Towards (In)Equivalence Games via Categories of Relational Structures

Jonas Forster

FAU Erlangen-Nürnberg Oberseminar, Chair for Theoretical Computer Science

28.11.2023

Introduction Graded Semantics Structures Games Conclusion References | Jonas Forster | 2 / 27

Motivation: Inequality

How do these systems relate?

Introduction Graded Semantics Structures Games Conclusion References Jonas Forster 3 / 27

The LT/BT Spectrum

Introduction Graded Semantics Structures Games Conclusion References Jonas Forster 4/27

Contributions

Existing Work

- Monads on Categories of Relational Structures Ford et al. '21
- Graded Behavioural Equivalence Games
 Ford et al. '22

In This Talk

Extension of behavioural equivalence games to semantics defined on relational structures.

Introduction Graded Semantics Structures Games Conclusion References Jonas Forster 5 / 27

Graded Monads

Graded Monads

A graded monad M consists of

- A family of functors $M_n : \mathbf{C} \to \mathbf{C}$ for $n \in \mathbb{N}$
- A family of natural transformations μ^{ij} : $M_i M_j \Rightarrow M_{i+j}$
- A natural transformation $\eta \colon \mathit{Id} \Rightarrow \mathit{M}_0$

Subject to the usual monad laws (+ indices)

Graded Algebras

A graded M_n -algebra A consists of

- A family of **C**-objects A_k for $k \le n$
- A family of morphisms a^{ij} : $M_iA_i \Rightarrow A_{i+j}$ for $i+j \leq n$

Subject to the usual algebra laws (+ indices)

6/27

Graded Semantics

Graded Semantics

A graded semantics for G-coalgebras consists of a graded monad \mathbb{M} and a natural transformation $\alpha \colon G \Rightarrow M_1$.

For $\gamma: X \to GX$ define inductively $\gamma^{(k)}: X \to M_k 1$:

$$\gamma^{(0)} \colon X \xrightarrow{\eta} M_0 X \xrightarrow{M_0!} M_0 1$$

$$\gamma^{(k+1)}: X \xrightarrow{\alpha \cdot \gamma} M_1 X \xrightarrow{M_1 \gamma^{(k)}} M_1 M_k 1 \xrightarrow{\mu^{1k}} M_{k+1} 1$$

Introduction Graded Semantics Structures Games Conclusion References Jonas Forster 7 / 27

Depth-1 Algebras

Depth-1 Graded Monads

A graded monad is *depth-1* if the following diagram is a coequalizer:

$$M_1 M_0 M_0 \xrightarrow[\mu^{10} M_0]{M_1 \mu^{00}} M_1 M_0 \xrightarrow{\mu^{10}} M_1$$

Introduction Graded Semantics Structures Games Conclusion References Jonas Forster 8 / 27

Canonical M_1 Algebras

Canonical Algebra

An M_1 -algebra A is canonical if it is free over $(-)_0 \colon \mathbf{Alg}_1(\mathbb{M}) \to \mathbf{Alg}_0(\mathbb{M})$

$$A_0 \xrightarrow{f_0} B_0$$

$$\begin{array}{ccc}
M_1 A_0 & \xrightarrow{M_1 f_0} & M_1 B_0 \\
\downarrow_{a^{10}} & & \downarrow_{b^{10}} \\
A_1 & \xrightarrow{f_1} & & B_1
\end{array}$$

References

(Pre)determinization

Lemma

If M is depth-1, then the M_1 -algebra $(M_0X, M_1X, \mu^{0,0}, \mu^{0,1}, \mu^{1,0})$ is canonical.

 M_1

Let $E: \mathbf{Alg}_0(\mathbb{M}) \to \mathbf{Alg}_1(\mathbb{M})$ be the functor extending M_0 -algebras to their canonical M_1 -algebra.

$$ar{\mathit{M}}_1 \colon (\mathsf{Alg}_0(\mathbb{M}) \xrightarrow{\mathit{E}} \mathsf{Alg}_1(\mathbb{M}) \xrightarrow{(-)_1} \mathsf{Alg}_0(\mathbb{M}))$$

It is immediate that $M_1 = U\bar{M}_1F$

$$\frac{X \xrightarrow{\alpha \cdot \gamma} M_1 X = U \bar{M}_1 F X X}{F X \xrightarrow{\gamma^\#} \bar{M}_1 F X}$$

Relevant Structures

Varieties of Algebras

$$\mathsf{Str}(\mathscr{H}) \xrightarrow{\iota_{\Sigma}} \mathsf{Alg}(\Sigma) \xrightarrow{\mathscr{M}_{\mathbb{T}}} \mathsf{Alg}(\mathbb{T})$$

