
Elementary Theory of the Category of Sets

(based on Tom Leinster’s “Rethinking set theory”)

Sergey Goncharov

Exclusively for HoTT Seminar, FAU TCS



Set Theory
Category

Theory

Type

Theory



Set theory



Type theory



Category theory



Introduction

We’ve considered two approaches to the foundations:

� Classical: (Zermelo-Fraenkel) Set Theory (briefly)

� Modern: (Homotopy) Type theory (whole course)

Here:

� Mediate: Elementary Theory of the Category of Sets

� Unlike ZF(C): postulates functions (morphisms) and not sets

(objects)

� Unlike HoTT: postulates impredicative (« nonconstructive)

subobject classifier

However, ETCS is compatible both with set theory and with type

theory, and additionally incorporates foundations into the spacious

realm of category theory



Rethinking Set Theory

1506 MATHEMATICS: F. W. LAWVERE PROC. N. A. S.

for Scientific Research, and the "Badische Landesverband" for cancer research, and in part by a
grant G-23739 of the National Science Foundation. Part of this work was submitted as a thesis
to the Faculty of Medicine of the University of Freiburg (Br.) in behalf of B. Langer.

t Research Career Awardee of the USPHS; on sabbatical leave from the University of Cali-
fornia between June and October, 1963.

1 Holzer, H., Medizinische, 15, 576 (1956).
2 Holzer, H., G. Sedlmayer, and A. Kemnitz, Biochem. Z., 328, 163 (1956).
3Roitt, J. M., Biochem. J., 63, 300 (1956).
4Holzer, H., P. Glogner, and G. Sedlmayer, Biochem. Z., 330, 59 (1958).
5 Fraser, J. M., Federation Proc., 19, 395 (1960).
6 Hblzel, F., H. Maas, and W. Schmack, Strahlentherapie, 119, 194 (1962).
7Ahija, J. N., L. Fuller, and L. S. Dietrich, Federation Proc., 22, 532 (1963).
8 Maruyama, M., Gann, 51, 285 (1960).
9 Putter, J., Arzneimittel-Forsch., 10, 8 (1960).
10 Schmidt, G. G., Klin. Wochschr., 38, 334 (1960).
11 Weitzel, G., F. Schneider, H. Pfeil, and K. Seynsche, Z. Physiol. Chem., 331, 219 (1963).
12 Kroger, H., H. W. Rotthauwe, B. Ulrich, and H. Holzer, Biochem. Z., 333, 148 (1960).
13Ibid., 333, 155 (1960).
14 Green, S., and 0. Bodansky, J. Biol. Chem., 237, 1752 (1962).
15 Hilz, H., P. Hlavica, and B. Bertram, Biochem. Z., 338, 283 (1963).
16 Warburg, O., and W. Christian, Biochem. Z., 287, 291 (1936).
17 Colowick, S. P., N. 0. Kaplan, and M. M. Ciotti, J. Biol. Chem., 191, 447 (1951).
18 Kun, E., P. Talalay, and G. H. Williams-Ashman, Cancer Res., 11, 885 (1951).
19 Preiss, J., and P. Handler, J. Biol. Chem., 233, 488 (1958).
20 Kodicek, E., and K. K. Reddi, Nature, 168, 475 (1951).
21 Siegel, J. M., G. A. Montgomery, and R. M. Bock, Arch. Biochem. Biophys., 82, 288 (1959).
22 Scriba, P., S. Schneider, and H. Holzer, Z. Krebsforsch., 63, 547 (1960).
23 Umbarger, H. E., Science, 145, 674 (1964).

