Hol | seminar 2017

organization

Join us this semester to find out:
whether it is true that ‘identity is equivalent to equivalence”,

why the homotopy groups of spheres and the algorithms for
type checking are discussed in one and the same seminar

it HoTT is the ultimate solution to the problem of formalizing
mathematics in proof assistants.

Homotopy Type Theory (HoTT) is a new approach to
foundations of logic, programming and mathematics. It has an
increasingly powerful impact on the development of the modern
type-theory based tools for programming and verification, such
as Coq proof assistant and Agda programming language. ..

* Anybody from math??

* Anybody familiar with proof assistant/dependently
typed programming languages?

Our base: the free online HoTT book
hitps://homotopytypetheory.org/book/

The sources are available on GitHub:
https://github.com/HoTT/book/

And while we're at it, if you're familiar with CoqQ:
https://github.com/HoTT/Ho

also good developments in Agda, Lean...

https://homotopytypetheory.org/book/
https://github.com/HoTT/book/
https://github.com/HoTT/HoTT

But we need to understana
a lot beforehand

Intuitionistic vs. classical logic
impredicate vs. predicative quantification
intensional vs. extensional type theories

propositional vs. judgemental/definitional equality
(and identity types)

all this preliminary material discussed in Ch. 1 and
Appendix A

at first sight, it might seem a deceptively easy
reading

It's not. | don't think it's rational to assume we'll get
to Ch. 2 and beyond before June

In fact, | think we should complement the reading
of the opening chapter with some other material

Proposals

Per I\/Iartm Lof /m‘un‘/on/sz‘/c Type Theory, notes by G Sambin of a series of lectures given in Padua 1980

and his other wr|t|ngs

Chapter on identity in Adam Chlipala’s CPDT book
http://adam.chlipala.net/cpdt/ntml/Cpdt.Equality.html

Just to understand better Martin-L6f's notion of judgement:
opening pages of Frank Pfenning and Rowan Davies, A Judgmental Reconstruction of Modal Logic:
https://www.cs.cmu.edu/~fp/papers/mscs00.pdf

Selected material from Morten Heine Sgrensen, Pawel Urzyczyn, Lectures on the Curry-Howard
/somorph/sm available via Science Direct on campus
h WWW.Scien Irect.com/scien K 49237 X/14

Online entry in the Stanford Encyclopedia of Philosophy and references therein
https://plato.stanford.edu/entries/type-theory-intuitionistic/

Selected slides from FOMUS 2016 (available from meeting’'s webpage, also via me)
http://fomus.weebly.com/talks-abstracts--videos.html

Lectures of Nicola Gambino and others and SMC 2014 in Lyon:
http://smc2014.univ-lyon1.fr/doku.php?id=week1

For more ambitious people, Thomas Streicher’s habilitation
http://www.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf

http://intuitionistic.files.wordpress.com/2010/07/martin-lof-tt.pdf
http://adam.chlipala.net/cpdt/html/Cpdt.Equality.html
https://www.cs.cmu.edu/~fp/papers/mscs00.pdf
http://www.sciencedirect.com/science/bookseries/0049237X/149
https://plato.stanford.edu/entries/type-theory-intuitionistic
http://fomus.weebly.com/talks-abstracts--videos.html
http://smc2014.univ-lyon1.fr/doku.php?id=week1
http://www.mathematik.tu-darmstadt.de/~streicher/HabilStreicher.pdf

Questions

How many of you are likely to actively participate”

Anybody not willing to receive a grade, but likely to give a
talk?

It you want to get a grade, prepare an electronic
presentation (in exceptional cases handouts at least) and
give us the file afterwards. You can base it on the HoTT
book sources...

... but if you're willing to fill one of early slots, you can get
away with a purely blackboard presentation (though
handouts would still be great)

some slides stolen from tomorrow’s intro to SemProg
(and also from Pierce, Zdancewic et al., UPenn)

Wele]le

Logic is the field of study whose subject matter is proofs
Volumes written about its central role in computer science
Manna and Waldinger called it

Halpern et al.'s paper On the Unusual Effectiveness of Logic in Computer
Science

In particular, the notion of ubiquitous in all of computer
science.

* You have surely seen them before (discrete math, analysis of
algorithms ...)

e ... butin this course we examine them more deeply

Tools for proofs

(see FMSoft) provide “push-button” operation
e given a proposition, return either true, false, or ran out of time

* Although their capabilities limited to fairly specific sorts of reasoning, they have
matured enough to be useful now in a huge variety of settings.

o Examples of such tools include SAT solvers, SMT solvers, and model checkers.
are hybrid tools

 try to automate the more routine aspects of building proofs while depending on
human guidance for more difficult aspects.

 Examples: Isabelle, Agda, Lean, Twelf, ACL2, PVS, and Cog among many others.
Why logic and type theory enter the picture?

Logic in its earlier days went through similar labour pains as software science did later...

A: How do we know something is true?
B: We test it out

A: But that isn't truth; testing can only give us evidence.
How do we know something is true?

B: We prove it PR ,
A: How do we know that we have a proof? Aristotle

5: We need to define what it means to be a proof. 384 =322 BC
A proof is a logical sequence of arguments, starting
from some initial assumptions

A: How do we know that we have a valid sequence of
arguments? Can any list be a proof?