Horn Models

Relational Structures

Category $Str(\Pi)$

Objects are tuples (X, E), where X is a set and E consists of pairs $\alpha(f)$ with $\alpha \in \Pi$ and $f : \operatorname{ar}(\alpha) \to X$. (edges)

Morphisms $g:(X,E)\to (Y,E')$ are maps $g:X\to Y$ such that $\alpha(f)\in E$ implies $\alpha(g\cdot f)\in E'$

Horn Theories

Horn Axioms

Let \mathcal{A} be a set of axioms of the form

$$\Phi \Rightarrow \psi$$

where ψ is a $\Pi \cup \{=\}$ -edge in Var and Φ is a set of Π -edges in Var

$$\mathbf{Set} \xrightarrow{F_{\Pi}} \mathbf{Str}(\Pi) \xrightarrow{\mathscr{R}_{\mathcal{A}}} \mathbf{Str}(\Pi, \mathcal{A})$$

Examples of Horn Theories

Posets

Signature $\Pi = \{\leq\}$, Axioms

$$x \le x$$
 $\{x \le y, y \le z\} \Rightarrow x \le z$ $\{x \le y, y \le x\} \Rightarrow x = y$

Metric Spaces

Signature $\Pi = \{=_{\epsilon} | \ \epsilon \in [0,1] \cap \mathbb{Q} \}$, Axioms

$$x =_0 x$$
 $x =_0 x \Rightarrow x = x$ $x =_{\epsilon} y \Rightarrow y =_{\epsilon} x$ $\{x =_{\epsilon} y, y =_{\epsilon'} z\} \Rightarrow x =_{\epsilon + \epsilon'} z$ $x =_{\epsilon} y \Rightarrow x =_{\epsilon + \epsilon'} y$

$$\{x =_{\epsilon'} y \mid [0,1] \cap \mathbb{Q} \ni \epsilon' > \epsilon\} \Rightarrow x =_{\epsilon} y$$

Internal Hom on $Str(\Pi, A)$

Pointwise Structure on Morphisms

The set of morphisms $\mathbf{Str}(\Pi, \mathcal{A})(X, Y)$ itself carries a $\mathbf{Str}(\Pi, \mathcal{A})$ -structure, where

$$\mathsf{E}(X,Y) := \{e \mid \forall x \in X.\pi_x \cdot e \in \mathsf{E}(Y)\}$$

This defines the internal hom

$$[-,-]$$
: $\mathsf{Str}(\mathsf{\Pi},\mathcal{A}) \times \mathsf{Str}(\mathsf{\Pi},\mathcal{A})^{op} \to \mathsf{Str}(\mathsf{\Pi},\mathcal{A})$

Algebras of Relational Structures

Σ -Algebras

Set Σ of symbols σ , each with arity given by an object $\mathbf{Str}(\Pi, \mathcal{A})$ object $\mathrm{ar}(\sigma)$ and depth $d(\sigma) \in \mathbb{N}$.

A Σ -Algebra A is a family of $\mathbf{Str}(\Pi, \mathcal{A})$ -objects $(A_i)_{i \in \mathbb{N}}$ and a family of morphisms

$$\sigma_m^A \colon [\operatorname{ar}(\sigma), A_m] \to A_{m+d(\sigma)}$$

$$\mathsf{Str}(\mathscr{H}) \xrightarrow{f_{\Sigma}} \mathsf{Alg}(\Sigma) \xrightarrow{\mathscr{R}_{\mathbb{T}}} \mathsf{Alg}(\mathbb{T})$$

Varieties of Σ -Algebras

Relations in Context

Relational theories (Σ, \mathcal{E}) are parametric over a set of Axioms \mathcal{E} of the form

$$X \vdash_k R(t)$$

where an algebra A satisfies \mathcal{E} if all defined substitution instances of axioms hold in A.

$$\mathsf{Str}(\mathscr{H}) \xrightarrow{I_{\Sigma}} \mathsf{Alg}(\Sigma) \xrightarrow{\mathscr{U}_{\mathbb{T}}} \mathsf{Alg}(\mathbb{T})$$

Varieties of Σ -Algebras

Sequent Calculus

Judgments of the form $X \vdash_k R(e)$ and $X \vdash \downarrow t$ where

- $X \in Str(\mathcal{H})$
- R(e) a Π -edge in $T_{\Sigma,k}(X)$
- $t \in T_{\Sigma,k}(X)$

Rule(s) (Incomplete selection)

$$(\mathsf{Ax})\frac{\{X\vdash_k R(\tau\cdot e)\mid R(e)\in Y\}\cup\{X\vdash_k\downarrow\tau(y)\mid y\in Y\}}{X\vdash_{m+k} Q(\bar{\tau}_m\cdot t)}$$

Where $Y \vdash_m Q(t) \in \mathcal{E}$ and $\tau \colon Y \to T_{\Sigma,k}(X)$

Conclusion

Relational Behaviours

Behavioural

Let (α, \mathbb{M}) be a relational semantics for G-coalgebra and fix a G-coalgebra (X, γ) .

