Graded Monads and (someday) Fixpoints

Üsame Cengiz

December 20, 2022

Üsame Cengiz

Graded Monads and (someday) Fixpoints

December 20, 2022

∃ ⇒

Graded Monads and Graded Semantics

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Monads

A monad (M, η, μ) consists of an endofunctor M, a natural transformation $\eta : Id \to M$, the unit, and a natural transformation $\mu : MM \to M$, the multiplication. with the following diagrams commuting:

Complicate things

A graded monad $((M_n)_{n \in \mathbb{N}}, \eta, (\mu^{mk})_{m,k \in \mathbb{N}})$ consists of a family of endofunctors $M_n, n \in \mathbb{N}$, a natural transformation $\eta : Id \to M_0$, the unit, and a family of natural transformations $\mu^{mk} : M_m M_k \to M_{m+k}, m, k \in \mathbb{N}$, the multiplication. with the following diagrams commuting for all $n, k, m \in \mathbb{N}$:

Simplify things

- Monads on a set X describe a term structure MX.
- η ensures that every element of X can be made into a term.
- μ describes substitution, where terms of terms are again just terms.

Simplify things

- Monads on a set X describe a term structure MX.
- η ensures that every element of X can be made into a term.
- μ describes substitution, where terms of terms are again just terms.
- Then graded monads are like terms with depth.

Graded semantics

A graded semantics (α, \mathbb{M}) for an endofunctor G consists of

- a graded monad $\mathbb{M} = ((M_n)_{n \in \mathbb{N}}, \eta, (\mu^{mk})_{m,k \in \mathbb{N}})$,
- and a natural transformation $\alpha : G \rightarrow M_1$.

Graded semantics

A graded semantics (α, \mathbb{M}) for an endofunctor G consists of

- a graded monad $\mathbb{M}=((M_n)_{n\in\mathbb{N}},\eta,(\mu^{mk})_{m,k\in\mathbb{N}})$,
- and a natural transformation $\alpha : G \rightarrow M_1$.

A G-coalgebra (X, γ) then induces the following sequence of inductively defined maps $\gamma^{(n)}: X \to M_n 1$

$$\gamma^{(0)} : X \xrightarrow{\eta_X} M_0 X \xrightarrow{M_0!} M_0 1$$
$$\gamma^{(n+1)} : X \xrightarrow{\alpha_X \circ \gamma} M_1 X \xrightarrow{M_1 \gamma^{(n)}} M_1 M_n 1 \xrightarrow{\mu_1^{1n}} M_{n+1} 1$$

Graded semantics

A graded semantics (α, \mathbb{M}) for an endofunctor G consists of

- a graded monad $\mathbb{M}=((M_n)_{n\in\mathbb{N}},\eta,(\mu^{mk})_{m,k\in\mathbb{N}})$,
- and a natural transformation $\alpha: \mathcal{G} \to \mathcal{M}_1$.

A G-coalgebra (X, γ) then induces the following sequence of inductively defined maps $\gamma^{(n)}: X \to M_n 1$

$$\gamma^{(0)} : X \xrightarrow{\eta_X} M_0 X \xrightarrow{M_0!} M_0 1$$
$$\gamma^{(n+1)} : X \xrightarrow{\alpha_X \circ \gamma} M_1 X \xrightarrow{M_1 \gamma^{(n)}} M_1 M_n 1 \xrightarrow{\mu_1^{1n}} M_{n+1} 1$$

 $\gamma^{(n)}(x) \in M_n 1$ is called the *n*-step (α, \mathbb{M}) -behaviour of $x \in X$.

An LTS

For the functor $GX = \mathcal{P}(A \times X)$ take the following coalgebra $\gamma: X \to GX$

3 N 3

An LTS

For the functor $GX = \mathcal{P}(A \times X)$ take the following coalgebra $\gamma: X \to GX$

The graded monad $M_n = G^n$ (with α , η and μ^{mk} as all the appropriate identities) corresponds to coalgebraic "step-*n* behaviour". So if the $\gamma^{(k)}$ images of two states coincide for all $k \leq n$, they are *n*-step behaviourally equivalent.

Üsame Cengiz

2

<ロト < 四ト < 三ト < 三ト

To obtain trace semantics, define $\ensuremath{\mathbb{M}}$ as

and α as Id.

