y, is
calculated by structural induction over .

o The relation —, is deterministic in the sense that there is only one way to build a
(possibly nonterminating) reduction starting from a given ¢; this contrasts af-reduction:
we both have (Az.\y.y)? — 5 Ay.y and

A2 AY.) —50 (A2 AY. Y)Q —g0 - - -

e The standartization theorem indicates that all existing af-normal forms can be
calculated by the standard evaluation, e.g. (Az.A\y.y) Q2 —¢ Ay.y and Ay. y |so-

e As a consequence of the previous clause —g, diverges on a term t iff ¢ does not
have an af-normal form.

'Hendrik Pieter Barendregt. The Lambda calculus: Its syntax and semantics. Amsterdam: North-
Holland, 1984.

1.2.2 Call-by-Name (Lazy) Evaluation Strategy

Lazy or call-by-name (CBN) evaluation strategy refines and simplifies the standard
evaluation strategy as follows:
P —cbn p,
(Az.p)q —con pla/x] Pg —>cbn P'q

That is, we assume

e no rewriting under A\ (therefore Ax.Q |cpn);

e all terms are closed.
We thus reject n-reduction, in order to capture the fundamental distinction between
computations and values. Roughly, a A-term p represents a program, and A\z.px repre-
sents its program code. While p can diverge, Ax.p cannot diverge, because it is just a

text of the program. However \z.p can be erecuted with S-reduction, which then can
again result in divergence.

Proposition. Like SO, CBN does not diverge on terms which have af-normal forms, but
CBN-normal forms need not be af-normal forms, e.g. Az. (Ay. y)z |cpn but Az. (Ay. y)x —ap
AT. x.

Definition (Redex). A redexr (=reducible expression) is a subterm of the form (Ax.t)s
of a given term, which can be reduced with an evaluation strategy at hand.

Example.

(Az. zz)((Az.) (Az. 2))
bn (Az.z)(Az. 2))((Az. 2)(A\x.)
—cbn (Az.x)(Az. 2)(A\2. 7))
(Az.z)(Az. x)
(

cbn

cbn

1.2.3 Call-by-Value (Eager) Evaluation Strategy

Definition (Value). A value is a term of the form Ax.¢.

Under the same assumption as with CBN we define the call-by-value (CBV) evaluation
strategy:

D —cbv P g —cbv ¢ p is a value q is a value
Pg —>cbv P'q P —>cby PG’ (Az.p)qg —cbv pla/z]

instead of “p is a value”, one could write p |cpy.

Proposition. CBV calculates properly fewer normal forms than CBN, e.g. (Az.Ay. y)Q | ebn
Ay.y, but
Az Y. y) Q —cy (A2 AY. Y) Q —cpy -+

However, CBV is generally more efficient than CBN.

Example.
(Az. zz)((Az. x)(Ax. T))
—seby (Az.zz)(AX.)
—seby (Az.z)(Az.)
— by (Az.7)

1.2.4 Big-Step Call-by-Name
In big-step styles of semantics we relate a term not to its one-step successor, but

directly to its normal form.

p Ucbn)\x.p' p/[Q/x] Ucbn c
)\x.p Ucbn)\x~p pq Ucbn c

Proposition. p —7, ¢ and q |cpn iff p |ebn ¢
Proving this requires the following
Lemma. p — ¢y g with ¢ Ucbn r imply p Ucbn r.

Proof. Induction over the proof of p —¢pn ¢:
Induction base: p = Ax.t, p = Ax.t. Then r = Az.t and we are trivially done.
Induction step: p = st, ¢ = s't and s —>¢,n, §. By assumption, st |cpn 7, which
implies s" |cpn Az.u, u[t/z] Jepn 7. By induction, s |cpn Az.u. Hence st |epy 7, as
required. O

1.2.5 Big-Step Call-by-Value

Call-by-value requires evaluation of arguments of function application:

plew Az’ qlawd P[d/x] Yoy C
)\LL“p ucbv)@P pq Ucbv Cc

Proposition. p _):bv q and q lcoy iff p Jeby ¢

Example.

AT T by AT T AT T |eby AT X AT. T by AT T

Az, 22 |epy AT. 2T Az z)(Az. z) Jebv Az. T Az.z2)(Az.) Jeby Az.

Az.zx)(Az. 2)(Az.) Jeby A2 2

1.3 PCF (Programming Computable Functions)

1.3.1 Simply-Typed)-calculus

Type:=A,B,C,...| 1 |AxB|A—>B
—_—

base types unit

type

Proposition. Q = (Az.zz)(A\z. zz) is not typable, and hence not a valid term.

Proof. By contradiction: if z: A then zx: A and x: A — A, hence A = A — A,
contradiction. O

Proposition. — 3 is strong normalising for simply typed A-calculus.
PCF is obtained from the simply typed A-calculus by

e adding the fixpoint combinator Y4: (A — A) — A for every type «;
e fixing Nat and Bool as the base types;

e postulating the corresponding signature of arithmetic and logical operations.

Definition (Terms-In-Context). A term in context has the form
F'—t: A,

where A is a type and I' is a context, which is a list of pairs z;: A; such that z; occur
non-repetitively.

We work only with those I - ¢: A which are derivable using the following rules:

V) T D g 6D SR

AL T s
(Const) Tre A (Fun) L tlli ﬁlf(t.l;: - 7tnf)‘ :l_];n: A,

where ¢ € {True, False} U {0,1,...} where fe{A,v,— +,—, ...}

N'-s:A Nt A A € {Bool, Nat, 1}

E
(Eq) I' - s =t: Bool

I' = b: Bool F's:A Tt A (Fix) '-f:A—> A
'+ifbthenselset: A F'-Ysf: A

(If)

Definition (Term). A PCF term t is obtained from I' - ¢: A by removing the return
type A and the context I'.

The PCF syntax corresponds to the Haskell syntax rather accurately, e.g.:

-- | single element () of the unit type ()

O es ©

-— | first component of a pair

fst :: (a,b) > a
fst (x,.) = x

-— | second component of a pair
snd :: (a,b) >0
snd (_,y) =y

-- | logical constants
True :: Bool

False :: Bool

-— | Numeric constants

0 :: Num a => a

42 :: Num a => a

-— | lambda-abstraction, assuming f :: a -> b

\x > f x i a->b

-- | application, assuming f :: a -> b, = :: a

f x 58 B

-- | equalzty

(== :: EQ a =>a ->a —-> Bool
-- | if-then-else, assuming b :: Bool, z :: a, Yy :: @&

if b then a else b ia

-— | fizpoint operator is definable:

10

fix :: (a > a) > a
fix f = f(fix f)

1.3.2 Call-by-Name Operational Semantics for PCF

We modify the concept of value as follows.

Definition (Value). A value is a Boolean, a natural number, %, a pair of closed terms
or a closed term Ax.t.

The call-by-name semantics for PCF is obtained by modifying the call-by-name seman-
tics of A-calculus. We discuss the most important/nontrivial rules.

tl{p,g) plec tlp,g) qle
fstt | c sndt || ¢

which means that pairing is lazy. Note that there is no rule for reducing which (¢, s), is,
by definition, already a value. Hence, in particular, fst(1,Q) || 1, but snd(1, Q) diverges.

bl True plec b | False qlc
if bthenpelseq || ¢ if bthenpelseq || ¢

The rules for application and abstraction are as in the A-calculus.

plc qlc
pt+qlc+c

Variant 1 for v: bl True cl| True b | False c | False
bvecel| True bv el True bvc| False

This is known as “parallel or” and it does make certain sense, but in our case it would

make the semantics unintentionally non-deterministic. So, we use the following one.