AN ELEMENTARY THEORY OF THE CATEGORY OF SETS*
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Communicated by Saunders Mac Lane, October 26, 1964

We adjoin eight first-order axioms to the usual first-order theory of an abstract
Eilenberg-Mac Lane category' to obtain an elementary theory with the following
properties: (a) There is essentially only one category which satisfies these eight
axioms together with the additional (nonelementary) axiom of completeness, namely,
the category 8 of sets and mappings. Thus our theory distinguishes 8 structurally
from other complete categories, such as those of topological spaces, groups, rings,
partially ordered sets, etc. (b) The theory provides a foundation for number theory,
analysis, and much of algebra and topology even though no relation E with the
traditional properties can be defined. Thus we seem to have partially demonstrated
that even in foundations, not Substance but invariant Form is the carrier of the
relevant mathematical information.
As in the general theory of categories, our undefined terms are mapping, domain,

codomain, and composition, the first being simply a name for the elements of the
universe of discourse. Each mapping has a unique domain and a unique codomain,
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Why Rethinking Set Theory?

The transition ZF(C) Ñ ETCS is not as radical as ZF(C) Ñ HoTT.

Essentially, it is by rethinking Set Theory

But why do we need to rethink it?

� In classical set theory everything must be a set, e.g. 3 is the set

t2, ∅u “ tt1, ∅u, ∅u “ ttt∅u, ∅u, ∅u hence 2 P 3 and 0 “ ∅
� Axioms heavily use this “feature”, e.g. one says that every nonempty

set X contains an element x P X such that x X X “ ∅.

Think of π X R

� Because of this lack of structure it is difficult to

remember/understand/analyze/modify the axioms of set theory.

Roughly, the axioms are not worked principles, but only technical

tricks implying such principles (think of induction)



Categories

A (locally small) category C consists of

� a class (generally ě set) of objects |C|

� a set of morphisms HompA,Bq for each pair A,B P |C| such that

� each HompA,Aq contains an identity morphism idA : AÑ A

� compatible morphsims can be composed: f P HompA,Bq,

g P HompB,Cq ùñ g ˝ f P HompA,Cq

Plus the laws:

f ˝ id “ f id ˝ f “ f f ˝ pg ˝ hq “ pf ˝ gq ˝ h

Examples: The category of sets and functions (Set); the category of

sets and relations (Rel); also: Grp, Ring, Veck , Top, Meas, CMS, Cat,

Cpo, CLat, Hilb, etc, etc, etc.

Categories with |HompA,Bq| ď 1 (A,B P |C|) are exactly (large)

preorders: HompA,Bq ‰ ∅ iff A ď B



Three Misconceptions

Because of the categorical origins of ETCS, three misconceptions

commonly arise

� The underlying motive is to replace set theory with category theory.

It is not: it is set theory

� ETCS demands more mathematical sophistication than others (such

as ZFC). This is false but understandable. Here we strive for the

most elementary presentation

� There is a circularity: in order to axiomatize sets categorically, we

must already know what a set is (for each HompA,Bq must be a

set). In fact, ETCS is categorical in style, but it does not depend on

having a general definition of category

Put it differently: both ZFC and ETCS are (classical!) first order

theories



Summary of Axioms

1. Composition of functions is associative and has identities

2. There is a set with exactly one element

3. There is a set with no elements

4. A function is determined by its effect on elements

5. Given sets X and Y , one can form their Cartesian product X ˆ Y

6. Given sets X and Y , one can form the set of functions from X to Y

7. Given f : X Ñ Y and y P Y , one can form the inverse image f -1pyq

8. The subsets of a set X correspond to the functions from X to t0, 1u

9. The natural numbers form a set

10. Every surjection has a right inverse



Elements as Functions

In standard set theory: functions f P Y X are subsets of X ˆ Y , which are

total and single-valued:

f P Y X ðñ @x P X . Dy P Y . px , yq P f^

@x P X .@y , y 1 P Y . px , yq P f ^ px , y 1q P f Ñ y “ y 1

In ECTS, an element of a set X is identified with the function 1 Ñ X

selecting this element

Here, 1 is the one-element set t‚u

As a slogan:

Elements are a special case of functions

In a similar way we select: a curve on a plane RÑ R2,

a loop on a plane S1 Ñ R2, a sequence of elements NÑ X , etc



Evaluation as Composition

Now that elements are identified with functions, what is evaluation?

f pxq “ f ˝ x

1
x //

f pxq ��

X

f
��
Y

That is:

Evaluation is a special case of composition
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Setting the Stage