3 N 3

To obtain trace semantics, define $\ensuremath{\mathbb{M}}$ as

•
$$M_n X := \mathcal{P}(A^n \times X)$$
,

•
$$\eta(x) := \{(\epsilon, x)\},\$$

•
$$\mu^{mk}(S) := \{(vw, W) \mid (v, V) \in S, (w, W) \in V\}$$

and α as Id. Again consider the example:

$$\gamma^{(0)}(q_0) = \{\epsilon\}$$

$$\gamma^{(1)}(q_0) = \mu^{1,0}\{(a, \gamma^{(0)}(q_0)), (a, \gamma^{(0)}(q_1))\}$$

$$= \mu^{1,0}\{(a, \{\epsilon\}), (a, \{\epsilon\})\}$$

$$= \{a\}$$

$$\gamma^{(2)}(q_0) = \{aa\}$$

Note that $\gamma^{(n+1)}(q_1) = \emptyset$

...

The ugly truth

To obtain trace semantics, define $\ensuremath{\mathbb{M}}$ as

•
$$M_n X := \mathcal{P}(A^n \times X)$$
,

•
$$\eta(x) := \{(\epsilon, x)\},\$$

•
$$\mu^{mk}(S) := \{(vw, W) \mid (v, V) \in S, (w, W) \in V\}$$

and α as Id. Again consider the example:

$$\gamma^{(0)}(q_0) = \{(\epsilon, *)\}$$

$$\gamma^{(1)}(q_0) = \mu^{1,0}\{(a, \gamma^{(0)}(q_0)), (a, \gamma^{(0)}(q_1))\}$$

$$= \mu^{1,0}\{(a, \{(\epsilon, *)\}), (a, \{(\epsilon, *)\})\}$$

$$= \{(a\epsilon, *)\}$$

$$\gamma^{(2)}(q_0) = \{(aa\epsilon, *)\}$$

Note that $\gamma^{(n+1)}(q_1) = \emptyset$

...

∃ ⇒

< □ > < /□ >

To obtain completed trace semantics, define $\ensuremath{\mathbb{M}}$ as

•
$$M_n X := \mathcal{P}(A^n \times X + A^{< n})$$
 (especially $M_1 := \mathcal{P}(A^n \times X + \mathbf{1}))$,

To obtain completed trace semantics, define $\ensuremath{\mathbb{M}}$ as

To obtain completed trace semantics, define $\ensuremath{\mathbb{M}}$ as

•
$$M_n X := \mathcal{P}(A^n \times X + A^{< n})$$
 (especially $M_1 := \mathcal{P}(A^n \times X + 1))$,
• $\eta(x) := \{(\epsilon, x)\}$,
• $\mu^{mk}(S) := \{(vw, W) \mid (v, V) \in S, (w, W) \in V\}$
 $\cup \{vw \star \mid (v, V) \in S, w\star \in V\}$
 $\cup \{v\star \in S\}$

To obtain completed trace semantics, define ${\mathbb M}$ as

and $lpha: {\sf G}
ightarrow {\sf M}_1$ (so ${\cal P}({\sf A} imes {\sf X})
ightarrow {\cal P}({\sf A} imes {\sf X}+1))$ as

$$\alpha(\emptyset) := \{\star\}, \qquad (\star \in \mathbf{1})$$

$$\alpha(S) := S \subseteq \mathcal{P}(A \times X + 1) \qquad (S \neq \emptyset)$$

Verbose and ugly

Just verbose

 $\gamma^{(1)}(q_1) = \alpha(\emptyset) = \{\star\}$ $\gamma^{(1)}(a_0) = \{a\}$ $\gamma^{(2)}: q_0 \stackrel{\gamma}{\mapsto} \{(a, q_0), (a, q_1)\}$ $\stackrel{\alpha}{\mapsto} \{(a, q_0), (a, q_1)\}$ а $\xrightarrow{M_1\gamma^{(1)}} \{(a,\gamma^{(1)}(q_0)), (a,\gamma^{(1)}(q_1))\}$ а $= \{(a, \{a\}\}), (a, \{\star\})\}$ q_0 q_1 $\stackrel{\mu}{\mapsto} \{aa, a\star\}$ (2)

$$\gamma^{(3)}(q_0) = \{aaa, aa\star, a\star\}$$

 $\gamma^{(4)}(q_0) = ...$

Üsame Cengiz

December 20, 2022

December 20, 2022

イロト イポト イヨト イヨト

$\gamma^{(0)}(q_0) \qquad \{\epsilon\} \qquad \{\epsilon\}$

 $\gamma^{(0)}(q_0) \{\epsilon\} \{\epsilon\} \{\epsilon\}$ $\gamma^{(1)}(q_0) \{a\} \{a\}$

