Proof Structure

Agda

Initial Algebras Unchained A Novel Initial Algebra Construction Formalized in Agda

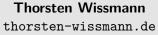
Thorsten Wissmann thorsten-wissmann.de

Stefan Milius stefan-milius.eu

FAU Erlangen-Nürnberg, Germany

LICS, July 08, 2024

Initial Algebras Unchained A Novel Initial Algebra Construction Formalized in Agda



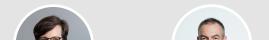
Stefan Milius stefan-milius.eu

FALL Erlangen-Nürnberg Germany

Initial Algebras Unchained A Novel Initial Algebra Construction Formalized in Agda

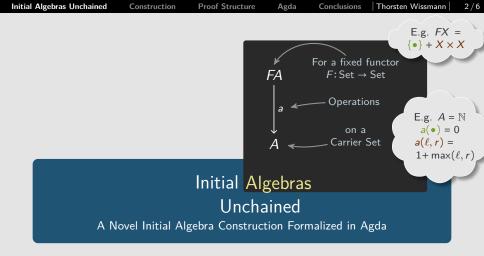
Initial Algebras Unchained

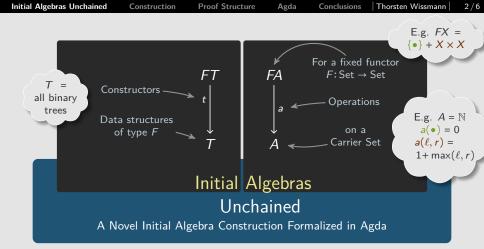
A Novel Initial Algebra Construction Formalized in Agda

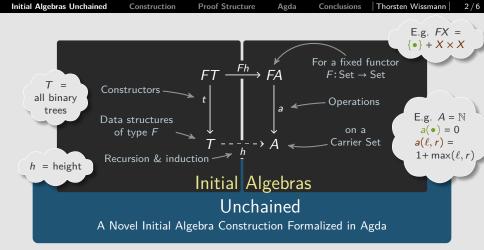


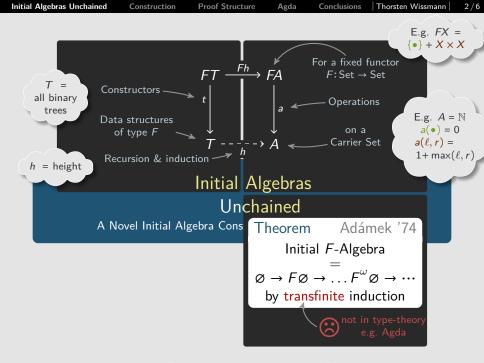
Initial Algebras Unchained	Construction	Proof Structure	Agda	Conclusions	Thorsten Wissmann	2/6
----------------------------	--------------	-----------------	------	-------------	-------------------	-----

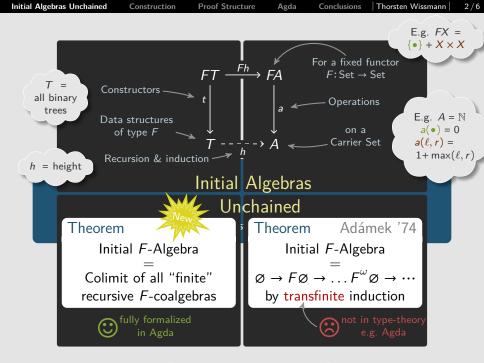
Initial Algebras Unchained A Novel Initial Algebra Construction Formalized in Agda







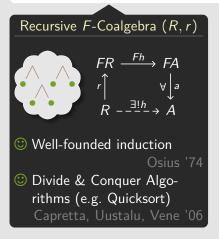


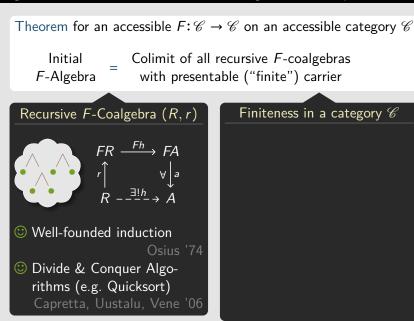


Theorem for an accessible $F: \mathscr{C} \to \mathscr{C}$ on an accessible category \mathscr{C}

Initial = Colimit of all recursive *F*-coalgebras *F*-Algebra = with presentable ("finite") carrier Theorem for an accessible $F: \mathscr{C} \to \mathscr{C}$ on an accessible category \mathscr{C}

Initial *F*-Algebra = Colimit of all recursive *F*-coalgebras with presentable ("finite") carrier