Variant 2 for v: b{ True cld bl d cl True
bvc| True bvecel True

This semantics can be readily tested in Haskell, since it is lazy:

11

fix £ = £ (fix £) -— fizpoint combinator
omega = fix id divergence

success = () successful termination
testl = fst $ (success, omega) terminates

test2 = fst $§ (success, omega) diverges

test3 = True || omega terminates

test4 = omega || True diverges

test4 = False || omega diverges

1.3.3 Call-by-Value Operation Semantics for PCF

Definition (Value). A value is a Boolean, or a natural number, or , or a pair of values
or a closed term Ax.t.

b Ucbv C1 q Ucbv C2 p Ucbv <Cla C2>
(0, @) Yoy (c1,c2) fstp lewy 1

b Ucbv <Cla C2>
sndp Ucbv C2

If we used the same rule for the Y-combinator, as for call-by-name, we would diverge:

Vi—fYf) — f(fVf) — -

(Evaluating the argument would use the same rule on and on). In order to prevent this,
for the CBV semantics:

e we require C' in Yo to be of the form A — B,
e the small-step rule for Y: Y f — f(Ax.(Y f)x), or, alternatively, as a big-step rule:

f Ucbv Az g g[)‘y (Yf)y/x] Ucbv c
Yfiave

Example (Factorial). Consider the program:

pi=2x: Nat - (Ynat—>nNat(AfAzif £ < 1 then 1 else z - f(z — 1)))(x)

9
We show that: (Az.p)(n) || n! (in CBV)

Proof. Induction over n.
Induction base (w = 0):

12

g = (Az.if z < 1 then 1
glg M. (Yg)x | Mx.(Yg)x else 2 - (A 59)2) (@ — 1) | g

glg ghz.(Yg)z) g glg 000 g[0/z] 1

Yglyg 000 g0l 1
Ar.p || Azx.p 000 (Yg)0 1
(Az.p)0 | 1

Induction step:
Insert lengthy proof of (Az.p)(n+1) || (n + 1)!
Insert proof that this is indeed a well-typed term]

1.4 Denotational Semantics of PCF

Operational semantics is non-compositional, is the sense that it does not yield a func-
tion [-] from terms to meanings, so that for every n-ary term construct op, [op(t1, ..., t,)]
could be calculated as a function of [¢t1],..., [t,]. In particular, operational semantics
does not directly define meanings of functions, hence we cannot express [ft] via [f]
and [¢].

Definition (Exponential). Recall that in set theory the exponential B4 (latter also
written as A — B) is the set of relations P € A x B, which are

e functional: Vz.Vy.Vz. P(z,y) A P(z,2) = y = z, and
e total: Vz.3dy. P(z,y).
Given A, B, then AB < A x B can be formed and used as a domain for functions.
We could use A to give the denotational semantic of the PCF function type A — B:
[A — B] = [B]I“], but doesn’t work because of the possibility of divergence.
Another candidate would be [A — B] = ([B] w L)I4] but then B can again be a
function space and we would have an unwanted distinction between divergence 1 and

everywhere diverging function Az. L.
The right idea is to use complete partial orders (cpos)!

Definition (Partial Orders). A partial order (A, C) is a relation satisfying the following
axioms:

e al qa;
e alCbAbCc=alc

e albAbCa=a=0.

Definition (Complete Partial Orders). A(n w-)cpo is a partial order (A, C), such that
for any infinite chain
arEax ...,

there is an a, such that

13

1. Vi.a; C a;
2. Vi,a; Cb=aCb.

We denote such a by | |, a;. More, generally we write | |
(not necessarily of a chain) if Vi.a; C | |..; a; and | |

;e @i for any least upper bound

il o7 @i & bonce Vi.a; Eb.

Definition (Pointed Cpos). A cpo (A,C) is pointed if it contains such an element L,
that Vae A. L C a

Every set A is trivially a cpo (A,C) with a C b iff a = b.

Definition (Monotonicity, Continuity, Strictness). A function f: A — B between par-
tial orders is monotone if a © b= f(a) C f(b); a monotone function f: A — B between
cpos (A4,C) and (B, L) is (Scott-)continuous if for any chain a1 Cas C .. .

(L e) =L, a0

A function f: A — B is strict if f(1) = L. This extends to the multi-ary functions in
the obvious way, e.g. if-then-else is strict in the first argument, but not in the second
and the third.

Definition ((Pre-)Domain). We agree to refer to cpos as pre-domains, and to pointed
cpos as domains.

1.4.1 Constructions on Predomains

Product of Predomains A x B = {(a,b) |a€ A,be B}
(al,bl) ; (ag,bg) if al E a9 and bl E b2
Properties:

e Continuity of pairing: | |;(a;, b;) = (LI, as, Ll bj);
e Continuity of projections: fst: A x B — A and snd: A x B — B are continuous,
ie.: fst(|_|j a;) = LI, fstaj, snd(|_|j aj) = L, snd a;;

e Products of domains are again domains with (L, 1) as the least element.
Lifting Predomains and Functions The correspondence A — A defines a lifing of A
where A] = Aw {L} ={(x,a) | ae A} U {(L,*)}.
aCb if a=1 or aeAbeAandaCbh
Let for any a € A: |a] = (x,a) € A].
Let B be a domain and let f: A — B be continuous. Then we define f*: A] — B as
follows:
N fly) itz =ly
friay = 7@ Tl
1 ifex =1
The result f* is the lifting of f.

14

Example (Flat Domains). : Given aset A, A is called the flat domain over A, regarded
as a trivially ordered set (i.e. C is =).

Bool | :

True False

Nat | :

Non-example 1| x 1;:

PN
(*, 1) (L, %)
~ 7
(L, 1)

Notation. We use the point-full notation (letz=pin ¢) alongside with the point-free one
(Ax.q)*(p) where \z.q: A — B and p: A].

Properties:
e |-] is continuous: |||, a;] = | ;|a:].
e Lifting is continuous: (|_|l fi)* = ||, f; where continuous functions are compared

pointwise, that is f C g if f(z) C g(z) for any = (see the definition of function
spaces bellow).

For every op: X xY — Z with X,Y, Z being sets, we define the strict extension:

OpJ_:XlXYLHZL
op, (p,q) = letz=pinlety=qin[op(z,y)]

Function Spaces Let (A,C) and (B,C) be two predomains. Then (A — B,LC) is the
function space predomain, where

A— B={f: A— B| f is continuous}

and
fEg< V. f(x) C g(x) (pointwise)

15

We define two operations:

curry: (Ax B—C)— (A— (B—-(C))
(curry f)(2)(y) = f(z,y)

uncurry: (A —> (B—C)) > (Ax B— ()
(uncurry f)(z,y) = f(z)(y)

from which we can derive
ev =uncurry((A—>B)—>(A—>B)):(A—>B)xA—B
Properties:

e curry and uncurry are continuous.
e If B is a domain then so is A — B with the bottom element being the completely
undefined function Ax. L.

