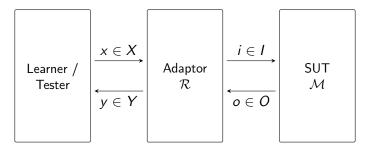
Action Codes

Frits Vaandrager and Thorsten Wißmann

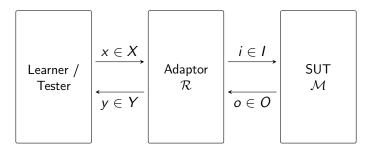
Radboud University Nijmegen

Oberseminar Informatik 8, FAU May 2, 2023

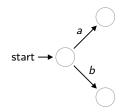
Motivation: Adaptors used for Learning and Testing



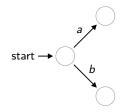
Frits Vaandrager and Thorsten Wißmann Action Codes



 \Rightarrow Generalization to: Labelled Transition Systems for $A := I \times O$ and $B := X \times Y$. Labeled transition systems (LTSs) constitute one of the most fundamental modeling mechanisms in Computer Science:



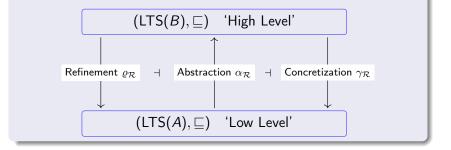
Labeled transition systems (LTSs) constitute one of the most fundamental modeling mechanisms in Computer Science:



But our understanding of how to relate actions at different levels of abstraction is limited!

Goal

Find a notion of *action code* \mathcal{R} from A to B, that translates between the LTSs living in different abstraction levels:



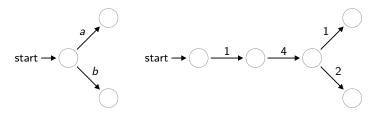
For $\mathcal{M}, \mathcal{N} \in \mathsf{LTS}(A)$, a *simulation* from \mathcal{M} to \mathcal{N} is a relation $S \subseteq Q^{\mathcal{M}} \times Q^{\mathcal{N}}$ such that

$$\ \, \mathbf{0} \ \, q_0^{\mathcal{M}} \ \, S \ \, q_0^{\mathcal{N}} \ \, \text{and}$$

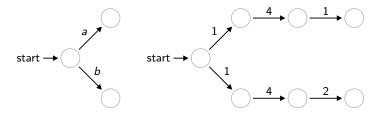
② if $q_1 S q_2$ and $q_1 \xrightarrow{a} M q'_1$ then there exists a state q'_2 such that $q_2 \xrightarrow{a} M q'_2$ and $q'_1 S q'_2$.

We write $\mathcal{M} \sqsubseteq \mathcal{N}$ if there exists a simulation from \mathcal{M} to \mathcal{N} .

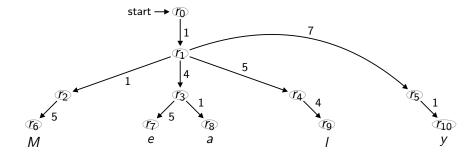
Input *a* may be implemented by three consecutive inputs 1; 4; 1, and input *b* by 1; 4; 2 (ASCII encodings in octal format).



An action refinement that replaces a by 1; 4; 1 and b by 1; 4; 2 leads to an incorrect refinement:



Our Solution: Action Codes



Frits Vaandrager and Thorsten Wißmann Action Codes

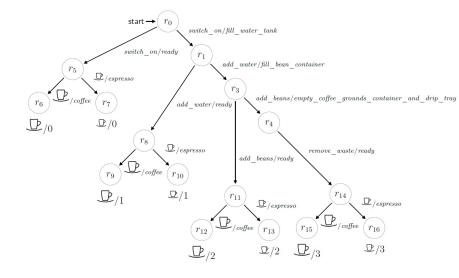
Definition (Action code)

For sets of action labels A and B, a (tree-shaped) action code \mathcal{R} from A to B is a pair $\mathcal{R} = \langle \mathcal{M}, I \rangle$, with

- $\ \, {\cal M}=\langle R, r_0, { \longrightarrow } \rangle \in {\sf LTS}(A) \text{ a deterministic, tree-shaped LTS}$
- ② with L being the set of non-root leaves $L \subseteq R \setminus \{r_0\}$, and
- **3** an injective function $\ell \colon L \to B$.