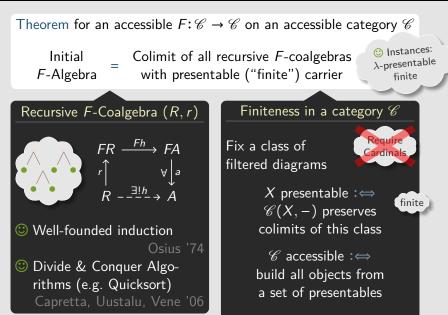


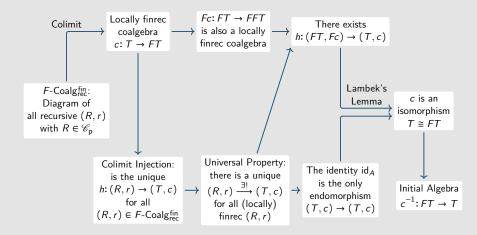
3/6

Theorem for an accessible $F: \mathscr{C} \to \mathscr{C}$ on an accessible category \mathscr{C} Initial Colimit of all recursive *F*-coalgebras F-Algebra with presentable ("finite") carrier <u>Recursive</u> F-Coalgebra (R, r)Finiteness in a category \mathscr{C} Require $FR \xrightarrow{Fh} FA$ Cardinals Well-founded induction Osius '74 Divide & Conquer Algorithms (e.g. Quicksort) Capretta, Uustalu, Vene '06

3/6

Theorem for an accessible $F: \mathscr{C} \to \mathscr{C}$ on an accessible category \mathscr{C} Initial Colimit of all recursive *F*-coalgebras F-Algebra with presentable ("finite") carrier Recursive F-Coalgebra (R, r)Finiteness in a category \mathscr{C} Require $FR \xrightarrow{Fh} FA$ Fix a class of Cardinals filtered diagrams ∀a $\exists!h$ X presentable : \Leftrightarrow finite $\mathscr{C}(X, -)$ preserves colimits of this class Well-founded induction Osius '74 \mathscr{C} accessible : \Leftrightarrow Divide & Conquer Algobuild all objects from rithms (e.g. Quicksort) a set of presentables Capretta, Uustalu, Vene '06



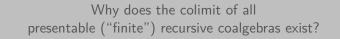


arxiv.org/src/2405.09504/anc/index.html
>5000 lines (29 files)
using agda-categories 0.2.0

arxiv.org/src/2405.09504/anc/index.html
>5000 lines (29 files)
using agda-categories 0.2.0

Why does the colimit of all presentable ("finite") recursive coalgebras exist?

arxiv.org/src/2405.09504/anc/index.html
>5000 lines (29 files)
using agda-categories 0.2.0



Set Theory presentable/finite coalgebras: (up to iso) just a set recursive finite coalgebras: an even smaller set

arxiv.org/src/2405.09504/anc/index.html
>5000 lines (29 files)
using agda-categories 0.2.0

Why does the colimit of all presentable ("finite") recursive coalgebras exist?

Set Theory presentable/finite coalgebras: (up to iso) just a set recursive finite coalgebras: an even smaller set

Agda's Type Theory finite coalgebras: on the set level ℓ recursive finite coalgebras: one level higher $\ell + 1$ (for all algebras ...)

arxiv.org/src/2405.09504/anc/index.html
>5000 lines (29 files)
using agda-categories 0.2.0

Why does the colimit of all presentable ("finite") recursive coalgebras exist?

Set Theory presentable/finite coalgebras: (up to iso) just a set recursive finite coalgebras: an even smaller set

Agda's Type Theory

finite coalgebras: on the set level ℓ recursive finite coalgebras: one level higher $\ell + 1$ (for all algebras ...)

LEM to the rescue a finite coalgebra is recursive or not recursive

6/6

Theorem For $F: \mathscr{C} \to \mathscr{C}$ accessible on an accessible category \mathscr{C} :

Initial F-Algebra

Colimit of all recursive *F*-coalgebras with presentable carrier

Instances:
 λ-presentable
 finite

Initial

F-Algebra

6/6

Theorem For $F: \mathscr{C} \to \mathscr{C}$ accessible on an accessible category \mathscr{C} :

Colimit of all recursive *F*-coalgebras with presentable carrier

Instances:
 λ-presentable
 finite

Conclusions & Future Work

- Agda formalization is challenging
- Decision procedure for recursiveness of "finite" coalgebra? (its type: ∀(C, c): C finite → recursive(c) ∨ ¬recursive(c))
- Similar theorem for well-founded coalgebras?
- Concrete example for a non-finitary functor in Agda

long chain!

- Adámek, Jiří. "Free algebras and automata realizations in the language of categories". eng. Commentationes Mathematicae Universitatis Carolinae 015.4 (1974), pp. 589–602. URL: http://eudml.org/doc/16649.
- Capretta, Venanzio, Tarmo Uustalu, Varmo Vene. "Recursive coalgebras from comonads". Inf. Comput. 204.4 (2006), pp. 437–468. DOI: 10.1016/j.ic.2005.08.005. URL: https://doi.org/10.1016/j.ic.2005.08.005.
- Osius, Gerhard. "Categorical set theory: A characterization of the category of sets". Journal of Pure and Applied Algebra 4.1 (1974), pp. 79–119. ISSN: 0022-4049. DOI: https://doi.org/10.1016/0022-4049(74)90032-2. URL: https://www.sciencedirect.com/science/article/pii/ 0022404974900322.