Theorem 1 (Kleene’s Fixpoint Theorem). Let f be a continuous function f: D — D
over a domain D. Then

1. There is puf € D—the least fixpoint of f, i.e.

a) f(uf) =pf

b) VeeD.f(x)=z=pufCx
2. pf =L; f1(L), where fO(z) = L, f*!(z) = f(f'(2))
3. uf € D is moreover the least pre-fizpoint of f, i.e.

a) f(uf) Cpf
b) VeeD.f(x) Ca=ufCx

Proof. Let us first show that puf as defined in clause 2 is a fixpoint of f. Indeed,
fluf) = f(|_|l fi(J_)) = <|_|Z f”l(J_)) = uf. Hence is it also a prefixpoint. Let us

show that it is the least one. Suppose that ¢ is another prefixpoint, i.e. f(c) C c¢. From
L C ¢, inductively, f/(L) C f'(c) = ¢, hence uf = ||, f(L) C c. Since puf is the least

prefixpoint and a fixpoint, it is in particular the least prefixpoint. O
Example.

fo(z) = L(Va)

f1(0) =1, fi(z) = L(z > 0)

f2(0) = 1’f2(1) = 1af2($) = J_([L‘ > 1)

f3(0) =1, f5(1) =1, f3(2) = 2, f3(2) = L(z > 2)

f4(0) =1, fa(1) = 1, f4(2) = 2, f4(3) = 6, fa(z) = L(z > 2)

16

It’s easy to see that every f; is continuous.
It’s also easy to prove that f; C f;1q for any 7. Let

le_lifi

By Kleene’s fixpoint theorem we can argue that f captures the semantics of the factorial
function n — n!. Note that

fir1=F(fi) V(ieN)
where

1 ifez=1
rz-glz—1) x>1

F(g)(z) = {

which is the definition of the factorial. By Kleene’s theorem this definition is indeed
correct:

f=nF= |_|Z.Fi(l) = |_|Z-fi
Proposition. p: (D — D) — D is continuous.
Definition (Cond). Let cond: Bool; x X x X — X:
x if b= |True]
cond(b,xz,y) = <y if b= |False]

1 otherwise

Proposition. cond is continuous.

1.4.2 CBN Denotational Semantics

We assign to every type A a domain [A] as follows:
o [1]=1,;
e [Nat] = Nat;
e [Bool] = Bool | ;
e [A x B] = [A] x [B];
e [A— B] = [4] - [B].
Now, given a term in context I' — ¢: A where I' = z1: Ay,...,z,: A, the semantics

[I' = t: A] is a continuous function [A;] x ... x [4,] — [A] recursively computed
according to the following clauses where [-- -], reads as [---[(p):

o [I'Fai: Ail, = prilp);

17

[I'—n: Nat], = |n];

[I' = b: Bool], = |b;

[T+ f(t,s): Al, = fL([F' = t: B],[I'F=s:C],) (fe{nrn,—, +,—, x,=});
[- if bthen selset: A], = cond([I" = b: Bool],, [I' = s: A],, [I' = t: A],);
[T (ts): Ax B],=([I'=t: A],, [I' = s: B],);

[T fstt: A, = fst[I' = t: Ay x Ag],;

[I'—sndt: B, =snd[I" - t: Ay x As]p;

'~ Xz.t: A— B], = (curry [I',z: A t: B])(p);

[I'+st: B],=ev([l's5: A— B],,[I'—t: A],);
[C=Yaf:Al,=p[l'-f: A— A],.

Lemma (Substitution Lemma). Given I' - ¢: A, I',z: A+ p: B and p e [I]
[T+ plg/z]: B], = [I'z: A+ p: B](p, [T - q: A],)

Proof. Induction over the structure of p. Let us consider the there last clauses in the
semantics for p, which are the only non-trivial ones.

e p=)y.t withsome I',y: C +t¢: D and then B = C — D. It follows by assumption
that = # y. Then, by induction,

[T+ pla/z]: Bl, = [I' - Ay.tlg/x]: B],
— (curny[T,y: C - tlg/a]: Do)
= (curry([I',y: Cyz: A t: D] o (id,[T,y: C + q: A])))(p)
= (curry[l',z: A,y: C+t: D])(p, [T+ q: A],)
=[Iz: A= Ay.t: B](p,[I' - q: A],)
=[Iz: A= p: B](p,[I' - q: A],).

e p=stwithsome',xz: A—t: Cand I',x: A+ s: C — B. Then, by induction,

[T+ plafel: Bly = [T+ (sla/a) (ta/a)): B,
~ [T sla/2]: € — B,(IT - tlg/z]: C1,)
— (IT,z: A 5: C = Bl(n,[T - g¢: A],))
([0 z: At: Cl(p, [T+ q: A],))
=[T,z: A st: B](p,[I' - q: A],)
=[I,z: A+ p: B](p, [T+ q: A],).

18

e p=Yp f withsomeI'x: A+ f: B — B. Analogously to the previous clauses:

[T+ plg/x]: Bl, = [I' = (Y f)la/]: Bl,
= [I'+Yg flg/z]: B],
= p[I'+ flg/z]: B — B],
= u([T,2: A+ f: B — B](p,[I' + gq: A],))
=[x A pf: Bl(p, [T+ q: A]p)
=[Iz: A p: B](p,[I' - q: A],).

Definition (Soundness). A denotational semantics is sound if
ple=1[p] =l
Definition (Adequacy). A denotational semantics is adequate, if
[p] = [c] = p | ¢ if the type of p is either 1 or Bool or Nat

Proposition. The presented call-by-name denotational semantics is sound and adequate
with respect to |chn.

1.4.3 CBV Denotational Semantics

We we assign to every type A a predomain [A] as follows:
o [1] =1;
e [Nat] = Nat;
e [Bool] = Bool,
e [A x B] =[A4] x [B];
e [A— B]=[A] — [B].-

Now, the semantics of a term in context I' - ¢: A with I' = (x1: Ay,...,2,: Ay) is a
continuous function [A;] x ... x [4,] — [A] L defined by structural induction as follows.

o [I'Fai: Aip = [pri(p)]:

e [I't=n: Nat], = |n];

[I' = b: Bool], = |b];

[T f(t.5): Al = fo(IT+ £ Bl [T b 55 CL) (FE {4, %, =)
[T - if bthen selse t: A], = cond([I' - b: Bool],, [I' - s: A],, [T+ t: A],);
[T+ (t,s): Ax B], =letx=["t: A inlety=[I'~ s: B],in|(z,y)];

[l fstt: A], = letv=["—t: Ax B],in|fstv];

19

[I'—sndt: B], =letv=[I'-t: Ax B],in|sndv];
'~ Xz.t: A— B], = [(curry [I',z: A t: B])(p)];
[I'—st: B],=letv=["t: A inlet f=[I's: A — B],inev(f,v);
[I'~Ya,pf: A— B], = pg where
— g ([A] — [BLL)1) = leth=[T' - f: (A~ B) — (A — B)],inh(u(p)),
— u(p: (1A] — [B]1) 1) (@ [A]) = leth=pinh(z)

The analogue of the substitution lemma is as follows.

Lemma (Substitution Lemma). Given I' - ¢: A, T',2: A+ p: B and p € [I'],
[T+ plg/x]: B], =letv=[I' - q: A],in[[',z: A+ p: B](p,v)
provided that ¢ is of the form Az.r.

In contrast to the call-by-name case, the assumption that ¢ = Az.r is essential. For
example, if ¢ diverges, but p does not depend on z, we would have [I' - p: B] on the
left-hand side and | on the right-hand side.

Proof. The proof is by structural induction over p. Again, only the last three clauses
in the definition of semantics of p are sophisticated. Still the other ones require some
properties of the let-construct (commutativity and copyability).

Assume that ', z: E+17r: F,ie. A=FE — F.

e p = A\y.t with some I'y: C,x: A + t: D and then B = C — D. It follows
by assumption that x # y. Let us fix ¢ € [C], p € [I'] and let s = letv=[I" -
q: A],in[[,z: A+ p: B](p,v). It is easy to check that s = |g| for some g. Then

[T, y: C+ tla/z]: D](p,c)
= letv=[Iy: C+ q: A](p,c)in[l,y: C,x: A+ t: D](p,c,v)
= letv=[I' - q: A],in[[",z: A,y: C'+t: D](p,v,c)
= letv=[I"q: A inlet f=[I",z: A+ p: B](p,v)in f(c)
= letf=(letv=[I'q: A],in[I",2: A+ p: B](p,v))in f(c)
= let f=[g]in f(c)
=g(c)

using the fact that g does not depend on y. Now

I+ plg/x]: B],
= [+ Xy. tlg/z]: B],
= [(curry[I', y: C + t[g/z]: D])(p)]
= Ly

= S.