We assume

� some things called sets

� for each set X and set Y , some things called functions from X to Y ,

with functions f from X to Y written as f : X Ñ Y or X
f
ÝÑ Y

� for each set X , set Y and set Z , an operation assigning to each

f : X Ñ Y and g : Y Ñ Z a function g ˝ f : X Ñ Z

� for each set X , a function idX : X Ñ X



Axiom 1: Associativity and Identity Laws

First of all, we restate the laws of a category:

� for all sets W ,X ,Y ,Z and functions

W
f
ÝÝÑ X

g
ÝÝÑ Y

h
ÝÝÑ Z ,

we have h ˝ pg ˝ f q “ ph ˝ gq ˝ f

� For all sets X ,Y and functions f : X Ñ Y , we have

f ˝ idX “ f “ idY ˝ f

If we wish to omit the identity functions from the list of primitive

concepts, we must replace the second item by the statement that for all

sets X , there exists a function idX : X Ñ X such that g ˝ idX “ g for all

g : X Ñ Y and idX ˝ f “ f for all f : W Ñ X . These conditions

characterize idX uniquely



Axiom 2: One-Element Set

We would like to say ‘there exists a one-element set’

But, wait, we wanted to define what an ‘element’

is using a one-element set!

To avoid circularity, we need a notion of a terminal object: a set T is said

to be terminal if there is exactly one function ! : X Ñ T from any set X

We do not expect a terminal object to be unique, e.g. we do not want

tGu “ t]u But, all terminal objects are isomorphic:

T

id“!

�� !
++
T 1

id“!

��

!

kk .

By 1 we mean arbitrary, but fixed terminal set
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Axiom 3: Empty Set

There is a set with no elements

That is, there is a set X such that 1
f
ÝÑ X for no f



Axiom 4: Functional Extensionality

A function is determined by its effect on elements:

@x P X . f pxq “ gpxq ùñ f “ g

This is called functional extensionality. Why would it fail?

Let us take as functions X
f
ÝÑ Y , suitably typed combinatory logic terms

i.e. well-typed terms over

I : αÑ α

K : αÑ β Ñ α

S : pαÑ β Ñ γq Ñ pαÑ βq Ñ αÑ γ

modulo equations

Ix “ x Kxy “ x Sxyz “ pxzqpyzq

Now, SpKI qI x “ I x for all x , but SpKI qI ‰ I .
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Axiom 5: Cartesian Products

Let X and Y be sets. A product of X and Y is a set P together with

functions X
p1
ÐÝ P

p2
ÝÑ Y , such that: for all Z and functions

X
f1
ÐÝ Z

f2
ÝÑ Y , there is a unique xf1, f2y : Z Ñ P making diagram

Z

P

X Y

f1

��

f2

��

xf1,f2y

��

p1ss p2 ++

commute

We demand that a product X
pr1
ÐÝÝ X ˆ Y

pr2
ÝÝÑ Y of any two sets X and

Y exists. Again, it is unique only up to isomorphism, e.g. X ˆ Y and

Y ˆ X are not equal, but isomorphic under swap : X ˆ Y – Y ˆ X .

Alternatively, we can axiomatize products:

pr1 ˝ xf , gy “ f pr2 ˝ xf , gy “ g xpr1, pr2y “ id

h ˝ xf , gy “ xh ˝ f , h ˝ gy



Halfway There

1. Composition of functions is associative and has identities

2. There is a set with exactly one element

3. There is a set with no elements

4. A function is determined by its effect on elements

5. Given sets X and Y , one can form their Cartesian product X ˆ Y

6. Given sets X and Y , one can form the set of functions from X to Y

7. Given f : X Ñ Y and y P Y , one can form the inverse image f -1pyq

8. The subsets of a set X correspond to the functions from X to t0, 1u

9. The natural numbers form a set

10. Every surjection has a right inverse



Axiom 6: Sets of Functions

In ZFC functions X
f
ÝÑ Y form a set Y X Ď PpX ˆ Y q by definition

Here, we have postulated function, sets and defined what an element of a

set is. We are left to introduce Y X and establish a correspondence

between its elements 1 Ñ Y X and functions X
f
ÝÑ Y

More generally (take Z “ 1), we require an “isomorphism”