For $F: \mathscr{C} \to \mathscr{C}$ *F*-Algebra: $A \in \mathscr{C}$ with $a: FA \to A$. Initial *F*-Algebra: unique homomorphism to every *F*-algebra.

Initial Algebra for $FX = \{\bullet\} + X \times X$ Initial *F*-algebra is carried by I = all binary trees

$$\{\bullet\} + I \times I \xrightarrow{i} I \quad \operatorname{inr}(\bullet, \bullet) \xrightarrow{i} h$$
$$\downarrow^{\operatorname{id}_{\{\bullet\}} + h \times h} \qquad \downarrow^{\operatorname{id}_{\{\bullet\}} + h \times h} \qquad \to^{\operatorname{id}_{\{\bullet\}} + h \to h} \qquad \to^{\operatorname{id}_{\{\bullet\}} + h \to h} \qquad \to^{\operatorname{id}_{\{\bullet\}} + h \to h} \qquad^{\operatorname{id}_{\{\bullet\}} + h \to h} \qquad^{\operatorname{id}_{\{\bullet\}} + h \to h} \qquad^{\operatorname{id}_{\{\bullet\}} + h \to h} \qquad^{\operatorname{id}$$

For $F: \mathscr{C} \to \mathscr{C}$

F-Coalgebra: $C \in \mathscr{C}$ with $c: C \to FC$. Coalgebra-to-Algebra morphism: $s: (D, d) \to (A, a)$

Coalgebra (D, d) is *recursive* if for all $a: FA \rightarrow A$, there is a unique Coalgebra-to-Algebra morphism $s: (D, d) \rightarrow (A, a)$.

Under mild conditions ...

Recursive = Well-Founded = "no infinite path"

Initial Algebras Unchained Construction		Proof Structure	Agda	Conclusions	Thorsten Wissmann	∞/6		
	R	r	FR					
	и	↦	inr(x,x)	u		v		
	V	\mapsto	inr(y, w)				\backslash	
	W	\mapsto	inr(z, y)	x •	• X	у 🧉	Ŵ	
	X	\mapsto	inl(•)				/	
	у	\mapsto	inl(•)			z •	• y	
	Ζ	\mapsto	inl(•)					

For every
$$b: FB \rightarrow B$$
:
 $h: R \longrightarrow B$
 $h(x) := h(y) := h(z) := b(inl(\bullet))$
 $h(u) := b(inr(h(x), h(x)))$
 $h(w) := b(inr(h(z), h(y)))$
 $h(v) := b(inr(h(y), h(w)))$

Definition: Category ${\mathscr D}$ filtered, if ...

- \mathscr{D} is non-empty,
- for every $X, Y \in \mathcal{D}$ there is an *upper bound* $Z \in \mathcal{D}$, that is, there are morphisms $X \to Z$ and $Y \to Z$,
- for every f, g: X → Y there is some Z ∈ D and some
 h: Y → Z with h ∘ g = h ∘ f.

Finitary functor = functor preserving colimits of filtered diagrams

Definition: Object $X \in \mathscr{C}$ is finitely presentable, if ...

 $\mathscr{C}(X, -): \mathscr{C} \to \text{Set preserves filtered colimits.}$

Examples

Sets/Graphs/Posets: finite sets/graphs/posets Nom: orbit-finite nominal sets Vector-spaces: finite dimensional vector spaces. Monoids: defined by finitely many generators + equations. Initial Algebras Unchained Construction Proof Structure Agda Conclusions | Thorsten Wissmann | $\infty/6$

Category S/X: for a set $S \subseteq \mathbf{obj}\mathscr{C}$ and $X \in \mathscr{C}$

- objects (S, f) for $S \in \mathscr{S}$ and $f: S \to X$ (in \mathscr{C}), and
- morphisms $h: (S, f) \to (T, g)$ for $h: S \to T$ with $g \circ h = f$

Canonical Diagram $U_{S/X}: S/X \to \mathscr{C}$.

Category & is locally finitely presentable, if ...

it is cocomplete and has a set S of finitely presentable objects, s.t. $X = \operatorname{colim} U_{S/X}$ for all $X \in \mathscr{C}$. Fix a property Fil on categories entailing filteredness.

Definition

- An object $X \in \mathscr{C}$ is (Fil-)presentable if its hom functor $\mathscr{C}(X, -)$ preserves colimits of diagrams $D: \mathscr{D} \to \mathscr{C}$ with $\mathscr{D} \in Fil$.
- A category $\mathscr C$ is *weakly locally presentable* (*weakly lp*, for short) provided that
 - there is a set $\mathscr{C}_p \subseteq \mathscr{C}$ of (Fil-)presentable objects,
 - for all $X \in \mathcal{C}$, the coslice category (\mathcal{C}_p/X) lies in Fil,
 - for all $X \in \mathcal{C}$, the object X is the colimit of $U_{\mathcal{C}_p/X}: \mathcal{C}_p/X \to \mathcal{C}$,
 - the coproduct X + Y of presentable objects X, Y exists.