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Motivation: Adaptors used for Learning and Testing

Learner /
Tester

Adaptor
R

SUT
M

x ∈ X i ∈ I

o ∈ Oy ∈ Y

⇒ Generalization to:
Labelled Transition Systems for A := I × O and B := X × Y .
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Labelled Transition Systems

Labeled transition systems (LTSs) constitute one of the most
fundamental modeling mechanisms in Computer Science:

start

a

b

But our understanding of how to relate actions at different levels of
abstraction is limited!
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Overview

Goal
Find a notion of action code R from A to B , that translates
between the LTSs living in different abstraction levels:

(LTS(B),⊑) ‘High Level’

(LTS(A),⊑) ‘Low Level’

Refinement ϱR Concretization γRAbstraction αR⊣ ⊣
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Simulation Relations

Definition
ForM,N ∈ LTS(A), a simulation fromM to N is a relation
S ⊆ QM × QN such that

1 qM0 S qN0 and
2 if q1 S q2 and q1

a
M q′1 then there exists a state q′2 such

that q2
a

N q′2 and q′1 S q′2.
We writeM⊑ N if there exists a simulation fromM to N .
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Changing the Level of Abstraction

Input a may be implemented by three consecutive inputs 1; 4; 1,
and input b by 1; 4; 2 (ASCII encodings in octal format).

start

a

b
start 1 4

1

2
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Action refinements?

An action refinement that replaces a by 1; 4; 1 and b by 1; 4; 2
leads to an incorrect refinement:

start

a

b
start

1

1

4

4

1

2
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Our Solution: Action Codes

r0start

r1

r3r2 r4 r5

r6
M
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Formal Definition

Definition (Action code)

For sets of action labels A and B , a (tree-shaped) action code R
from A to B is a pair R = ⟨M, l⟩, with

1 M = ⟨R, r0, ⟩ ∈ LTS(A) a deterministic, tree-shaped LTS
2 with L being the set of non-root leaves L ⊆ R \ {r0}, and
3 an injective function ℓ : L→ B .

Code(A,B) = all action codes from A to B .
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Action Code for Coffee Machine
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An Equivalent Formal Definition

Definition

A (map-based) action code from A to B is a partial map f : B⇀A+

which is prefix-free, by which we mean that for all b, b′ ∈ dom(f ),

f (b) ≤ f (b′) implies b = b′. (1)

≤ is the ‘prefix of’ relation on words
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Example of Contraction

q0start q1

q2q3

b/0

a/0 a/0

b/0

b/0

a/0

a/0

b/1

r0start

r1 r2

r3

A/0
r4

B/0

a/0
b/0

a/0 b/0

q0start q2

A/0

B/0

B/0

A/0
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Definition of Contraction

Definition
SupposeM = ⟨Q, q0, ⟩ ∈ LTS(A) and an action code
R : A→ B . Then the contraction αR(M) is the LTS with states
Qα(M) ⊆ QM defined inductively by the next two rules, for all
q, q′ ∈ QM, b ∈ B :

q0 ∈ Qα(M) (1α)

q ∈ Qα(M), b ∈ dom(R), q
R(b)

M q′

q b
α(M) q

′, q′ ∈ Qα(M) (2α)

The initial state q
α(M)
0 := qM0 is the same as inM.
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Example of Refinement

q0start

M

a

(q0, ε)start (q0, 1)

(q0, 11)

(q0, 14)

1

1

4

5

1
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Definition of Refinement

Definition

Let R : B⇀A+ be an action code R ∈ Code(A,B), we define the
refinement operator ϱR : LTS(B)→ LTS(A) as follows: For
M∈ LTS(B), the system ϱR(M) ∈ LTS(A) has a set of states

Qϱ(M) := {(q,w) ∈ QM × A∗ | w = ε or ∃q b
M : w ≨ R(b)}

and the initial state (qM0 , ε). The transition relation ϱ(M) is
defined by the following rules:

(q,wa) ∈ Qϱ(M)

(q,w) a
ϱ(M) (q,wa) (1ϱ)

q b
M q′ wa = R(b)

(q,w) a
ϱ(M) (q

′, ε) (2ϱ)
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Galois Connection

Theorem (Galois connection)

Consider an action code R ∈ Code(A,B) and LTSs N ∈ LTS(A)
andM∈ LTS(B):

1 If dom(R) = B , then ϱR(N ) ⊑M implies N ⊑ αR(M).
2 IfM is deterministic, then N ⊑ αR(M) implies ϱR(N ) ⊑M.
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Action code composition

Definition

For codes R ∈ B⇀A+ and S ∈ C⇀B+:

(R ∗ S) : C⇀A+ as the Kleisli composition

Theorem
1 contraction (α) commutes with code composition
2 refinemenet (ϱ) commutes with code composition if

im(S) ⊆ dom(R)+

concretization γ does not commute with ∗ in general.
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Mealy Machines

Definition
For a non-empty sets of inputs I and outputs O, a
(non-deterministic) Mealy machineM∈ LTS(I × O) is an LTS
where the labels are pairs of an input and an output.
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Winning Action Codes

Definition (Winning)

Let R ∈ Code(I × O,X × Y ) be an action code and let x ∈ X .
Then

1 A leaf r ∈ R is winning for x if l(r) = (x , y), for some y ∈ Y .

2 An internal state r ∈ R is winning for x with input i ∈ I if r i−→
and, for each transition of the form r

i/o−−→ r ′, r ′ is winning for x .
3 An internal state r ∈ R is winning for x ∈ X if it is winning for

x with some input i ∈ I .
4 R has a winning strategy if r0 is winning for all leaf labels.
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From a Winning Action Code to an Adaptor

1: function Adaptor(R)
2: while true
3: x ← Receive-from-learner()
4: r ← r0

5: while r is internal ▷ We maintain loop invariant that r is
winning for x

6: i ← input such that r is winning for x with i
7: Send-to-SUT(i)
8: o ← Receive-from-SUT()
9: r ← state reached by i/o-transition from r

10: end while
11: (x , y)← l(r)
12: Send-to-learner(y)
13: end while
14: end function
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Conclusions

1 A notion of code that relates abstract actions related to
low-level models in which these actions are refined by sequences
of concrete actions.

2 This may help with the systematic design of adaptors during
learning and testing, and the subsequent interpretation of
obtained results.

3 Almost all results, examples, and counter-examples formalized
in Coq (except Adaptor-Pseudocode)

4 Paper will also present concretization operator and
corresponding Galois connection.
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