Z Ñ Y X

f ÞÑuncurypf q
--
Z ˆ X Ñ Y

f ÞÑcurrypf q

mm

that is natural in Z , i.e. currypf ˝ xh, idyq “ pcurry f q ˝ h

This induces the evaluation function ev “ uncurrypidq : Y X ˆ X Ñ Y

It follows that ev ˝ xf̂ , xy “ f ˝ x where f̂ : 1 Ñ Y X is the element

corresponding to X
f
ÝÑ Y



Axiom 7: Natural Numbers

Like 1, X ˆ Y , and Y X , we postulate natural numbers using the same

recipe:

1. we fix a set N
2. we fix zero 1

o
ÝÑ N and successor N s

ÝÑ N functions

3. we impose a characteristic property on N

The characteristic property of natural numbers is primitive recursion:

given X
f
ÝÑ Y and X ˆ Nˆ Y

g
ÝÑ Y , there is unique w : X ˆ NÑ Y

such that

wpx , oq “ f pxq wpx , spnqq “ gpx , n,wpx , nqq

In fact, we can weaken it slightly by restricting to Y
g
ÝÑ Y :

X X ˆ N X ˆ N

Y Y

xid, o !y

f
w

idˆs

w

g
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Intermediate Total

So far we obtained a model for simply-typed λ-calculus with primitive

recursion, e.g. we can zip two streams by zip : XN ˆ XN Ñ pX ˆ Y qN:

zip “ currypzip’ : XN ˆ Y N ˆ NÑ X ˆ Y q

zip’pσ, σ1, oq “ σpoq

zip’pσ, σ1, spxqq “ zip’pσ1, currypev ˝ pidˆ sqqpσq, xq

For example, zippr0, 2, 4, . . .s, r1, 3, 5, . . .sq “ r0, 1, 2, 3, 4, 5, . . .s, for e.g.

zip’pr0, 2, 4, . . .s, r1, 3, 5, . . .s, 2q

“ zip’pr1, 3, 5, . . .s, r2, 4, . . .s, 1q

“ zip’pr2, 4, . . .s, r3, 5, . . .s, 0q

“ 2.



Big Ideas (from Category Theory)

� Definitions by universal properties: we introduce things not only by

constructing them, but also by declaring them to be extremal

solutions to conditions they must satisfy with respect to the rest

� Definitions up to isomorphisms: we can not avoid the situation that

what we define is unique only up to isomorphism. However, this is

also desirable: in mathematical speech we speak e.g. of the trivial

group—it does not make much sense to ask ‘which trivial group?’

Properties not stable under isomorphisms are sometimes dubbed evil

The upshot of this: in contrast to TT, we do not build

a hierarchy of types, e.g. everything that behaves as a

product is a product
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Impredicativity

From nLab: ‘A definition is impredicative if it refers to a totality which

includes the thing being defined’

A standard example is the definition of a least upper bound
Ů

S of a set

S of real numbers, because
Ů

S is characterized as the least element of

the set of all upper bounds of S and that already includes
Ů

S

Impredicativity can be harmless: the tallest guy in the room

The definitions, we gave so far are arguably harmlessly impredicative:

instead of introducing a product of A and B, we could introduce the

product Aˆ B, which is by definition a construction over A and B.

This is the way of type theory

As a slogan

In TT we construct things; In CT we (loosely) specify things



Axiom 8: Inverse Images

Given a function f : X Ñ I and an element i P I , we require existence of

an inverse image or fibre f -1piq, defined as follows, to exist:

� The inclusion function j : f -1piq Ď X has the property that f ˝ j is

constantly i

� Moreover, whenever r : Y Ñ X is a function such that f ˝ r is

constantly i , the image of r must lie within f -1piq; that is, r “ j ˝ r̄

for some r̄ : Y Ñ f -1piq (necessarily unique)

Intuition from TT: X “
ř

i :I f rr riss “
ř

i :I

ř

x :f ris r̄ rxs (hrxs
def
“ h-1pxq)

Intuition from CT: pullback

f -1piq 1

X I

Y

j

��

! //

f
//

i
��

r

))

!