▶ < ∃ >

< ∃→

December 20, 2022

▶ < ∃ >

December 20, 2022

Image: A matrix

Graded Monads and Graded Theories

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Algebraic Theories

• A signature is a set Σ of operations f with finite arity ar(f).

3 N 3

Algebraic Theories

- A signature is a set Σ of operations f with finite arity ar(f).
- For a set X of variables, the set of Σ-terms T_Σ(X) is defined inductively as:

$$\begin{aligned} & x \in \mathcal{T}_{\Sigma}(X) & (x \in X) \\ & f(t_1, ..., t_{\mathsf{ar}(f)}) \in \mathcal{T}_{\Sigma}(X) & (f \in \Sigma, t_1, ..., t_{\mathsf{ar}(f)} \in \mathcal{T}_{\Sigma}(X)) \end{aligned}$$

Algebraic Theories

- A signature is a set Σ of operations f with finite arity ar(f).
- For a set X of variables, the set of Σ-terms T_Σ(X) is defined inductively as:

$$\begin{aligned} & x \in \mathcal{T}_{\Sigma}(X) & (x \in X) \\ & f(t_1, ..., t_{\mathsf{ar}(f)}) \in \mathcal{T}_{\Sigma}(X) & (f \in \Sigma, t_1, ..., t_{\mathsf{ar}(f)} \in \mathcal{T}_{\Sigma}(X)) \end{aligned}$$

• A Σ -theory E is a set of equations s = t, such that $s, t \in T_{\Sigma}(X)$.

Monads and Theories

- Monads correspond to algeraic theories, i.e. the quotient $T_{\Sigma}(X)/\sim$ of T_{Σ} modulo the congruence \sim generated by *E* is in bijection to *MX*.
- Monads can thus be induced by an algebraic theory (and vice versa).

An Example for Monads

Take $MX := \mathcal{P}(\{a, b\}^* \times X)$.

イロト イポト イヨト イヨト

An Example for Monads

Take $MX := \mathcal{P}(\{a, b\}^* \times X) MX$ corresponds to the following theory:

$$\Sigma := \{ \pm/0, \forall/2, a/1, b/1 \}$$

$$E := \begin{cases} x \lor x = x, \\ x \lor (y \lor z) = (x \lor y) \lor z, \\ x \lor y = y \lor x, \\ x \lor \bot = x, \\ c(x \lor y) = c(x) \lor c(y), \quad (c \in \{a, b\}) \\ c(\bot) = \bot \qquad (c \in \{a, b\}) \end{cases}$$

3 N 3

An Example for Monads

Take $MX := \mathcal{P}(\{a, b\}^* \times X).MX$ corresponds to the following theory:

$$\Sigma := \{ \pm/0, \forall/2, a/1, b/1 \} \\ E := \begin{cases} x \lor x = x, \\ x \lor (y \lor z) = (x \lor y) \lor z, \\ x \lor y = y \lor x, \\ x \lor \bot = x, \\ c(x \lor y) = c(x) \lor c(y), \quad (c \in \{a, b\}) \\ c(\bot) = \bot \qquad (c \in \{a, b\}) \end{cases}$$

Like this:

$$\begin{aligned} \mathsf{a}(\mathsf{b}(x)) \lor \mathsf{b}(x) \lor \mathsf{b}(x) \lor y &= \mathsf{a}(\mathsf{b}(x)) \lor y \lor \mathsf{b}(x) \\ & \widehat{=} \{(\mathsf{ab}, x), (\mathsf{b}, x), (\epsilon, y)\} \end{aligned}$$

イロト 不得下 イヨト イヨト
Graded Algebraic Theories

 A graded signature is a set Σ of operations f with finite arity ar(f) and finite depth d(f).