20

e p=stwithsome I'z: Ar-t: Cand I';x: A+ s: C — B. Then, by induction,

IC + pla/a]: Bl, = [T - (sla/a]) (tla/a]): B,
letv=[I" - tlg/z]: C],
inlet f=[I' - s[g/z]: C — B],in f(v)
letw=[I'+q: A],inletv=[T",z: A t: CJ(p,w)
inlet f=['z: A+ s: C — B](p,w)in f(v)
letw=[I'+ q: A],in[[",z: A st: B](p,w).

e p =Yg f with some I''z: A+~ f: (C - D) - (C — D), hence B = (C — D).
Note that for a suitable w, [I' - ¢: A], = |w]. Then

[T+ pla/z]: Bl, = [T'= (Y f)la/x]: Bl,
=[I'+ Y5 flg/z]: B],
= p(9)
=[,z: A+ Ygpf: B](p,w)
= letv=[I' - q: A],in[[",z: A+ p: B](p,v).

where g(p) =leth=[I',z: A+ f: B — B](p,w)inh(u(p)) and u(p)(x) = leth=pinh(x)

O
Proposition. The CBV semantics of PCF is sound and adequate.
Proposition (let-unit-1). letz = [t|inp = p[t/z].
Proof.
o= gyt = (590 £ W e
O

Proposition (let-unit-2). letx=pin|z| = p.

Proof. letx=pin|z] = (Az. [z])*(p) = (A\z.x)(p) = p. O

Proposition (let-assoc).
letz=pin(lety=qinr) =lety=(letz=ping)inr.
where x ¢ Free(r).

Alternatively, the three laws for the let-operator can be presented in the pointfree form
as follows:

f*n — 77 T’* — |d f*g* — (f*g)*

21

where n: A — A sends z to |z|. These are known as monad laws, and they identify the
map A — A, as amonad whose unit is || and whose Kleisli lifting is the operation (-)*.

Thus, a monad can be understood as a certain type constructor that transforms wval-
ues to computations and induces a notion of generalized function, carrying a certain
(side-)effect in contrast to “normal functions”. The side-effect of the lifting monad is
divergence. Further side-effects that can be abstracted in monads include

e abortion,
e non-determinism,
e store,
e input/output,
and in fact many others. In order to make these considerations rigorous, we proceed with

the basic concepts of category theory. As we will see, monads is a genuinely categorical
concept.

22

2 Categories and Monads

Let us consider the do-notation, as a generalization of our previous let-notation. The
idea is to capture the most abstract properties of computation, e.g. the let-notation also
satisfies the following commutativity property:

letz=pinlety=qin|(zr,y)] = lety=gqinletz=pin|{(z,y)],

but this is not abstract enough: if p writes to a store and ¢ reads from that store the
order in which p and ¢ are executed obviously matters.
Essentially we introduce two term constructs:

dox— p : f (x) ret: A—>TA
S~ Y~
TA A-TB

In conjunction with other (obvious) term constructs this forms what is known as (first-
order) computational metalanguage whose syntax is Haskell’s do-notation.

2.1 Introducing Monads

Definition (Category). A Category C consists of a collection of objects Ob(C) and
a collection of morphisms Hom¢(A, B) for any A, B € Ob(C), such that the following
properties hold:

o for every A € Ob(C) there is an identity morphism id4 € Home(A, A);

e for any f € Hom¢(B,C) and g € Hom¢ (A, B) we can form a composition fo g €
Hom¢ (A, C);

eidof=f foid=f (fog)oh=fo(goh).
We also write f: A — B instead of f € Hom¢(A, B) = Hom(A, B).

A “collection” in the definition of a category is in fact a “class”, i.e. something generally
larger than a set, e.g. the “set of all sets” does not make sense, but “all sets” form a class.
Categories in which any Hom(A, B) is a set are called locally small and the categories

in which Ob(C) is a set are called small. Most of our examples of categories are locally
small but not small.

Example. Examples of categories:

e Sets: Ob(Sets) = “all sets” and Hom(A, B) = “functions from A to B”.
e Cpo: Ob(Cpo) = “all cpos” and Hom(A, B) = “continuous functions from A to B”.

23

e Rel: Ob(Rel) = “all sets” and Hom(A, B) = “relations R € A x B” with

idga ={(z,2) |z € A}
RoS ={(z,2)e AxC|3yeB.(x,y) e R, (y,2) € S}

e PFun: Ob(PFun) = “all sets” and Hom(A, B) = “partial functions from A to B”.

Definition (Commutative Diagrams). We consider diagrams whose nodes are labeled
with objects and whose edges are oriented and labelled with morphisms. A diagram
commutes if all paths with the same start and endpoint produce equal morphisms (the
morphism are formed by composing the labels along paths).

For example, the axioms for identity can be stated as follows:

Curiously, we cannot express associativity of composition in this way, because it is
already baked in to the diagrammatic language.

In category theory, it is customary to prove equations between morphisms f = g “by
diagram chasing”, that is, by producing a commutative diagram, from which a chain
of equations f = f/ = f” = ... = ¢ = g can be read out. Importantly, not every
commutative diagram produces a proof like this. For example, the diagram

does not prove the equation ba = dc even though all the triangles commute.

2.1.1 Products and Coproducts

Definition (Products). A product of objects A, B in a category C is a triple (A x
B € Ob(C),fst: A x B — A,;snd: A x B — B), such that for any C' € Ob(C) with
f:C — A, g: C — B, there is a unique (!) morphism (f, g): C — A x B, such that the
following diagram commutes:

C

As a text: fsto(f,g) = f, sndo(f,g) = g. The morphisms fst and snd are called (left
and right) projections and the operation f,g+— (f,g) is called pairing.

24

Example.

e In Sets, products are Cartesian products.

e In Cpo, products are products of Cpos.

Definition (Terminal Object). A terminal object is an object 1 € Ob(C), such that for
any A € Ob(C), there is a unique morphism: !4: A — 1

Definition (Cartesian Category). A Cartesian category is a category with a terminal
object and products.

Equivalently, a Cartesian category is the one which has all finite products: products of
a nonempty finite number of components are obviously induced by binary products, the
product of the empty family of components is the terminal object.

FEzxamples: Sets and functions, Cpos and continuous functions, ...

Definition (Isomorphism). An isomorphism between objects A and B in a category C
is given by a pair of morphisms: f: A — B, g: B — A, such that the following diagram
commutes:

Example. In Sets, an isomorphism is a bijection.

Here is a translation table, between the different languages of set theory, category
theory and Haskell.

Set ‘ Categories Haskell
function morphism program

set object type
singleton set terminal object unit type
Cartesian product | (Cartesian) product | product type
element morphism 1 — X —

predicate — —

bijection isomorphism —

Theorem 2. Let A, B,C € Ob(C). A triple (C,fst: C — A,snd: C — B), is a product
of A and B if there is an operation
f:D— A g:D— B
(fr9): D—C

such that

fsto(f,g) = f, sndo(f,g) =g, (fst,snd)=id, (f,g)oh=(foh,goh).

