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Abstract. We describe the Coalgebraic Ontology Logic solver COOL, a generic
reasoner that decides the satisfiability of modal (and, more generally, hybrid) for-
mulas with respect to a set of global assumptions – in Description Logic parlance,
we support a general TBox and internalize a Boolean ABox. The level of gener-
ality is that of coalgebraic logic, a logical framework covering a wide range of
modal logics, beyond relational semantics. The core of COOL is an efficient unla-
belled tableaux search procedure using global caching. Concrete logics are added
by implemening the corresponding (one-step) tableaux rules. The logics covered
at the moment include standard relational examples as well as graded modal logic
and Pauly’s Coalition Logic (the next-step fragment of Alternating-time Tempo-
ral Logic), plus every logic that arises as a fusion of the above. We compare the
performance of COOL with state-of-the-art reasoners.

1 Introduction

Many modal logics can be interpreted using a Kripke-style relational semantics, but
there is a vast array of modal logics that cannot be captured using relational models.
Examples include classical and monotone modal logics [5], coalition logic / alternating-
time logic [18, 1], and probabilistic modal logic [10]. Graded modal logic [11] was
originally formulated as a relational logic but is more naturally seen as talking
about weighted graphs [7]. Semantically, these logics are captured using coalgebraic
logic [17], a unifying framework that systematizes semantics, meta-theory and algo-
rithms. Reasoning algorithms harness the syntactical presentation of these logics in
terms of one-step rules. In tableaux presentation, these rules have the form

Γ0

Γ1 | · · · | Γn

where Γ1, . . . , Γn are sets of literals (read conjunctively) over a set V of propositional
variables, and Γ0 is set of literals over Λ(V ) = {♥a | ♥ ∈ Λ, a ∈ V } where Λ
is an abstract set of modal operators. The reading of these rules is standard: to show
satisfiability of the premiss, one needs to establish satisfiability of one conclusion, for
every applicable rule.
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Example 1. 1. Modal Logic K. A simple one-conclusion example is the standard
(unlabeled) tableau rule �a1, . . . ,�an,♦b/a1, . . . , an, b for the modal logic K, over
modal operators Λ = {�,♦}.

2. Coalition logic: Pauly’s coalition logic [18], or the next-step fragment of
alternating-time temporal logic ATL [1], is parametrized by a set N = {1, . . . , n}
of agents; subsets of N are called coalitions. Operators are of the form [C], ‘coalition
C can force’, with duals 〈C〉 ‘coalition C cannot avoid’. In the terminology of [1], the
semantics is based on concurrent game frames. A complete set of rules is given by

[C1]a1, . . . , [Cn]an
a1, . . . , an

[C1]a1, . . . , [Cn]an, 〈D〉b, 〈N〉c1, . . . , 〈N〉cm
a1, . . . , an, b, c1, . . . , cn

where n,m ≥ 0 and the Ci are disjoint and contained in D [18, 19, 12].
3. Graded logic: Fine’s graded modal logic [11] counts successor states in relational

models; it has found its way into modern description logics [3] in the shape of qualified
number restrictions. Its operators are ♦k, read ‘in more than k successors’, with duals
�k ‘in all but at most k successors’. A complete set of rules [19, 6] is given by

♦k1
a1, . . . ,♦kn

an,�l1b1, . . . ,�lmbm∑
1≤i≤n riai −

∑
1≤j≤m sj(¬qj) > 0

(
∑

1≤i≤n ri(ki + 1)−
∑

1≤j≤m sj lj ≥ 1)

where n,m ≥ 0 and ri, sj > 0, subject to the side condition indicated, and with the
sums in the conclusion of the rule referring to arithmetic of characteristic functions, i.e.
counting 1 for ‘true’ and 0 for ‘false’. Sufficient tractability of this rule is shown using
results from integer linear programming [19].

