## Adjunctions and Monads

Thorsten Wißmann, Seminar "Categories in Programming", June 3, 2015

## 1 Adjunctions

Adjoint functors arise everywhere
[Lan98]

However, this talk is based on [Awo10, Chapter 9 and 10]. So far, we have seen many kinds of one-to-one-correspondences:

## Products

$$
\frac{C \longrightarrow A C \longrightarrow B}{C \longrightarrow A \times B}
$$

## Currying

$\frac{A \times B \longrightarrow C}{A \longrightarrow C^{B}}$

## -Quantification

$\frac{\gamma \vdash \psi, \quad y \notin \mathrm{FV}(\gamma)}{\gamma \vdash \forall y . \psi}$
with $\gamma, \psi$ Formulas of FOL, $\mathrm{FV}(\gamma) \subseteq X, y \notin X$, $\mathrm{FV}(\gamma) \subseteq X \cup\{y\}$.

All examples are instances of the same principle: adjoint functors.
Definition 1. For two functors $F: \mathcal{C} \rightarrow \mathcal{D}$ and $U: \mathcal{D} \rightarrow \mathcal{C}$, we have an adjunction $F \dashv U$ if there is a natural transformation $\eta: \mathrm{Id}_{\mathcal{C}} \rightarrow U F$ with the universal mapping property (UMP):

$$
\forall C \xrightarrow{g} U D \exists!F C \xrightarrow{g} D \text { such that } \underset{\eta_{C} \uparrow}{\left.U F C \xrightarrow{U}{ }_{C}\right)}
$$

Example 2. Denote by $F$ : Set $\rightarrow$ Mon the free monoid construction, $X \mapsto X^{*}$, the set of finite words over $X$, together with concatenation, and the forgetful $U:$ Mon $\rightarrow$ Set. The universal property of the says: For a monoid $M$, any function $X \rightarrow U M$ in Set extends to a unique monoid homomorphism $F X \rightarrow M$.
Proposition 3. For $F: \mathcal{C} \rightleftarrows \mathcal{D}: U$, the following are equivalent:

- $F \dashv U$
- There is a bijection $\mathcal{C}(X, U Y) \cong \mathcal{D}(F X, Y)$, that is natural in $X$ and $Y$ :

$$
\frac{F X \longrightarrow Y}{X \longrightarrow U Y}
$$

- There is a $\epsilon: F U \rightarrow \operatorname{Id}_{\mathcal{D}}$ (the counit) with the UMP:

$$
\forall F X \xrightarrow{g} Y \quad \exists!X \xrightarrow{f} U Y: \quad g=\epsilon_{Y} \cdot F f
$$

## Products

## Currying

$\forall$-Quantification
$F: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C},(X, Y) \mapsto X \times Y$ Fixed $B \in \mathcal{C}, F, U: \mathcal{C} \rightarrow \mathcal{C}: \operatorname{Form}(\bar{x}) \quad=\quad$ FOL-Formulas $U: \mathcal{C} \rightarrow \mathcal{C} \times \mathcal{C}, C \mapsto(C, C) \quad F X=X \times B, U X=X^{B}$. with free variables from $\bar{x}$ $(f, g):(C, C) \longrightarrow(A, B) \quad \eta_{X}: X \rightarrow(X \times B)^{B} \quad$ ordered by $\vdash$.

$$
\begin{array}{ll}
\frac{(f, g):(C, C) \longrightarrow(A, B)}{\langle f, g\rangle: C \longrightarrow A \times B} \quad & \epsilon_{X}:\left(X^{B} \times B\right) \rightarrow X
\end{array} \quad \begin{aligned}
& \\
&
\end{aligned}
$$

Example 4. Any kind of free construction functor $F$ and forgetful functor $U$.
Example 5. For posets $\mathcal{C}$ and $\mathcal{D}$, the pair $F \dashv U$ is called Galois connection.
Proposition 6. Right adjoints preserve limits and monomorphisms.

## 2 Monads

Monads are just monoids in the category of endofunctors
Monads generalize the notion of algebraic theories (Signature + Equations):
Definition 7. A Monad on a category $\mathcal{C}$ is a triple*

$$
\left(T: \mathcal{C} \rightarrow \mathcal{C}, \eta: \operatorname{Id}_{\mathcal{C}} \rightarrow T, \mu: T T \rightarrow T\right)
$$

such that the following diagrams (called unit law and associativity law) hold:


Example 8. $T X=X^{*}, \eta_{X}: x \mapsto x$, and $\mu_{X}: X^{* *} \rightarrow X^{*}$ concats.
Theorem 9. For adjunction $F \dashv U$ with unit $\eta, T=U F$ is a monad with unit $\eta$ and $\mu=$ $U \epsilon F: U F U F \rightarrow U F$.

Definition 10 (Eilenberg-Moore category). Define $\mathcal{C}^{T}$ has of algebras $(A, \alpha: T A \rightarrow A)$ s.t.

commutes as objects, and $T$-algebra homomorphisms as morphisms.
Theorem 11. Every monad $(T, \eta, \mu)$ arises from an adjunction $F: \mathcal{C} \rightleftarrows \mathcal{C}^{T}: U$.
Proofsketch. $F X=\left(T X, \mu_{X}: T T X \rightarrow T X\right)$ is an EM-algebra by the monad laws and $F f=T f$ a homomorphism by naturality of $\mu . U(A, \alpha)=A$. The unit of the adjunction is $\eta$. The counit is $\epsilon_{(A, \alpha)}=\alpha$. An $f: X \rightarrow U(Y, y)$ induces $\epsilon_{(Y, y)} \cdot T f:\left(T X, \mu_{X}\right) \rightarrow(Y, y)$.

Remark 12. There are multiple ways to decompose a monad $T$ into two adjoint functors. Another possibility is through the Kleisli-Category $\mathcal{C}_{T}$ a full subcategory of $\mathcal{C}^{T}$ consisting of free algebras only. $\operatorname{obj} \operatorname{Adj}(T)=(\mathcal{D}, F: \mathcal{D} \rightleftarrows \mathcal{C}: U) ; \operatorname{Adj}(T)(\mathcal{D}, \mathcal{E})=$ Functors preserving $U$ and $F$.


Example 13. - For an (1-sorted) algebraic theory $(\Sigma, E)$, i.e. Signature + Equations, $T X=\Sigma$-Terms over $X$ modulo $E$. Set ${ }^{T}=$ Models for $(\Sigma, E)$. E.g. for $T X=X^{*}$, Set $^{T}=$ Mon.

- For $\mathcal{C}$ with coproducts and $C \in \mathcal{C}$, set $T X=X+C: \mathcal{C}^{T}=C / \mathcal{C}, \mathcal{C}_{T}=$ "computations with exceptions from $C^{\prime \prime}$.
- For $\mathcal{C}$ a poset, monads on $\mathcal{C}$ are closure operators.


## References

[Awo10] Steve Awodey. Category Theory. Oxford Logic Guides. OUP Oxford, 2010.
[Lan98] Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer New York, 1998.

[^0]
[^0]:    *and was originally called triple