25

Proof. The proof consist of the soundness (=) and completeness (<) directions.
(=) We need to show the claimed identities. The first two are obvious by definition.
The other two are by diagram chasing:

D
AxB ;}//’“\\g<
fst I snd C
I f g
/ ¢<fst,sh / i(fh
X

A«—— AxB—— B A«—— AxB—— B
fst snd

fst snd

The first identity holds because in the left diagram replacing (fst,snd) with id would
produce a diagram, which still commutes, but (fst,snd) is unique, hence (fst,snd) = id.
The second identity holds analogously because by the second diagram (f, g) oh satisfies
the characteristic property of (f o h,go h).
(<) Suppose, conversely, the identities hold and for some h: D — C the diagram:

D

A

A fst C snd B

commutes. Then
h =idoh = (fst,snd) o h = (fstoh,sndoh) = (f, g). O

Products are defined not uniquely, but only uniquely up to (a unique) isomorphism. Let
e.g. (A x A, fst,snd) be a product of A, A. Then (A x A, snd, fst) is also a product of A, A:

swap
swap,: Ax A S 404 AxA T T AxA
swap

The pair (swapy,swapy 4) is an isomorphism of A x A and A x A:

swap oswap = (snd, fst) o (snd, fst)
= (snd o(snd, fst), fst o(snd, fst))
= (fst,snd) = id.

Theorem 3. Products (if they exists) are unique up to isomorphism.

Proof. Let (A x B,fst,snd) be a product of A, B and let (AOB,fst’,snd’) be another
product. Then the following diagram commutes:

Ax B
fst (fst,snd)l
fst’ ACB snd’

/ l““/m

AxB

fst snd

A

26

f g

P
Hence, (fst,snd) o (fst’snd’) = id (because both morphisms satisfy the same characteristic
property). Because of symmetry, also go f = id. Hence (f, g) is an isomorphism between
A x B and AOB. O

Definition (Coproducts). An object A + B together with morphisms inl: A — A+ B
and inr: B — A + B called left and right injections is a coproduct of A and B if for any
f+A— C,g: B— C, there is a unique morphism [f,g]: A + B — C, such that the
following diagram commutes:

C

A inl A+ B inr B

Intuitively, [f,g] is defined by case distinction: if we are on the left of A + B then we
apply f; if we are on the right of A + B then we apply g¢.

Example. In Sets A + B is the disjoint union of A and B.

Dually to products we have a complete axiomatization for coproducts:

L [f,gleinl = f;

2. [f,g]oinr=g;

3. [inl inr] = id;

4. ho[f,g] =[ho f,hog].

2.1.2 Functors and Monads

Definition (Functor). A (covariant) functor between categories C and D is a cor-
respondence sending any A € Ob(C) to FFA € Ob(D) and any f € Hom¢(A, B) to
Ff e Homp(FA, FB) in such a way that:

F(ida) = idpa, F(fog)=(Ff)e(Fg).

Example (Forgetful Functor). Forgetful functor is an informal concept: this is a functor
that “forgets” some information about the category. One example is

G: Cpo — Set
GAC)=A
G(f)=f

G is a typical name for forgetful functors (to remember: forGetful).

27

Example (Endofunctor). An endofunctor is a functor from a category into itself. E.g.,

F: Set — Set
FX=X+F
(Ff)(inlz) =inl(fx)
(Ff)(inre) =inr(e)

Example (Finite Lists). Another endofunctor over Set:

F: Set — Set
FX = [X] (finite lists over X)

(FH)z1,. -y xn] = [fr1,. .., f2n]

Definition (Monad/Kleisli Triple). A Monad in a category C is given by a triple (T, 7, *)
(Kleisli triple) where

e T': Ob(C) — Ob(C),
e 7 is a family (nx: X — TX)xeon(c) (unit),
o forany f: A—TB, f*: TA— TB ((Kleisli) lifting)

and the following laws are satisfied:

n" =id, ffn=1, (f*9)" = f"g"
Example (Exception monad). TX = X + E is a monad with:
nx(a) =inla f*(inla) = fa f*(inre) =inre

This works in any category C with coproducts, T X = X + F extends to a monad under
the following definitions:

77x=in|:X—>X+E
f*=1f,inr]: X+ F —>Y + E where f: X > Y + FE

Intuitively, f is a function, which may raise an exception, and f* completes the definition
of f by the clause: “if an exception has already been raised before, pass it as the result”.

It is easy to check that T" from a monad (7,7, —*) is a functor. We call it the functorial
part of the monad.

Definition (Kleisli Category). Given a monad T over a category C, the Kleisli cate-
gory Cp of T is defined as follows:

e Ob(Cr) = Ob(C);
e Hom¢, (A, B) = Hom¢ (A, T'B);

28

e identity morphisms in Cr are nx € Home,. (X, X) = Hom¢ (X, T X);
e composition of f: A —TB and g: B — TC is Kleisli composition: g*f: A — TC.

Theorem 4. Cr is a category:
1 p*f=idof=f
2. f'n=1f
3. fr(g*h) = (f*g")h = (f*g9)"h

Let f x g denote (f ofst,gosnd): Ax B — A’ x B where f: A— A’ and g: B — B'.
It is easy to check some obvious properties of this notation like (f x g) o (f' x ¢') =

(fof)x(gog)and (f xg)o(f,g)=(fof,g0d).
Let

asp,c = (id x fst,sndosnd): A x (B x C) — (A x B) x C;
ajpe = (fstofst,snd xid): (Ax B) x C — A x (B xC).

Obviously, o and a™! are mutualy inverse. Analogously, we define unitors:
)\A=(A><1E>A), pAz(leﬂA)

for which A} = (ida,!), p = (,id4).

Theorem 5 (Mac Lane’s Coherence Theorem'). Any diagram with labels composed

from id, x, o, a’, \, AL, p, pt commutes.

2.1.3 Natural Transformations: Relating Functors

Associativity morphisms a4 g ¢ are examples of natural transformations, which are a
categorical formalization of parametric dependency.

Definition (Natural Transformation). Let C,D be categories and F,G: C — D be
functors. A natural transformation ¢: F — G is a family of morphisms in D:

(Vo: FC — GC)ceob(e);

such that, for any f: C — C’ in C, the following (naturality) diagram commutes:

FC <, qo

o e

Do

FC' —— GC’

Lsimplified version

29

The morphisms ¥¢ : FC — GC are called components of ¥: F — G.

Intuitively, natural transformations are such morphisms ¥¢ : FC — GC' that do not
use any information about C. Instead of saying “¢: F' — G is a natural transformation”
one often uses equivalent formulation “9¢: FC' — GC' is a morphism natural in C”.

Semantically, naturality corresponds to a specific form of parametric polymorphism.
Haskell functions are automatically polymorphic in the corresponding type variables, but
not necessarily natural. E.g. Haskell’s function

reverse :: [a] -> [a]

for list reversal is polymorphic in a as well as natural it in the categorical sense, but

sort :: Ord a => [a] -> [a]

for sorting lists is not natural, which is indicated by the type constraint ”0rd a =>"
telling that sorting is not independent of the type a — the result depends on the fact
that a is an ordered type and on that how it is ordered.

Another example of a natural transformation:

maybeToList :: Maybe a -> [al
maybeToList (Just a) [a]
maybeToList Nothing []

Definition. For any functor F' and natural transformation : G — H we define natural
transformations ¥p : GF' — HF and F: FG — FH as follows:

(Wr)x = Orx
(Fi)x = F(Vx).

(Easy) exercise: show that ¥p and F¢ are indeed natural transformations.

F
Remark A natural transformation I AR G is often drawn as C @ D . This would

G
be consistent with the notation £: F' = G, which is often used for natural transforma-

tions. We simply write £: F' — G instead, for, after all, natural transformations are just
morphisms in the functor category [F, G].

Theorem 6. Cat is defined as follows:

e Ob(Cat) are small Categories C (that is, those for which Ob(C) is a set).

30

e Hom(C, D) is the class of all functors from C to D.

Cat is itself a category with id: C — C being the identity functor and F oG being functor

composition C ~_¢,p-Lf,¢.
Proof. trivial. O
Theorem 7. Given two categories C and D, [C = D] (or [C,D]), defined as follows:

e Ob([C = DJ]) are functors from C to D

e Hom(F, @) are natural transformations £: F — G.
is again a category.
Proof.