The one-step rules are combined with propositional rules such as Γ, a ∨ b/Γ, a | Γ, b
and rules that deal with nominal and satisfaction operators. One of the crucial feature of
these logics is compositionality: the restriction on the rule format allows us to synthesize
logics in a modular fashion. This is best understood by thinking of the one-step tableau
rules as building blocks for logics that de-construct modal operators of a given type.
Sequencing of Logics. To describe, e.g. simple Segala systems [20] that describe sys-
tems that perform non-deterministic actions followed by a (probabilistic) action of the
environment, we use a two-sorted syntax

L0 3 φ ::= p0 | ¬φ | φ ∧ φ | ♦aψ L1 3 ψ ::= p1 | ¬ψ | ψ ∧ ψ | 〈p〉φ

where pi is a typed propositional variable of the language Li and 〈p〉 is an exemplaric
operator of probabilistic modal logic ‘with probability at least p’. To show satisfiabil-
ity of φ ∈ L0 we deconstruct propositional connectives and apply tableaux rules for
Hennessy-Milner logic. This leaves us with formulae in L1 that are deconstructed in
the same way, but using the rules of propositional modal logic, recursively yielding a
formula in L0 to which the same procedure is applied.
Fusion of Logics. To ensure the same typing discipline we describe the fusion of two
logics over modal operators Λ1 and Λ2 in the same typed framework using three sorts
and two new operators [π1] and [π2]:

L0 3 φ ::= p0 | ¬φ | φ ∧ φ | [π1]ψ | [π2]σ
L1 3 ψ ::= p1 | ¬ψ | ψ ∧ ψ | ♥1φ L2 3 σ ::= p2 | ¬σ | σ ∧ σ | ♥2φ
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where ♥i ∈ Λi is an operator of type i, and pi is a propositional variable of type i. It
is straightforward to embed the standard (language of the) fusion into the language L0.
We have two modal operators together with the tableau rules

¬[πi]a1, . . . ,¬[πi]ai, [πi]b1, . . . , [πi]bk
¬a1, . . . ,¬an, b1, . . . , bk

for i = 1, 2. This allows us to reason about fusion using the same, typed, reasoning
algorithm as described above for sequencing.
Choice. Choice allows us to axiomatise, e.g., the alternating systems of Hansson and
Jonsson [16] where a successor state either originates from a labelled transition, or from
a probabilistic action of the environment. Like fusion, we describe choice by means of
a multi-sorted language that introduces one new modal operator, +, described by a one-
step tableau rule. For alternating systems, we have

L0 3 φ ::= p0 | ¬φ | φ ∧ φ | ψ + σ

L1 3 ψ ::= p1 | ¬ψ | ψ ∧ ψ | ♥1φ L2 3 σ ::= p2 | ¬σ | σ ∧ σ | ♥2φ

where we read the binary operator ψ+ σ as ‘ψ for labelled successors and σ for proba-
bilistic ones’. Reasoning over logics defined using choice is governed by the rules

¬(a1 + c1), . . . ,¬(an + cn), (b1 + d1), . . . , (bk + dk)

¬a1, . . . ,¬an, b1, . . . , bn | ¬c1, . . . ,¬cn, d1, . . . , dk
that induce type-correct formulae of sort L1 (left) and L2 (right).

A range of generic reasoning procedures of optimal complexity has been devel-
oped for coalgebraic logics with various additional features, including global assump-
tions, nominals, and fixpoints that all support modular combinations as described.
The most basic of these, the generic PSPACE algorithm for satisfiability in next-step
logics [19], has been implemented (already supporting modularity) in the COLOSS
tool [4]. Here, we present the Coalgebraic Ontology Logic Reasoner (COOL), avail-
able at https://www8.cs.fau.de/research/cool, which supports modular combinations of
logics, global assumptions, and nominals, and uses global caching.