We define sets of Π -edges $E^{\alpha,n}(X)$ in X, where

$$e(f) \in E^{\alpha,n}(X)$$
 iff $e(\gamma^{(n)} \cdot f) \in E(M_n 1)$

 $E^{\alpha}(X)$ is defined as $\bigcap_{n\in\mathbb{N}} E^{\alpha,n}(X)$, closed under the axioms in A.

Goal of the Game

Bisimilarity

Let (X, \rightarrow) be a labelled transition system over A. (That is $\rightarrow \subseteq X \times A \times X$)

A *bisimulation* is a relation $R \subseteq X \times X$ such that for all xRy

- $x \xrightarrow{a} x'$ implies that there is y' with $y \xrightarrow{a} y'$ and x'Ry'
- $y \xrightarrow{a} y'$ implies that there is x' with $x \xrightarrow{a} x'$ and x'Ry'

Two states $x, y \in X$ are bisimilar if there is a bisimulation with xRy

Conclusion

Local bisimulation

A local bisimulation at (x, y) is a relation $R \subseteq X \times X$ such that

- $x \xrightarrow{a} x'$ implies that there is y' with $y \xrightarrow{a} y'$ and x'Ry'
- $y \xrightarrow{a} y'$ implies that there is x' with $x \xrightarrow{a} x'$ and x'Ry'

Game variant

To proof bisimilarity of (x, y)

- **1** Duplicator plays a local bisimulation R at (x, y)
- **2** Spoiler picks an element $(x', y') \in R$ as a new position.
- **3** Goto step 1.

A player that can not move loses, infinite plays are won by Duplicator.

Introduction Graded Semantics Structures Games Conclusion References Jonas Forster 23 / 27

Setting up the Game

How to Play

Duplicator wants to show that an edge e holds in the behaviour of $(M_0X, \gamma^{\#})$.

	Spoiler	Duplicator
Position	Set Z of edges in M_0X	A single edge e in M_0X
Move	An edge $e \in Z$	An admissible set Z of edges

Admissible???

Algebraically

A set of edges Z is admissible at e(f) if $Z \vdash_1 e(\gamma^\# \cdot f)$

Assume $Z \supseteq E(M_0X)$.

24 / 27

Categorically

The reflector $r: X \to RX$ closes Objects $X \in \mathbf{Str}(\Pi)$ under axioms in \mathcal{A} .

Define the morphism

$$\bar{Z}: (M_0X \xrightarrow{\gamma^\#} \bar{M}_1M_0X \xrightarrow{\bar{M}_1\iota} \bar{M}_1(|M_0X|,Z) \xrightarrow{\bar{M}_1r_X} \bar{M}_1R(|M_0X|,Z))$$

Then Z is admissible at e(f) if $e(\bar{Z} \cdot f) \in \bar{M}_1(|M_0X|, Z)$

Introduction Graded Semantics Structures Games Conclusion References Jonas Forster 25 / 27

Calling the Bluff

Additional Condition

Let e(f) be the position after n rounds. Duplicator wins the n-round equivalence game if

$$e(M_0! \cdot f) \in E(M_01)$$
Terminal object in $Str(\Pi, A)$

Introduction Graded Semantics Structures Games Conclusion References Jonas Forster 26 / 27

Theorems (Eventually)

Assumptions

Let (α, \mathbb{M}) be a depth-1 graded semantics for a functor G, such that \overline{M}_1 preserves monomorphisms, and let (X, γ) be a G-coalgebra.

Future Theorem 1

For every $n \in \mathbb{N}$, we have $e(f) \in E^{\alpha,n}(X)$ iff Duplicator wins the n-round game at $e(\eta_X \cdot f)$

Future Theorem 2

The infinite depth (in)equivalence e(f) in X holds iff Duplicator wins the infinite depth game in position $e(\eta_X \cdot f)$.

Introduction Graded Semantics Structures Games Conclusion References Jonas Forster 27 / 27

Conclusion

Future Work

- Finish this work
- Work out examples
- Extend to topological functors (**Clat**_□-fibrations)

References

References I

Ford, Chase, Stefan Milius, Lutz Schröder, Harsh Beohar, Barbara König. "Graded Monads and Behavioural Equivalence Games". LICS '22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022. Ed. by Christel Baier, Dana Fisman. ACM, 2022, 61:1–61:13. DOI: 10.1145/3531130.3533374. URL:

https://doi.org/10.1145/3531130.3533374.

Introduction Graded Semantics Structures Games Conclusion References Jonas Forster ∞ / 27

References II

https://doi.org/10.1007/BFb0039066.