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Motivation: Inequality
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Contributions

Existing Work
® Monads on Categories of Relational Structures Ford et al. '21

® Graded Behavioural Equivalence Games Ford et al. '22

In This Talk

Extension of behavioural equivalence games to semantics defined
on relational structures.
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Graded Monads

Graded Monads

A graded monad M consists of
® A family of functors M,: C — C for n € N
® A family of natural transformations p: M;M; = M ;
® A natural transformation n: Id = My

Subject to the usual monad laws (+ indices)

Graded Algebras
A graded M,-algebra A consists of
® A family of C-objects Ay for k < n
e A family of morphisms a¥: MiA; = Aiijfori+j<n

Subject to the usual algebra laws (+ indices)
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Graded Semantics

Graded Semantics
A graded semantics for G-coalgebras consists of a graded monad
M and a natural transformation o: G = M;.

For v: X — GX define inductively v(k): X — M,1:
~O X I pox M Mol

. (k) 1k
AU X 2T g x M M1 A Myl
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Depth-1 Algebras

Depth-1 Graded Monads

A graded monad is depth-1 if the following diagram is a
coequalizer:

Ml,UOO
MiMoMy —= — M1 My *> My
Mo
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Canonical M; Algebras

Canonical Algebra
An Mj-algebra A is canonical if it is free over
(—)o: Alg; (M) — Algo(M)

A()#Bo

My Ay 05 11, B,

lam lblo

A By
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(Pre)determinization

Lemma

If Ml is depth-1, then the My-algebra (Mo X, My X, %0, 1%, u19)
is canonical.

M
Let E: Algy(M) — Alg; (M) be the functor extending Mp-algebras
to their canonical Mj-algebra.

Wy (Aigo(M) 5 Algy () 2 Atgy(b))
It is immediate that M; = UI\_/llF

X 22 MlX UMy FXX
Fx 25 M1 X
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Relevant Structures

Varieties of Algebras

Str(%) 3 Alg(¥) 3 Alg(T)

Horn Models

Set ~ 1 Str(ﬂ)z Str(M, A)
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Relational Structures

Relational Signature

4

Category Str(IM)
Objects are tuples (X, E), where X is a set and E consists of pairs
a(f) with a € M and f: ar(a) — X. (edges)

Morphisms g: (X, E) — (Y, E’) are maps g: X — Y such that
a(f) € E implies a(g - ) € E

Fr| '%),l

s —
Set (le_‘/ Str(I) K;_/ Str(,.A)
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Horn Theories

Horn Axioms

Let A be a set of axioms of the form
¢ =

where 1) is a MU {=}-edge in Var and ® is a set of N-edges in Var

Fn Z A
Set __ L Str() 3 Str(M, A)

[ En
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Examples of Horn Theories

Posets
Signature M = {<}, Axioms

x<x {x<yy<z}=x<z {xZJyy<x}=x=y

Metric Spaces
Signature 1 = {=,| € € [0,1] N Q}, Axioms

X =q X X=0X=>X=X X=cy=>y=
{X=cy,y=vz} =>x=cie 2z
X=ey =X =ete Y

x=cy|[0,]]NQ3 >e}=x=cy
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Internal Hom on Str(, .A)

Pointwise Structure on Morphisms

The set of morphisms Str(I1, A)(X, Y) itself carries a
Str(MM, A)-structure, where

E(X,Y):={e|Vx e Xm-ecE(Y)}
This defines the internal hom

[~ —]: Str(N, A) x Str(N, A)*° — Str(M, A)
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Algebras of Relational Structures

> -Algebras

Set X of symbols o, each with arity given by an object Str(I1,.A)
object ar(c) and depth d(o) € N.

A X-Algebra A is a family of Str(I1, .A)-objects (A;);en and a
family of morphisms

aﬁ: [ar(0), Am] = Amid(o)
F): B

Str(.%) 3 Aig(¥) . Al(T)
U Es
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Varieties of >-Algebras

Relations in Context
Relational theories (X, £) are parametric over a set of Axioms & of
the form
X Fr R(t)
where an algebra A satisfies &£ if all defined substitution instances

of axioms hold in A.

Str(.%) 3 Alg(T) — 1 Aig(T)
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Varieties of >-Algebras

Sequent Calculus

Judgments of the form X 4 R(e) and X -] t where
* X e Str(7)
* R(e) a M-edge in Tx x(X)
o te Tx(X)

Rule(s) (Incomplete selection)

{XFkR(T-e)|R(e) e YIU{XFl7(y) [y €Y}
X |_m+k Q(7_'m . t)

Where Yk, Q(t) € £ and 7: Y — Ty «(X)

(AX)
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Relational Behaviours

Behavioural

Let (o, M) be a relational semantics for G-coalgebra and fix a
G-coalgebra (X, 7).

We define sets of lN-edges E*"(X) in X, where
e(f) e E¥"(X) iff  e(y\".f)e E(M,1)

E*(X) is defined as (N, E“"(X), closed under the axioms in A.
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Goal of the Game

Bisimilarity
Let (X, —) be a labelled transition system over A.
(That is =C X x A x X)

A bisimulation is a relation R C X x X such that for all xRy
e x 3 x' implies that there is y’ with y = y’ and x'Ry’
e y 3y implies that there is x’ with x = x” and x’Ry’

Two states x, y € X are bisimilar if there is a bisimulation with xRy
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Local bisimulation

A local bisimulation at (x,y) is a relation R C X x X such that
e x 2 x" implies that there is y’ with y = y’ and x’Ry’
e y 2 v/ implies that there is x’ with x = x” and x’Ry’

Game variant

To proof bisimilarity of (x,y)
@ Duplicator plays a local bisimulation R at (x, y)
@® Spoiler picks an element (x’,y’) € R as a new position.
© Goto step 1.

A player that can not move loses, infinite plays are won by
Duplicator.
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Setting up the Game

How to Play
Duplicator wants to show that an edge e holds in the behaviour of
(MoX,~#).

‘ Spoiler ‘ Duplicator

Position | Set Z of edges in MgX | A single edge e in MyX
Move Anedgeec Z An admissible set Z of edges
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Admissible??7?

Algebraically
A set of edges Z is admissible at e(f) if Z 1 e(y* - f)

Assume
Z D E(MpX). y

Categorically

The reflector r: X — RX closes Objects X € Str(I1) under axioms
in A.

Define the morphism

> Sy My Mirx =
Z: (M()X — MlM()X — M1(|MOX‘,Z) — MlR(|MOX’,Z))

Then Z is admissible at e(f) if e(Z - f) € My(|MoX|, Z)
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Calling the Bluff

Additional Condition

Let e(f) be the position after n rounds. Duplicator wins the
n-round equivalence game if

e(Mo! . f) S E(Mol)

Terminal object in Str(I, .A)
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Theorems (Eventually)

Assumptions

Let (o, M) be a depth-1 graded semantics for a functor G, such
that My preserves monomorphisms, and let (X, ) be a
G-coalgebra.

Future Theorem 1

For every n € N, we have e(f) € E*"(X) iff Duplicator wins the
n-round game at e(nx - f)

Future Theorem 2

The infinite depth (in)equivalence e(f) in X holds iff Duplicator
wins the infinite depth game in position e(nx - f).
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Conclusion

Future Work
® Finish this work

® Work out examples

e Extend to topological functors (Clatq-fibrations)
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