2 The COOL Solver: Supported Features

COOL implements a global caching algorithm for coalgebraic hybrid logic with global
assumptions [13]. In description logic parlance, we support terminological reasoning
(TBoxes) as well as nominals and satisfaction operators (thus internalizing Boolean
ABoxes in concepts). These features are orthogonal to the underlying base logic which
is constructed in a modular way from a number of basic building blocks, and the effort
of adding a new logic is typically quite limited. Global caching combines theoretical
optimality (i.e. an exponential time upper bound) with amenability to heuristic opti-
mization [15]. In more detail, COOL supports the following.
− Global assumptions, or, in description logic parlance, a general TBox: one can

restrict the class of models to ones in which all states/worlds/individuals satisfy a given
finite set of formulas, the global assumptions. In knowledge representation, such global
assumptions serve to express background knowledge about the terminological domain.
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− Nominals: we incorporate two key features of hybrid logic [2], nominals and sat-
isfaction operators. Here, a nominal is a name i for an individual state in the model; as
a formula, i is satisfied precisely in the unique state named by i. The satisfaction oper-
ator @i lets the evaluation point of a formula jump to i. Reasoning with these features
encompasses DL-style ABox reasoning: recall that an ABox (assertional box) contains
statements of the forms φ(i) or R(i, j), respectively read ‘individual i satisfies formula
φ’ and ‘individuals i and j are in relation R’. In hybrid logic, these statements can be
expressed as @iφ and @i♦Rj, respectively.
For reasoning with these features, we use the global caching algorithm introduced
in [13]. Global caching for relational modal logics (phrased in DL terminology) goes
back to [14]; the principle has been generalized to coalgebraic logic in [12]. The basic
idea of global caching is to regard a tableau as a directed (possibly cyclic) graph rather
than a tree, thus enabling sharing of nodes. This allows one to visit each label (i.e. finite
set of subformulas) at most once, ensuring at most exponential (hence in most cases
asymptotically optimal) run time. The algorithm partitions the set of currently created
tableau nodes into unexpanded (X), undecided (U ), satisfiable (E), and unsatisfiable
(A) nodes. It consists in applying the following two types of steps in near-arbitrary se-
quence, until either the root node is markedA orE or no further steps are applicable:
− Expand: Apply all matching rules to an unexpanded node (then moved from X to
U ), creating either new successor nodes (initially marked X) or links to existing nodes.
− Propagate: Mark expanded nodes as unsatisfiable if there is a matching tableau

rule with only unsatisfiable conclusions, and as satisfiable if all matching rules have
some satisfiable conclusion. Here, the recursion is understood as a least fixed point for
unsatisfiability, and as a greatest fixed point for satisfiability.
After the final propagation step, all nodes marked U are reported as satisfiable. Note
that the algorithm may leave nodes marked X, thus allowing for quick answers in many
cases; the apparent non-determinism works in favour of the implementer, as any termi-
nating sequence of steps will yield a correct result, thus leaving room for heuristics.

The novel global caching algorithm for coalgebraic hybrid logic [13] deals with the
global demands arising from satisfaction operators (@iφ holds everywhere or nowhere)
by means of a dedicated second type of nodes called @-constraints. An @-constraint
records @-formulas to be satisfied for a given standard node to be satisfiable. It is linked
to standard nodes in a new type of step called @-expansion (essentially, having @iφ in
an @-constraint requires a standard node satisfying i and φ). In @-propagation steps, the
@-constraints are updated throughout the model using greatest fixed points, essentially
following a winning strategy of the player advocating satisfiability.

3 The COOL Solver: Implementation Details

The implementation of COOL focuses on modal rules, and uses the minisat sat-solver [9]
for reasoning in classical propositional logic, more precisely for expanding the proposi-
tional part of nodes in the tableau graph. The SAT solver is used as a black box, and no
optimisations that concern propositional reasoning are implemented on top of those per-
formed by minisat. Rules for graded and probabilistic modal logics are generated using
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the GNU Linear Programming Toolkit 4. We refer to [21] for the details of generating
rules for propositional and graded logics on the basis of linear inequalities.

Compositionality of Logics. The underlying modal logic (semantically: the branching
type of systems) is described using an algebraic term with one free variable S (for state)
where each base logic is represented by a unary function symbol and two binary ones
for choice and fusion. These terms are best read as equalities, and e.g. the alternating
systems of Hansson and Jonsson mentioned in the introduction can be specified by

S = Ch(HM(S),P(S))

where Ch represents choice, HM represents Hennessy-Milner logic (multi-modal K)
and P is probabilistic modal logic. Semantically, this expression defines the system
type: given a state, we either see labelled successors, or a probability distribution over
states, i.e. we observe an external choice between both. Similarly, simple Segala sys-
tems are modelled by S = HM(P(S)) and the fusion of probabilistic modal logic and
Hennessy-Milner logic would be S = Fus(HM(S)),P(S)) where Fus is a binary func-
tion representing fusion.

