Übungsblatt 4

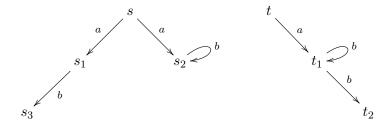
Abgabe der Lösungen: 01.07.15

(Aufgaben teils aus Aceto et al., Reactive Systems.)

Aufgabe 1 Partition Refinement

(5 Punkte)

Verwenden sie den Partition-Refinement-Algorithmus, um die Bisimilaritätsrelation auf



zu berechnen.

Aufgabe 2 Beschränkte Bisimulation

(15 Punkte)

Man definiert eine Familie $(\sim_i)_{i\geq 0}$ von Relationen auf einem LTS $T=(Q,\mathsf{Act},(\stackrel{\alpha}{\to}_{\alpha\in\mathsf{Act}}))$ durch

- $s \sim_0 t$ stets
- $s \sim_{i+1} t$ gdw. für jede Aktion $\alpha \in \mathsf{Act}$ gilt:
 - Wenn $s \stackrel{\alpha}{\to} s'$, dann existiert t' mit $t \stackrel{\alpha}{\to} t'$ und $s' \sim_i t'$
 - Wenn $t \stackrel{\alpha}{\to} t'$, dann existiert s' mit $s \stackrel{\alpha}{\to} s'$ und $s' \sim_i t'$.
- a) Zeigen Sie, dass $s \sim_i t$ gdw. s und t in der i-ten Iteration des Partition-Refinement-Algorithmus noch äquivalent sind.
- b) Definieren Sie für jedes i einen Begriff von Bisimulation, der \sim_i charakterisiert in dem Sinne, dass $s \sim_i t$ gdw. es eine Bisimulation gibt, die s und t in Beziehung setzt. Beweisen Sie diese Charakterisierung. (*Hinweis:* Man verwendet zweckmäßigerweise hier *Familien* von Relationen als Bisimulationen.)
- c) Geben Sie eine spieltheoretische Charakterisierung von \sim_i an und beweisen Sie diese.
- d) Geben Sie ein Fixpunktcharakterisierung von \sim_i an und beweisen Sie diese. Welche partielle Ordnung verwenden Sie?
- e) Welche Komplexität hat der aus der Fixpunktcharakterisierung erwachsende Algorithmus (für Q endlich)? Geben Sie (mit Begründung) das Laufzeitverhalten in O-Notation an, in Abhängigkeit von der Anzahl n von Zuständen und der Anzahl m von Transititionen.

- f) Zeigen Sie, dass $\sim = \bigcap_{i \geq 0} \sim_i$, wenn T endlich verzweigend ist. Zeigen Sie (per Gegenbeispiel), dass die Gleichheit *ohne* endliche Verzweigung nicht gilt.
- g) Der Rang einer modalen Formel ϕ ist die maximale Schachtelungstiefe von Modaloperatoren in ϕ . Zeigen Sie, dass \sim_i zusammenfällt mit logischer Äquivalenz \equiv_i bezüglich Formeln vom Rang höchstens i, sofern wir annehmen, dass die Menge der Aktionen endlich ist. Hinweis: Zeigen Sie, dass \equiv_i endlichen Index hat, d.h. nur endlich viele Äquivalenzklassen.
 - Folgern Sie (ohne den Satz von Hennessy/Milner zu verwenden), dass für endlich verzweigendes T logische Äquivalenz und Bisimilarität zusammenfallen.