Adjunctions and Monads

Thorsten Wißmann, Seminar "Categories in Programming", June 3, 2015

1 Adjunctions

Adjoint functors arise everywhere

[Lan98]

However, this talk is based on [Awo10, Chapter 9 and 10]. So far, we have seen many kinds of one-to-one-correspondences:

Products	Currying	$orall \mathbf{Q}$ -Quantification
$\frac{C \longrightarrow A C \longrightarrow B}{C \longrightarrow A \times B}$	$\frac{A \times B \longrightarrow C}{A \longrightarrow C^B}$	$\frac{\gamma \vdash \psi, y \not\in FV(\gamma)}{\gamma \vdash \forall y.\psi}$
		with γ, ψ Formulas of FOL, $FV(\gamma) \subseteq X, y \notin X$,
		$FV(\gamma) \subseteq X \cup \{y\}.$

All examples are instances of the same principle: *adjoint functors*.

Definition 1. For two functors $F : \mathcal{C} \to \mathcal{D}$ and $U : \mathcal{D} \to \mathcal{C}$, we have an *adjunction* $F \dashv U$ if there is a natural transformation $\eta : \mathrm{Id}_{\mathcal{C}} \to UF$ with the *universal mapping property (UMP)*:

 $\forall C \xrightarrow{g} UD \exists ! FC \xrightarrow{g} D \text{ such that } \begin{array}{c} UFC \xrightarrow{Ug} UD \\ \eta_C \uparrow & f \end{array}$

Example 2. Denote by $F : \mathsf{Set} \to \mathsf{Mon}$ the *free monoid* construction, $X \mapsto X^*$, the set of finite words over X, together with concatenation, and the forgetful $U : \mathsf{Mon} \to \mathsf{Set}$. The universal property of the says: For a monoid M, any function $X \to UM$ in Set extends to a unique monoid homomorphism $FX \to M$.

Proposition 3. For $F : C \rightleftharpoons D : U$, the following are equivalent:

- $\bullet \ F\dashv U$
- There is a bijection $\mathcal{C}(X, UY) \cong \mathcal{D}(FX, Y)$, that is natural in X and Y:

$$\frac{FX \longrightarrow Y}{X \longrightarrow UY}$$

• There is a $\epsilon: FU \to \mathrm{Id}_{\mathcal{D}}$ (the counit) with the UMP:

$$\forall FX \xrightarrow{g} Y \quad \exists ! \ X \xrightarrow{f} UY : \quad g = \epsilon_Y \cdot Ff$$

Products

\forall -Quantification

 $\begin{array}{lll} F: \mathcal{C} \times \mathcal{C} \to \mathcal{C}, (X,Y) \mapsto X \times Y & \text{Fixed } B \in \mathcal{C}, \ F,U : \mathcal{C} \to \mathcal{C}: \ \text{Form}(\bar{x}) &= \text{FOL-Formulas} \\ U: \mathcal{C} \to \mathcal{C} \times \mathcal{C}, C \mapsto (C,C) & FX = X \times B, UX = X^B. \\ (f,g): (C,C) \longrightarrow (A,B) & \eta_X: X \to (X \times B)^B \\ \hline \langle f,g \rangle: C \longrightarrow A \times B & \epsilon_X: (X^B \times B) \to X & F: \text{Form}(\bar{x}) \to \text{Form}(\bar{x},y) \\ U: \text{Form}(\bar{x},y) \to \text{Form}(\bar{x}) \\ U: \psi \mapsto \forall y.\psi \end{array}$

Currying

Example 4. Any kind of free construction functor F and forgetful functor U. **Example 5.** For posets C and D, the pair $F \dashv U$ is called *Galois connection*. **Proposition 6.** Right adjoints preserve limits and monomorphisms.

2 Monads

Monads generalize the notion of *algebraic theories* (Signature + Equations):

Definition 7. A *Monad* on a category C is a triple^{*}

$$(T: \mathcal{C} \to \mathcal{C}, \eta: \mathrm{Id}_{\mathcal{C}} \to T, \mu: TT \to T)$$

such that the following diagrams (called *unit law* and *associativity law*) hold:

Example 8. $TX = X^*$, $\eta_X : x \mapsto x$, and $\mu_X : X^{**} \to X^*$ concats.

Theorem 9. For adjunction $F \dashv U$ with unit η , T = UF is a monad with unit η and $\mu = U\epsilon F : UFUF \rightarrow UF$.

Definition 10 (Eilenberg-Moore category). Define \mathcal{C}^T has of algebras $(A, \alpha : TA \to A)$ s.t.

$$\begin{array}{cccc} A & \xrightarrow{\eta_A} & TA & T^2A & \xrightarrow{T\alpha} & TA \\ & \searrow & \downarrow^{\alpha} & & \mu_A \\ & & A & & TA & \xrightarrow{\alpha} & A \end{array}$$

commutes as objects, and T-algebra homomorphisms as morphisms.

Theorem 11. Every monad (T, η, μ) arises from an adjunction $F : \mathcal{C} \rightleftharpoons \mathcal{C}^T : U$.

Proofsketch. $FX = (TX, \mu_X : TTX \to TX)$ is an EM-algebra by the monad laws and Ff = Tfa homomorphism by naturality of μ . $U(A, \alpha) = A$. The unit of the adjunction is η . The counit is $\epsilon_{(A,\alpha)} = \alpha$. An $f: X \to U(Y, y)$ induces $\epsilon_{(Y,y)} \cdot Tf: (TX, \mu_X) \to (Y, y)$.

Remark 12. There are multiple ways to decompose a monad T into two adjoint functors. Another possibility is through the Kleisli-Category C_T a full subcategory of C^T consisting of free algebras only. **objAdj** $(T) = (\mathcal{D}, F : \mathcal{D} \rightleftharpoons \mathcal{C} : U)$; $\mathsf{Adj}(T)(\mathcal{D}, \mathcal{E}) =$ Functors preserving U and F.

- **Example 13.** For an (1-sorted) algebraic theory (Σ, E) , i.e. Signature + Equations, $TX = \Sigma$ -Terms over X modulo E. $\mathsf{Set}^T = \mathsf{Models}$ for (Σ, E) . E.g. for $TX = X^*$, $\mathsf{Set}^T = \mathsf{Mon}$.
 - For C with coproducts and $C \in C$, set TX = X + C: $C^T = C/C$, $C_T =$ "computations with exceptions from C".
 - For C a poset, monads on C are *closure operators*.

References

[Awo10] Steve Awodey. Category Theory. Oxford Logic Guides. OUP Oxford, 2010.

[Lan98] Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer New York, 1998.

^{*}and was originally called *triple*