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Theorem for an accessible F ∶C → C on an accessible category C

Initial
F -Algebra =

Colimit of all recursive F -coalgebras
with presentable (“finite”) carrier

Recursive F -Coalgebra (R, r)

FR FA

R A

Fh

a∀

∃!h

r

⌣ Well-founded induction
Osius ’74

⌣ Divide & Conquer Algo-
rithms (e.g. Quicksort)
Capretta, Uustalu, Vene ’06

•
• •
• •

Finiteness in a category C

Require
CardinalsFix a class of

filtered diagrams

X presentable ∶⇔
C (X ,−) preserves

colimits of this class

C accessible ∶⇔
build all objects from
a set of presentables

finite

⌣ Instances:
λ-presentable

finite
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Proof Structure

F -Coalgfinrec:
Diagram of

all recursive (R, r)
with R ∈ Cp

Locally finrec
coalgebra

c∶T → FT

Colimit

Colimit Injection:
is the unique

h∶ (R, r) → (T , c)
for all

(R, r) ∈ F -Coalgfinrec

Universal Property:
there is a unique
(R, r) ∃!

⟶ (T , c)
for all (locally)
finrec (R, r)

Fc∶FT → FFT
is also a locally
finrec coalgebra

There exists
h∶ (FT , Fc) → (T , c)

The identity idA
is the only

endomorphism
(T , c) → (T , c)

c is an
isomorphism

T ≅ FT

Lambek’s
Lemma

Initial Algebra
c−1∶FT → T
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Agda Formalization
arxiv.org/src/2405.09504/anc/index.html
>5000 lines (29 files)
using agda-categories 0.2.0

? Why does the colimit of all
presentable (“finite”) recursive coalgebras exist? ?

Set Theory
presentable/finite coalgebras:

(up to iso) just a set
recursive finite coalgebras:

an even smaller set

Agda’s Type Theory
finite coalgebras:

on the set level ℓ
recursive finite coalgebras:

one level higher ℓ + 1
(for all algebras ...)

LEM to the rescue
a finite coalgebra is
recursive or not recursive

https://arxiv.org/src/2405.09504/anc/index.html
https://arxiv.org/src/2405.09504/anc/index.html
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Theorem For F ∶C → C accessible on an accessible category C :

Initial
F -Algebra =

Colimit of all recursive F -coalgebras
with presentable carrier

In
Agda ⌣ Instances:

λ-presentable
finite

Conclusions & Future Work
• Agda formalization is challenging
• Decision procedure for recursiveness of “finite” coalgebra?

(its type: ∀(C , c)∶C finite → recursive(c) ∨ ¬recursive(c))
• Similar theorem for well-founded coalgebras?
• Concrete example for a non-finitary

long chain!

functor in Agda

Paper Agda Doc

https://arxiv.org/abs/2405.09504
https://arxiv.org/src/2405.09504/anc/index.html
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Initial Algebras

For F ∶C → C

F -Algebra: A ∈ C with a∶FA → A.
Initial F -Algebra: unique homomorphism to every F -algebra.

Initial Algebra for FX = {•} + X × X
Initial F -algebra is carried by I = all binary trees

{•} + I × I I inr(•,• •) •
• •

{•} + N × N N inr(0, 1) 2

id{•}+h×h

i

∃!h

i

id{•}+h×h
h

a

•↦ 0
(k,n)↦ 1+max(k,n)

a
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For F ∶C → C

F -Coalgebra: C ∈ C with c∶C → FC .
Coalgebra-to-Algebra morphism: s∶ (D, d) → (A, a)

C D A B

FC FD FA FB

g

c

s

d

h

a b
Fg Fs Fh

Coalgebra (D, d) is recursive if
for all a∶FA → A, there is a unique
Coalgebra-to-Algebra morphism s∶ (D, d) → (A, a).

Under mild conditions ...
Recursive = Well-Founded = “no infinite path”
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R r FR

u ↦ inr(x , x)
v ↦ inr(y , w)
w ↦ inr(z , y)
x ↦ inl(•)
y ↦ inl(•)
z ↦ inl(•)

u

•x • x

v

•y w

•z • y

For every b∶FB → B:
h∶R ⟶ B
h(x) ∶= h(y) ∶= h(z) ∶= b(inl(•))
h(u) ∶= b(inr(h(x), h(x)))
h(w) ∶= b(inr(h(z), h(y)))
h(v) ∶= b(inr(h(y), h(w)))
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Definition: Category D filtered, if ...
• D is non-empty,
• for every X , Y ∈ D there is an upper bound Z ∈ D , that is,

there are morphisms X → Z and Y → Z ,
• for every f , g∶X → Y there is some Z ∈ D and some

h∶Y → Z with h ◦ g = h ◦ f .

Finitary functor = functor preserving colimits of filtered diagrams

Definition: Object X ∈ C is finitely presentable, if ...
C (X ,−)∶C → Set preserves filtered colimits.

Examples
Sets/Graphs/Posets: finite sets/graphs/posets
Nom: orbit-finite nominal sets
Vector-spaces: finite dimensional vector spaces.
Monoids: defined by finitely many generators + equations.
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Category S/X : for a set S ⊆ objC and X ∈ C

• objects (S, f ) for S ∈ S and f ∶S → X (in C ), and
• morphisms h∶ (S, f ) → (T , g) for h∶S → T with g ◦ h = f

Canonical Diagram US/X ∶ S/X → C .

Category C is locally finitely presentable, if ...
it is cocomplete and
has a set S of finitely presentable objects, s.t.
X = colim US/X for all X ∈ C .
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Fix a property Fil on categories entailing filteredness.

Definition
• An object X ∈ C is (Fil-)presentable if its hom functor

C (X ,−) preserves colimits of diagrams D∶D → C with
D ∈ Fil.

• A category C is weakly locally presentable (weakly lp, for
short) provided that
• there is a set Cp ⊆ C of (Fil-)presentable objects,
• for all X ∈ C , the coslice category (Cp/X) lies in Fil,
• for all X ∈ C , the object X is the colimit of

UCp/X ∶Cp/X → C ,
• the coproduct X + Y of presentable objects X , Y exists.
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