1. idoé=¢: Forany f: A— B

FB -2, GB 2. gB
_/'
&B
2. Eoid =&
3. £o0(foo)=(£0f)oco
Properties 2 and 3 are analogous to proof.]

Pointwise composition of natural transformations ((£ 0 0)4 = &4 0 604) is called vertical
composition:

Definition (Horizontal composition). Given £: F — F' and 0: G — G,
£00: GF — G'F’

is defined by the diagram:

F G
/_\ /\
C 3 D] £
_/ \/
F’ G’

31

Notation. Given ¢: F' — G, we can form:

H¢: HF — HG
fU: FU - GU

with

(HE)a = H(Ea)

(€v)a = &ua
Proposition. Given : F — F' and 0: G — G’ then { 0 0 = (0) o (GE)
Example. elemsy : [A] — P(A) defined as follows:

elemsa([l1,...,0]) ={l1,...,1ln}

yields a natural transformation elems: [| — P of endofunctors over Sets.
Naturality: Let f: A — B. Then

(Pf)oelemso([ly,...,ln]) = (Pf)of{ly,....ln} = {f(l),..., f(ln)}.
On the other hand:

(elemspo[fD[l1,-.-,ln] =elemsp([f(l1),..., f(In)]) = {f(l1),..., f(ln)}
Notation (Natural transformation in two arguments). The natural transformation
Tap: AxTB —T(Ax B)

can be defined as 7: F' — G where F and G are functors F,G: C x C — C, where C x C
is the product category:

F(A,B) = AxTB
G(A,B) = T(A x B)

and similar definitions for morphisms.
Proposition. Let F,G: C x D — &, then {4 p: F' — G is natural (in A, B), iff

€A,B

F(A x B) ——— G(A x B)
|Puxo [etrxo
F(A" x B) fam, G(A' x B')
commutes for any f: A — A’ and g: B — B’.

We now can give a new (equivalent) definition of a monad.

32

Definition (Monad). A monad on a category C consists of an endofunctor T : C — C,
and natural transformations

n: Ild— T, pw:TolT —T

unit multiﬁ;cation
satisfying triangle identities:
TTTX 225, 77X Tx X, prx D)oy
Tuxl luX idk lNXAX
TTX 2, TX TX

i.e. the equations

popr=polp
ponr =id=poln.

Proposition. Given a Kleisli-Triple (77,7, *) satisfying the monad laws, one obtains
a monad in the sense defined above in the following way:

Tf=Mnof) forf: X—>Y

TX =T'X
nx = 77'x
px = (idrx)”

2.1.4 Examples of Monads
10 Monad
Example.

instance Monad I0
getLine: I0 String ~ 1 — IO String
putString: String ~ String — I01

do x <- getLine; putStr $ x ++ "!"

Rough intuition: I0 A = World — (A x World)

getLine: 1 — (World — (String x World))
getLine(x)(w) = (extrstr(w), w)
putString(s)(w) = (1,sendToWorld(s, w))

33

State Monad
TS =5 — (X x8)~ (X xS

This works in Sets, Cpos and more generally in Cartesian closed categories.
nx: X — (X x 8)°
nx(x)(s) = (z,s)
f:X > (Y x9)°
(X x8)5 - (Y x §)°
f*(p)(s) = let(z, ') = p(s) in f(x)(s)

With let being defined like this:

let(z,y) =ping = q[fstp/z,snd /y]
The state monad supports the following operations:
put: S —> T1 put(s)(s’) = (x,)
get: 1 - TS get(x)(s) = (s,s)
Example (Writer Moand).

TX =M x X (where M is a Monoid)

Example (Reader Monad).
TX = X%

The Reader Monad is a submonad of the State monad:
ax: X% — (X x 5)°
ax(p)(s) = (p(s),s)
Theorem 8. TX = X° is a monad.

Continuation Monad In Sets: TX = (X > R) > R

Continuation Result

nx(z) = \k. k(x)
(f: X - (RY - R))*(p: R* > R) = Xk:Y — R.p(Az.f(z)(k))
X—R

The following lemma helps to prove that the continuation monad is indeed a monad in
an abstract way.

34

Lemma. Let F': C — D be a functor and let T" be a map Ob(C) — Ob(C). Suppose that
for any X,Y € Ob(C), the hom-sets Hom(X,TY) and Hom(FX, FY') are isomorphic
naturally in X. Then T is a monad with the following induced structure

—
~NA

n =id fF=fid

where f: FX — FY and §g: X — TY are the obvious isomorphic images of f: X - TY
and g: FX — FY correspondingly.

Moreover, the Kleisli category of T is isomorphic to the full subcategory of D over the
objects of the form FX.

Proof. The naturality condition means prec1se1y that f (F h) = fh for any h: X - Y
and f: Y — TY. This entails that g(F h) = gh for g = f and moreover,

f'g=Ffidg = fidFg=fidg=fg
Therefore,
n* =idid = id = id
fo=fi=f=f
(f'9)* = (f9)id = f(§id) = f*gid = f* g",
and we are done. O

This can be instantiated as follows.

Example. For the state monad TX = (X x S)%, Home(X,TY) =Hom¢(X x S,Y x S).
For the continuation monad TX = (X — R) — R, Hom¢(X,TY) = Homeo (R, RY) =
Home(RY, RY).

2.1.5 Dualization, Bi-Functors, Cartesian Closure

Definition (Dual Category). Given a category C, the dual category C°P is defined as
follows:

e Ob(C°P) = Ob(C);
e Homeor (X,Y) = Home (Y, X).

Example. Let C be a poset category, i.e. Homeg(X,Y) = {x} iff X < Y. Then C°P is the
dually ordered poset: Homeer (X,Y) = {x} if X =Y

For example, we now can formally state that products are dual to coproducts.

35

Proposition. For every C, a binary product C°P is a binary coproduct of C°P.

Definition (Contravariant Functor). A functor F': C°P — D is said to be a contravariant
functor from C to D.

Small categories themselves form a category with finite products: the final object is
the category of one object and one arrow, and a product of categories C and D is the
category C x D with

e Ob(C x D) = Ob(C) x Ob(D),
e Homeyxp((X,Y), (X', Y")) = Home(X, X') x Homp(Y,Y").
The category of all categories is not a category, more precisely, the locally small categories

do not form a locally small category (but they form a category in a higher sense). Still,
products of locally small categories make perfect sense regardless of this issue.

Definition (Bi-Functor). A bifunctor is a functor C x D — & for which one also uses
the notation F'(A, B) instead of F/(A x B) and F(f, g) instead of F(f x g).

Example (Product Functor). Let C have binary products. Then F': C x C — C sending
A, B to A x B is a bi-functor with F(f,g) = f x g.

Example (Hom-Functor). The hom-functor is the bi-functor Hom(-,-): C°® xC — Set.

Now, instead of saying that a: FF — G is a natural transformation, one often says
that a family a4: FA — GA is natural in A, e.g. for bi-functors, F: C x D — €&,
naturality of oy p: F(A x B) - G(A x B) in A and B. Another example: associativity
aapc: Ax (BxC)— (Ax B)xC isnatural in A, B,C.