Code(A, B) = all action codes from A to B.

Action Code for Coffee Machine



《口》《聞》《臣》《臣》

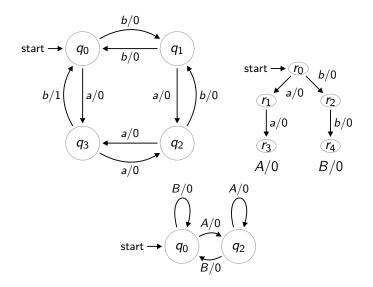
æ

A (map-based) action code from A to B is a partial map $f: B \rightarrow A^+$ which is *prefix-free*, by which we mean that for all $b, b' \in \text{dom}(f)$,

$$f(b) \le f(b')$$
 implies $b = b'$. (1)

 \leq is the 'prefix of' relation on words

Example of Contraction



æ

-≣ ▶

< 47 ▶

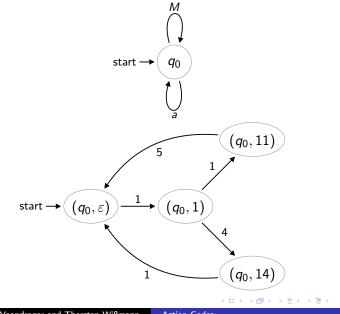
Suppose $\mathcal{M} = \langle Q, q_0, \rightarrow \rangle \in LTS(A)$ and an action code $\mathcal{R} \colon A \to B$. Then the contraction $\alpha_{\mathcal{R}}(\mathcal{M})$ is the LTS with states $Q^{\alpha(\mathcal{M})} \subseteq Q^{\mathcal{M}}$ defined inductively by the next two rules, for all $q, q' \in Q^{\mathcal{M}}$, $b \in B$:

$$q_0 \in Q^{lpha(\mathcal{M})}$$
 (1_{lpha})

$$\frac{q \in Q^{\alpha(\mathcal{M})}, \quad b \in \operatorname{dom}(\mathcal{R}), \quad q \xrightarrow{\mathcal{R}(b)}_{\mathcal{M}} q'}{q \xrightarrow{b}_{\alpha(\mathcal{M})} q', \quad q' \in Q^{\alpha(\mathcal{M})}}$$
(2_{\alpha})

The initial state $q_0^{\alpha(\mathcal{M})} := q_0^{\mathcal{M}}$ is the same as in \mathcal{M} .

Example of Refinement



æ

Definition of Refinement

Definition

Let $\mathcal{R}: B \rightarrow A^+$ be an action code $\mathcal{R} \in \text{Code}(A, B)$, we define the *refinement* operator $\rho_{\mathcal{R}}: \text{LTS}(B) \rightarrow \text{LTS}(A)$ as follows: For $\mathcal{M} \in \text{LTS}(B)$, the system $\rho_{\mathcal{R}}(\mathcal{M}) \in \text{LTS}(A)$ has a set of states

$$Q^{arrho(\mathcal{M})}:=\{(q,w)\in Q^{\mathcal{M}} imes A^{*}\mid w=arepsilon ext{ or } \exists q extsf{ op}_{\mathcal{M}}\colon w\lneqq \mathcal{R}(b)\}$$

and the initial state $(q_0^{\mathcal{M}}, \varepsilon)$. The transition relation $\rightarrow_{\varrho(\mathcal{M})}$ is defined by the following rules:

$$\frac{(q, wa) \in Q^{\varrho(\mathcal{M})}}{(q, w) \xrightarrow{a}_{\varrho(\mathcal{M})} (q, wa)} \qquad (1_{\varrho})$$

$$\frac{q \xrightarrow{b}_{\mathcal{M}} q' \quad wa = \mathcal{R}(b)}{(q, w) \xrightarrow{a}_{\varrho(\mathcal{M})} (q', \varepsilon)} \qquad (2_{\varrho})$$