Generic Reasoning and Tableau Rules. Our reasoner is generic in that the reasoning
algorithm is conceptually independent of the underlying modal logic. This is achieved
by isolating the modal rules into OCAML functions that – given a premiss – compute
the set of all (instances of) applicable tableau rules The underlying reasoning algorithm
then invokes the respective rules in sequence, following the construction of any given
particular logic. The treatment of nominals, satisfaction operators and global assump-
tions is identical for all logics, and is hard-coded into the reasoning algorithm.

Optimisations. As mentioned above, we do not implement any optimisations on the
propositional level, but we use global caching for dealing both with nominals and modal
tableaux. The only conceptual implementation supported by COOL (and implemented
for K) is backjumping [3]: each logical feature provides a hook by which a subset of
literals that cause a clash can be passed back to the reasoner.

4 Experimental Evaluation

The COOL reasoner is still on its early stages of development and, having finished a
robust implementation of the generic core, our main focus at the moment is on adding
support for more logics. Still, our measurements suggest that it already offers a fair per-
formance: even for the logic K (that is, the baseline logic ALC of the DL community),
the response times of COOL are often within those of a long-established DL reasoner,
implementing many advanced optimization strategies, such as FACT++.[22]

The experiments we report here are based on random formula generation in clausal
form. This methodology allows one to compare different reasoners without risking an
optimization bias (testing w.r.t. a set of problems for which one of the reasoners was
specifically tuned) and give reasonable expectations regarding the capacity of a rea-
soner to handle large problems. We acknowledge that on real data-sets the difference in

4 http://www.gnu.org/s/glpk/
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a) FACT++ vs. COOL on ALC b) FACT++ vs. COOL on ALCQ

Fig. 1. Comparative evaluation of COOL vs. FACT++ on random formulas in ALC and ALCQ,
with 5 atoms and 0.25 chance of occurring; up to 6 dis-/conjuncts per dis-/conjunction; TBox
formulas with modal depth of 2. Percentages shown refer to percentage of samples represented
by indicated points. Times correspond to the USER TIME field as reported by the GNU TIME

command. Test conducted on a heterogeneous cluster of computers with similar load.

performance between reasoners can become more noticeable and that random testing
may oversample trivial formulas, but we defer alternative measurements (benchmark-
ing with dedicated formula series) until more substantial sets of benchmark formulas
are available also for non-relational logics.

We report on three comparisons: i) COOL vs. FACT++ on ALC (with a TBox), ii)
COOL vs. FACT++ on ALCQ (with and without a TBox), and iii) COOL vs. TATL (a
tableau reasoner for full ATL [8]) on coalition logic (with and without a TBox, encoded
using ATL temporal operators for TATL). We kept fixed a number of parameters such as
number of atoms, average number of conjuncts/disjuncts etc., and gradually increased
the modal depth. In coalition logic, COOL answered consistently and substantially faster
and with fewer timeouts than TATL, especially in the presence of a TBox (a scatter
plot of the comparison reveals no additional information). Scatter plots for COOL vs.
FACT++ are shown in Fig. 1. OnALC, COOL shows a behaviour comparable to that of
FACT++. Contrastingly, FACT++ is still substantially faster on ALCQ, possibly due to
the fact that COOL does not yet implement backjumping for ALCQ.

5 Conclusions

Based on generic results from coalgebraic logic, the COOL reasoner supports a sim-
ple implementation and automatic combination of a wide spectrum of logics; very few
other reasoners support any logic outside the standard relational setup. A preliminary
empirical evaluation suggests that, while there is still plenty of room for optimizations,
the implementation of the core global-caching algorithm is robust and efficient.
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12. R. Goré, C. Kupke, and D. Pattinson. Optimal tableau algorithms for coalgebraic logics. In

Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2010, vol. 6015
of LNCS, pp. 114–128. Springer, 2010.
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