Definition (Cartesian Closure). A category C is Cartesian closed (CCC) if it is Carte-
sian, and for any objects B and C there is an object B, called an ezponential, for which
we have an isomorphism

curry: Hom(A x B,C) =~ Hom(A4, CP)

which is natural natural in A, meaning that

Hom(A x B, () L Hom(A, CB)
Hom(fxB,C) Hom(f,C%)
Hom(A’ x B,C) L Hom(A’, CB)

On the left side we go from A x B — C to A’ x B — C’ by post-composing with f x id
where f: A’ — A. On the right side we post-compose with f, i.e. the diagram expresses
the following equation, where g : A x B — C-

(curryg) o f = curry(go (f x id))

36

It is easy to see that the naturality condition for uncurry = curry!

uncurry(g o f) = (uncurry g) o (f x id)
is derivable.
Again, we can define the evaluation transformation
ev = uncurry(id: C® — CP): ¢B x B - C.
Proposition. In any CCC C, A” extends to a bi-functor (-)): C% x ¢ — C sending
f:A—> Aand g: B— B’ to
curry(BAx A S, gAy A, B 9 . A gAY

Proposition. In any CCC curry and uncurry are natural in all parameters.

2.2 Tensorial Strength

We can generalize the call-by-value semantics of PCF along the following lines:
e replace (=), with T
e replace “let” with the “do”;
e replace |—| with return.

This should work for any CCC with suitable carriers [Bool], [Nat] and a fixpoint oper-
ator fiz: (A — T A) — T A. Recall the semantics of types:

o [1] =1;
e [A x B] =[A4] x [B];
e [A— B] =[A] — T[B].
Now, the semantics of a term in context I' - ¢: A with ' = (z1: Ay,...,2,: A,) must be

a morphism [A;] x...x[A,] — T[A]. This works alright, and we could also incorporate
the do-notation in the language (modulo replacing TX with X in the return types):

I'p: A I'z: A+q: B
I'-dox=p;q: B

Here we have:

f =10k p: A]: 1] - 7]4]

g=[T,z: A+ q: B]: [I'] x [A] — T[B]
from which we expect to obtain:

[T+ dox=p;q: B]: [I] —» T[B]
We would expect to have

[r] 22 0] x 74 — 7([r] * [A]) <> T[B]

That is, we need means to incorporate the context I' into a computation of type A.

37

2.2.1 Strong Monads

We arrive at the following notion.

Definition (Tensorial Strength). A strong functor is a functor F': C — D between
Cartesian categories C and D, plus strength, which is a natural transformation 74 p: A x
FB — F(A x B), such that

IxFX —=M, FX (XxY)xFZ T F((X xY) x Z)
Tl Ad assocl lFassoc
F(1x X) Xx (Y xFY) X5 X x F(Y x Z) 2> F(X x (Y x Z))

Strong natural transformations are those that preserve strength in the obvious sense.
Given a strong functor (F,7), note that (Id,id: X xY — X xY) and (FF, (F71)r: X x
FFY — FF(X xY)) are again strong functors.

Now, a monad is strong if it is strong as a functor and 7, ;1 are strong natural trans-
formations, concretely,

XxY —s T(X xY) X x TTY xp X x TY
idxnl / Tl lr
X xTY T(X xTY) -7 TT(X x V) —25 T(X x Y)

The reason why we do not see strength when programming in Haskell is because Haskell
functors F: C — C are indeed natural transformations A®? — FAFP (as opposed to
categorical functors Hom(A, B) — Hom(F'A, F'B)). Categorically, this is in fact, a quite
specific condition.

Definition (Functorial Strength). An endofunctor F': C — C on a CCC C is functorially
strong, if it comes with a functorial strength, i.e. a family of morphisms

pap: BY — FB',
such that

Hom(1 x A, B) —> Hom(A, B) —£> Hom(F A, FB) —> Hom(1 x FA, FB)

cu rryl lcurry

Hom(1, B4) Hom(1, FBF4)

Hom(l, pA,B)

Moreover, p must respect internal units (curry(snd): 1 — A“4) and composition (B4

CPB — C4) in an obvious sense.

X

38

Analogously, we can internalise natural transformations and define “functorialy strong
monad” as those functorially strong functors, for which there are internalized version
of n and p.

It turns out however that tensorial strength and functorial strength are equivalent:

TA,B = uncurry(A curyi, (Ax B)P & T(A x B)TE),

pap = curry(BY x TA 5 T(B x 4) 12 TB).
Example. Every endofunctor and every monad on Set are strong with the functorial
strength being just the functorial action, because there is no distinction between hom-
sets Hom(A, B) and exponentials BA. Hence 74 5(z € A,p € TB) = (T)y.(z,y))(p)
(now we see, what this expression actually means!)

Every monad on predomains is thus also strong — this amounts to verifying that the

above 7 is continuous.

Categorically, the right setup for these considerations is enriched categories. These
generalize standard categories by replacing hom-sets with hom-objects of a yet another
category V, in which the original category is said to be enriched. This produces the
whole spectrum of derived notions: V-functors, V-natural transormations, V-monads,
etc. From this perspective our categories are Set-categories, i.e. categories enriched
in Set. Every Cartesian closed category can be regarded as enriched over itself, because
we can use exponentials AP instead of hom-sets Hom(B, A). In that sense strong functors
turn out to be precisely the enriched functors and strong monads turn out to be precisely
the enriched monads. As a slogan: in CCC strength is equivalent to enrichment?.

Is there non-strong monads? They are not easy to meet in the wild.

Example (Non-Strong Monad). In the category of two-sorted sets Set? = Set x Set the
monad (X,Y) — (X,Y + X) is not strong.

2.2.2 Commutative Monads
We can classify computational effects according the equations they satisfy. Recall that
the lifting monad satisfies the commutativity property:
letz=pinlety=qin|(x,y)| =lety=qinletz=pin|[(z,y)],
Definition (Commutative Monad). A strong monad 7" is commutative if

TAxTB —> T(TA x B) X% TT(A x B)

!

T(A xTB) p
T'rl
TT(A x B) £ T(A x B)

2Anders Kock. “Strong Functors and Monoidal Monads”. In: Archiv der Mathematik 23.1 (1972),
pp. 113-120.

39

This is the same as claiming
dox=p; doy=q; return{z,y) = doy = q; dox = p; return(z, y).
Further important properties:

o copyability: dox =p; doy=p; return(z,y) = dox = p; return(zx, x);

o discardability: dox = p; return x = return x.
Example. Powerset monad is commutative, but neither copyable, nor discardable.

Example (Probabilistic Computations). The following is a probability distribution
monad on Set:

e DX = {d: X — [0,1] | Y)d = 1} (it follows that the set {z | d(z) # 0} is
countable);

e (nz)(x) =1and (nz)(y) =0 if = # y (Dirac’s distribution);
o (f+ X=>DY)"(d: X > [0,1])(y € Y) = Xpex d(z) - f(2)(y)-

This monad is commutative and discardable, but not copyable.

2.3 Algebras and CPS-Transormations

Definition (Monad Algebras). An (Filenberg-Moore) algebra for a monad T', or a T-
algebra is a tuple (A,a: TA — A) satisfying the following conditions:

AL TA TTA L9, TA
AL il Jo
A TA —% , A

We call the object A of a T-algebra (A,a: TA — A) the carrier of the latter and
the morphism a: TA — A the corresponding structure. As expected, morphisms of
T-algebras are those morphisms of carrier that preserve the structure:

TA ", TR
L
A B

We thus a category of T-algebras, of the Eilenberg-Moore category of T

Example (Pointed Sets). Let T' be the maybe-monad TX = X+1. Then (4,a: A+1— A)
is a T-algebra iff

A A4 A+1D+1 -5 441
\ la [id,inr]l la
A A+1 2 A

40

The former diagram means precisely that a is of the form [id, p] for some p: 1 — A
and the latter diagram commutes automatically. Therefore, to give a maybe-algebra
over A is to give a morphism 1 — A, i.e. specify a point in A. A morphism of algebras
h: (Aja: A+1— A) — (B,b: B+ 1 — B) is exactly a morphism h: A — B of the
carriers that respects the points.