%%r̄ ))
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Axiom 9: Subset Classifier

Fasten your seat belts, we are going to call on something

really sophisticated and powerful: subset classifier

What we are missing so far is a conversion between subsets, i.e. injective

functions Y Ñ X and predicates i.e. functions X Ñ 2 where 2 is a

truth-value object consisting of true and false

This we will enable the comprehension notation

X 1
def
“ tx P X | ppxqu e.g. Even

def
“ tn P N | nmod 2 “ 0u

For every injection i : X 1 Ñ X , we require existence

of p such that i is an inverse image of true : 1 Ñ 2

under p:

X 1 ! //

i
��

1

true
��

X p
// 2
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functions Y Ñ X and predicates i.e. functions X Ñ 2 where 2 is a

truth-value object consisting of true and false
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def
“ tn P N | nmod 2 “ 0u
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Powerset and Relations

Function sets together with the subobject classifiers imply powersets:

PpX q def
“ 2X

A relation can thus be equivalently defined

� as an element of PpX ˆ Y q

� as a function X Ñ PpY q
� as a function X ˆ Y Ñ 2



Subset Classifier: Impredicativity

Subset classifier is genuinely impredicative

In particular, we can introduce universal quantification

p : 1 Ñ 2AˆB

@A p : 1 Ñ 2B

for every A

We thus refer to the totality of all predicates 2X to define individual

elements 1 Ñ 2X for any concrete X



Subset Classifier: Internal Equality

Equality of functions can be internalized:

X
! //

∆
��

1

true

��
X ˆ X

eqX
// 2

The parallel to TT is as follows:

CT TT

external equality (“) judgmental equality

internal equality (eq) propositional equality

Since in our case “ and eq are essentially equivalent, the alluded TT is

extensional



Coproducts and Excluded Middle

A coproduct of X and Y is a set X ` Y together with functions

X
inl
ÝÑ X ` Y

inr
ÐÝ Y , such that: for all Z and functions X

f1
ÝÑ Z

f2
ÐÝ Y ,

there is a unique rf1, f2s : X ` Y Ñ Z making diagram

Z

X ` Y

X Y

f1

??

f2

__

rf1,f2s

OO

inl 33 inrkk

commute

Hard Consequence: X ` Y always exists

Easy Consequence: 2 “ 1` 1, specifically true, false : 1 Ñ 2 are the

only elements of 2. This makes ETCS a classical set theory
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Axiom 10: Choice

� As long as we believe in excluded

middle, we should accept that every set either

contains an element or contains none

� Therefore, for every surjective predicate p : X Ñ 2

we can construct an example t : 1 Ñ X and a

counterexample f : 1 Ñ X , that is p ˝ q “ id : 2 Ñ 2

for qptrueq “ t and qpfalseq “ f

� This can be extended to a classification of the elements of X over I

classes by a surjective function f : X Ñ I (e.g. with socks, for each

fiber |f -1piq| “ 2)

We thus require that every such f has a right inverse
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Aftermath

So, what ETCS buys us?

� Axioms are genuine principles of math, not specific to a particular

theory

� ETCS gently introduces into category theory. Interesting category

classes are obtained by weakening the axioms: finitely complete,

Cartesian closed, toposes, well-pointed toposes, Boolean toposes.

In this sense, ETCS is just a well-pointed topos with a natural

number object and choice (what’s the problem?)

� Incidentally, ETCS is properly weaker than ZFC. But ETCS axioms

are well justified. Hence ETCS gives an insight into foundations
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ETCS v.s. ZFC

� In ETCS (unlike ZFC) we do not have countable sums, e.g.

N` PpNq ` PpPpNqq ` . . .

does not exist (unless ETCS is inconsistent)

� We can obtain a system equivalent to ZFC by adding the

replacement axiom. This is difficult (impossible?) to state

categorically, but it says roughly that the image f rX s of a set X

under a definable function f is again a set



Questions?