All humans are mortal
All Greeks are human
| am a Greek

B: No, no, no! We need to think about how we
think. ...

Euclid “
~300 BC

(guest slide by Pierce, Zdancewic et al.)

First we need a language...

Cottlob Frege: a German mathematician
who started in geometry but became
interested in logic and foundations of
arithmetic.

1879 Published “Begriffsschrift, eine der
arithmetischen nachgebildete Formelsprache
des reinen Denkens” (Concept-Script: A
Formal Language for Pure Thought Modeled

on that of Arithmetic) Gottlob Frege
— First rigorous treatment of functions and sseawesscreoen, 1848-1925
quantified variables Tt —
- FA, -A, Vx.F(x) A R

— First notation able to express arbitrarily
complicated logical statements

™ GOTTLOR FREGE

(guest slide by Pierce, Zdancewic et al., with Wikipedia images)

Formalization of Arithmetic

1884: Die Grundlagen der Arithmetik (The Foundations of Arithmetic)
1893: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 1)
1903: Grundgesetze der Arithmetik (Basic Laws of Arithmetic, Vol. 2)

Frege’s Goals:
— isolate logical principles of inference

— derive laws of arithmetic from first principles
— set mathematics on a solid foundation of logic

David Hilbert: a German recognized as one of the
most influential mathematicians ever.
— algebra, axiomatization of geometry, physics,...

— 1900: published his"

« Problem #2: Prove| The plot thickens...
are consistent

Just as Volume 2 was going to print in 1903,
Frege received a letter...

(guest slide by Pierce, Zdancewic et al., with Wikipedia images)

Bertrand Russell

* Russell’s paradox:

1. Set comprehension notation:
{x|Px)} “The setof x such that P(x)”

2. let Xbetheset{Y|Y & X1}.

3. Ask the logical question:
Does X € X hold?

4. Paradox! If X € X then X & X.
If X & X then X € X.

Bertrand Russell
1872 - 1970

» Frege’s language could derive Russell’s
paradox = it was inconsistent.

* Frege’s logical system could derive anything.
Oops(!!)

(guest slide by Pierce, Zdancewic et al., with Wikipedia images)

Addendum to Frege’s 1903 Book

“Hardly anything more unfortunate can befall
a scientific writer than to have one of the
of his edifice shaken after the work is finished.
This was the position I was placed in by a letter of
Mr. Bertrand Russell, just when the printing of this
volume was nearing its completion.”

— Frege, 1903

Aftermath of Frege and Russell

Frege came up with a fix, but it made his logic S '1 |
trivial... P R
1908: Russell fixed the inconsistency of Frege’s Whithead | Russel
logic by developing a theory of types.

PRINCIPIA
1910, 1912, 1913, (revised 1927): sedhbh e
Principia Mathematica (Whitehead & Russell)

HERTRAND RUSSELL, F.RS

— Goal: axioms and rules from which all
mathematical truths could be derived.

— It was a bit unwieldy...

"From this proposition it will follow,
when arithmetical addition has been defined,

that 1+1=2."
—Volume 1, 1st edition, page 379

(guest slide by Pierce, Zdancewic et al., with Wikipedia images)

1920's: Hilbert's Program

A plan to secure the foundations of mathematics:

* Develop a formal system of all mathematics.
— Mathematical statements should be written in a precise formal language
— Mathematical proofs should proceed by well-specified rules

* Prove completeness

— j.e. that all true mathematical
statements can be proved

* Prove consistency

— i.e. that no contradictory
conclusions can be proved

* Prove decidability - ' -T g
— i.e. there should be an algorithm N 2\, RRER L
for determining whether a given “’.¥~ f——
statement has a proof Things were going well, following Russell &
Whitehead, until...

(guest slide by Pierce, Zdancewic et al., with Wikipedia images)

Logic in the 1930s and 1940s

1931: Kurt Godel’s first and second
incompleteness theorems.

— Demonstrated that any consistent formal theory
capable of expressing arithmetic cannot be

complete.

— Write down: "This statement is not provable."
as an arithmetic statement.

1936: Genzen proves consistency of arithmetic.

1936: Church introduces the A-calculus.

1936: Turing introduces Turing machines
— Is there a decision procedure for arithmetic?
— Answer: no it's undecidable

— The famous “halting problem”
* only in 1938 did Turing get his Ph.D.

1940: Church introduces the simple theory of
types

Kurt Godel
1906 - 1978

K

Alonzo Church Alan Turing
1903 - 1995 1912 - 1954

(guest slide by Pierce, Zdancewic et al., with Wikipedia images)

* 1958 (Haskell Curry) and 1969 (William Howard) observe a
remarkable correspondence:

types propositions

programs proofs

computation simplification
1900 — 1982 1926 —
* 1967 —1980’s: N.G. de Bruijn runs Automath project

— uses the Curry-Howard correspondence for
computer-verified mathematics

Haskell Curry ~ William Howard

N.G. de Bruijn
1918 - 2012

Basis for modern

. . type systems:
* 1971:)Jean-Yves Girard introduces System [< — OCaml, Haskell,

* 1972: Girard introduces Fo < Scala, Java, CH#, ...

* 1972: Per Marin-Lof introduces intuitionistic type thetry

* 1974: John Reynolds independently discovers System F

(guest slide by Pierce, Zdancewic et al., with Wikipedia images)