Example (Monoids). Let TX be the list monad over Set: TX = X*. It can be shown
that the category of list-algebras is isomorphic to the category of monoids, defined as
follows:

e objects are monoids (M,®: M x M — M,ee M);

e morphisms from (M, ®, e) to (M’, &/, ') are those maps h: M — M’, which preserve
the monoid structure: h(a ®b) = h(a) @ h(b), h(e) = €.

Definition (Free Algebras). A free T-algebra on an object A € Ob(C) is the tuple
(TA,pua: TTA —TA).

The axioms of T-algebras are automatics for free algebras.

Definition (Strong Monad Morphisms). Given two monads S and 7" on the same cat-
egory, a natural transformation «: S — T is a monad morphism if

X X, 5x SSX 95X, rox Tox, prx
k lax Mxl lMX
TX SX ax TX

A monad morphism between two strong monads is strong if it is a strong natural trans-
formation.

Monad algebras, strong monad morphisms and continuations are connected in the
following theorem.

Theorem 9 (Dubuc’s Theorem??). Given a strong monad 7', T-algebra structures over
(A,a: TA — A) are in one-to-one correspondence with strong monad morphisms «: T' —
(- > A) - A as follows:

e given (A,a: TA — A),

(Tev)r

ax =curry(TX X (X > A) 5 (X - A) xTX TA % A);

o givena: T — (- > A) - A,

(id, curry snd)
—_—

az(TA TAx(AaA)MA).

3Eduardo J Dubuc. “Enriched semantics-structure (meta) adjointness”. In: Rev. Union Math. Ar-
gentina 25 (1970), pp. 5—26.

4gimplified version

41

If Ais a free T-algebra A = TR then a(p: TX)(f: X — TR) = f*(p). Moreover,
a(p: TR)(n: R - TR) = n*(p) = p. This can be illustrated with a series of Haskell
programs. The program over the list monad

exl :: [Int]
exl = do
a <- return 2
b <- return 2
return $ at+b

forms a list [4]. We can use just the same code for this purpose:

ex2 :: Cont String Int
ex2 = do
a <- return 2
b <- return 2
return $ a+b

However, since the result type is String, in the end we will need to convert from Int to
String, e.g. with runCont ex2 show. In contrast to the list monad we now can ”escape”
from the computation:

ex3 :: Cont String Int
ex3 = do
cont (\r -> "escape")
a <- return 2
b <- return 2
return $ a+b

Now, if we start with the program

ex4 :: [Int]
ex4 = do
a <- [1,2]
b <- [1,2]

return $ a + b

which yields [2,3,3,4], we can use the CPS-transform of the list monad to convert to
the continuation monad:

42

cont (\r > x >>= r)

[
»
Il

ex5 :: Cont [Int] Int

exb = do
a < 1 [1:2]
b <-1i [1,2]

return $ a + b

Here [Int] is the free list-algebra on Int and i is the induced monad morphism. With
runCont ex5 return we obtain [42] like in the original case of the list monad. But

now we also can escape from the computation:

ex6 :: Cont [Int] Int

ex6 = do
cont (\r -> [42])
a<-1i [1,2]
b <-1i [1,2]

return $ a + b

The same can be achieved with the library function callCC ::
->m b) ->m a) -> m a (=call with current continuation):

ex7 :: Cont [Int] Int
ex7 = callCC $ \k -> do

k 42
a<-1i [1,2]
b <- 1 [1’2]

return $ a + b

2.4 Free Objects and Adjoint Functors

MonadCont m => ((a

Definition (Free Objects). Given a functor G: C — D, a free C-object on X € Ob(D)
consists of an object Y € Ob(C) together with a morphism nx: X — GY in D such
that for any other Z € Ob(C) and morphism f: X — GZ in D, there exists a unique

fT:Y — Z in C such that

GZ

2 o

43

Example (Exponentials). Let C = D and let GX = X4, Thenny: X — X x A is a free
object on A and ev(f x A): X x A — Z is the universal map induced by f: X — Z4.

Example (Free Monoids). Let C be the category of monoids over C and let G be the
obvious forgetful functor. Then 7: X — X* is a free monoid on X and for every
f: X -Y, fl: X* > Y is a unique extension of f to a monoid map from X* to Y.

Example (Free Algebras). Let C be the category of T-algebras over D and G: C — D
a forgetful functor. Let F': D — C be the free T-algebra functor. Then (FX,nx: X —
GFX = TX) is the free object on X.

Definition (Adjointness). A functor F: D — C is a left adjoint of G: C — D if
Hom(FX,Y)~Hom(X,GY) naturally in X and Y. This is written as ' 4 G or G + F
and G is called a right adjoint to F.

Theorem 10. A functor G: C — D has a left adjoint F': D — C iff there exist free
algebras (FX,nx: X - GFX) for every X:

e from an adjunction Hom(FX,Y) = Hom(X, GY') we obtain a correspondence
(f: X ->GY) - (f1: FX - V)
such that (nx: X — GFX)! = idpy for a suitable 7x;
e from free algebras (F X,nx: X — GFX), we obtain the maps
(f: FX = Y) > ((Gf)n: X — GY),
(f: X > GY) - (fI: FX - V).
Theorem 10 allows us to switch between two equivalent ways of defining categorical
structures: by adjunctions or by free objects. The latter way is more fine grained, because

we can speak about existence of specific free objects, while the adjoint formulation is
only sensible when all free objects exist.

Example (Exponential). Existence of exponentials, now can be reformulated as (=) x
A - (=), Theorem 10 show that this definition is equivalent the the definition via free
objects.

By Theorem 10, we now see that F' 4 G for F' being the free T-algebra functor and G
being the corresponding forgetful functor. This is called the Eilenberg-Moore adjunction.
Because of Theorem 10, it is easy to see that we could just as well consider the category
of free T-algebras instead of the category of all algebras. The resulting adjunction is
called the Kleisli adjunction. The reason for it is the following

Proposition. The Kleisli category of a monad is isomorphic to the category of all free
algebras of that monad. The relevant isomorphism is defined as follows:

e (from Kleisli for free algebras):
X — (TX,pa), (f[: X>TY)> (f"TX > TY);

e (from free algebras to Kleisli):
(TX,pa) =X (f: (X, ux) = (TY, py)) = (fn X — TY)

44

Bibliography

Barendregt, Hendrik Pieter. The Lambda calculus: Its syntax and semantics. Amsterdam:

North-Holland, 1984.
Dubuc, Eduardo J. “Enriched semantics-structure (meta) adjointness”. In: Rev. Union

Math. Argentina 25 (1970), pp. 5-26.
Kock, Anders. “Strong Functors and Monoidal Monads”. In: Archiv der Mathematik

23.1 (1972), pp. 113-120.

45

	Semantic Origins
	The Untyped Lambda Calculus
	Evaluation Strategies
	Standard Evaluation Strategy
	Call-by-Name (Lazy) Evaluation Strategy
	Call-by-Value (Eager) Evaluation Strategy
	Big-Step Call-by-Name
	Big-Step Call-by-Value

	PCF (Programming Computable Functions)
	Simply-Typed -calculus
	Call-by-Name Operational Semantics for PCF
	Call-by-Value Operation Semantics for PCF

	Denotational Semantics of PCF
	Constructions on Predomains
	CBN Denotational Semantics
	CBV Denotational Semantics

	Categories and Monads
	Introducing Monads
	Products and Coproducts
	Functors and Monads
	Natural Transformations: Relating Functors
	Examples of Monads
	Dualization, Bi-Functors, Cartesian Closure

	Tensorial Strength
	Strong Monads
	Commutative Monads

	Algebras and CPS-Transormations
	Free Objects and Adjoint Functors