Image: A math a math

Theorem (Galois connection)

Consider an action code $\mathcal{R} \in \text{Code}(A, B)$ and LTSs $\mathcal{N} \in \text{LTS}(A)$ and $\mathcal{M} \in \text{LTS}(B)$:

- If dom(\mathcal{R}) = B, then $\varrho_{\mathcal{R}}(\mathcal{N}) \sqsubseteq \mathcal{M}$ implies $\mathcal{N} \sqsubseteq \alpha_{\mathcal{R}}(\mathcal{M})$.
- **2** If \mathcal{M} is deterministic, then $\mathcal{N} \sqsubseteq \alpha_{\mathcal{R}}(\mathcal{M})$ implies $\varrho_{\mathcal{R}}(\mathcal{N}) \sqsubseteq \mathcal{M}$.

For codes $\mathcal{R} \in B \rightharpoonup A^+$ and $\mathcal{S} \in C \rightharpoonup B^+$:

 $(\mathcal{R} * \mathcal{S})$: $C \rightarrow A^+$ as the Kleisli composition

Frits Vaandrager and Thorsten Wißmann Action Codes

For codes $\mathcal{R} \in B \rightharpoonup A^+$ and $\mathcal{S} \in C \rightharpoonup B^+$:

 $(\mathcal{R} * \mathcal{S})$: $C \rightarrow A^+$ as the Kleisli composition

Theorem

() contraction (α) commutes with code composition

 Prefinemenet (*ρ*) commutes with code composition if *im*(S) ⊆ *dom*(R)⁺

concretization γ does not commute with * in general.

For a non-empty sets of inputs I and outputs O, a (non-deterministic) Mealy machine $\mathcal{M} \in LTS(I \times O)$ is an LTS where the labels are pairs of an input and an output.

Definition (Winning)

Let $\mathcal{R} \in \text{Code}(I \times O, X \times Y)$ be an action code and let $x \in X$. Then

- A leaf $r \in R$ is winning for x if I(r) = (x, y), for some $y \in Y$.
- ② An internal state r ∈ R is winning for x with input i ∈ I if r → and, for each transition of the form r $\xrightarrow{i/o}$ r', r' is winning for x.
- An internal state $r \in R$ is winning for $x \in X$ if it is winning for x with some input $i \in I$.
- \mathcal{R} has a winning strategy if r^0 is winning for all leaf labels.

From a Winning Action Code to an Adaptor

```
1: function Adaptor(\mathcal{R})
         while true
 2:
 3:
             x \leftarrow \texttt{Receive-from-learner}()
 4.
             r \leftarrow r^0
 5:
              while r is internal \triangleright We maintain loop invariant that r is
    winning for x
                 i \leftarrow input such that r is winning for x with i
 6:
 7:
                 Send-to-SUT(i)
                 o \leftarrow \texttt{Receive-from-SUT}()
 8:
 9:
                 r \leftarrow state reached by i/o-transition from r
10:
              end while
             (x, y) \leftarrow l(r)
11:
12:
             Send-to-learner(y)
13:
         end while
14: end function
```

- A notion of code that relates abstract actions related to low-level models in which these actions are refined by sequences of concrete actions.
- This may help with the systematic design of adaptors during learning and testing, and the subsequent interpretation of obtained results.
- Almost all results, examples, and counter-examples formalized in Coq (except Adaptor-Pseudocode)
- Paper will also present concretization operator and corresponding Galois connection.