Graded Algebraic Theories

- A graded signature is a set Σ of operations f with finite arity ar(f) and finite depth d(f).
- For a set X of variables, the sets of Σ-terms T_{Σ,n}(X) of uniform depth n for n ∈ N are inductively defined as:

 $\begin{aligned} & x \in T_{\Sigma,0}(X) & (x \in X) \\ & f(t_1, ..., t_{\mathsf{ar}(f)}) \in T_{\Sigma,n+k}(X) & (f \in \Sigma, \mathsf{d}(f) = n, t_1, ..., t_{\mathsf{ar}(f)} \in T_{\Sigma,k}(X)) \end{aligned}$

Graded Algebraic Theories

- A graded signature is a set Σ of operations f with finite arity ar(f) and finite depth d(f).
- For a set X of variables, the sets of Σ-terms T_{Σ,n}(X) of uniform depth n for n ∈ N are inductively defined as:

 $\begin{aligned} & x \in T_{\Sigma,0}(X) & (x \in X) \\ & f(t_1, ..., t_{\mathsf{ar}(f)}) \in T_{\Sigma,n+k}(X) & (f \in \Sigma, \mathsf{d}(f) = n, t_1, ..., t_{\mathsf{ar}(f)} \in T_{\Sigma,k}(X)) \end{aligned}$

• A Σ -theory E is a set of equations s = t, such that $s, t \in T_{\Sigma,n}(X)$ for $n \in \mathbb{N}$.

Graded (Monads and Theories)

- Graded monads correspond to graded algeraic theories, i.e. the quotient $T_{\Sigma(X),n}/\sim$ of $T_{\Sigma,n}$ modulo the congruence \sim generated by E is in bijection to $M_n X$ for every $n \in \mathbb{N}$.
- Graded monads can thus be induced by graded algebraic theories (and vice versa).

Üsame Cengiz

イロト イヨト イヨト イヨト

3

$$\Sigma := \{ \pm/0, \forall/2, a/1, b/1 \},\ d(\lor) = d(\pm) = 0,\ d(a) = d(b) = 1,\ x \lor x = x,\ x \lor (y \lor z) = (x \lor y) \lor z,\ x \lor y = y \lor x,\ x \lor \pm = x,\ c(x \lor y) = c(x) \lor c(y),\ (c \in \{a, b\})\ c(\pm) = \pm \ (c \in \{a, b\}) \}$$

3

$$\Sigma := \{ \pm/0, \forall/2, a/1, b/1 \},\ d(\forall) = d(\pm) = 0,\ d(a) = d(b) = 1,\ x \lor x = x,\ x \lor (y \lor z) = (x \lor y) \lor z,\ x \lor y = y \lor x,\ x \lor \pm = x,\ c(x \lor y) = c(x) \lor c(y), \quad (c \in \{a, b\})\ c(\pm) = \pm \qquad (c \in \{a, b\})$$

Corresponds to $M_n X = \mathcal{P}(\{a, b\}^n \times X)$.

(日)

æ

$$\Sigma := \{ \pm/0, \forall/2, a/1, b/1, \star/0 \},\ d(\forall) = d(\pm) = 0,\ d(a) = d(b) = d(\star) = 1,\ x \lor x = x,\ x \lor (y \lor z) = (x \lor y) \lor z,\ x \lor y = y \lor x,\ x \lor \pm = x,\ c(x \lor y) = c(x) \lor c(y), \quad (c \in \{a, b\})\ c(\pm) = \pm \qquad (c \in \{a, b\})$$

Corresponds to $M_n X = \mathcal{P}(\{a, b\}^n \times X + 1).$

æ

Abstract Foreshadowing

- When a graded algebraic theory only consists of operations and equations up to depth 1, we call it a depth-1 theory.
- If a graded monad is induced by a depth-1 theory, it is also called depth-1.

Graded Monads and Graded Algebras

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Recall that the behaviour of a coalgebra is represented as sequence in $(M_n 1)_{n \in \mathbb{N}}$

э

- Recall that the behaviour of a coalgebra is represented as sequence in (M_n1)_{n∈N}
- The motivation is to define the semantics of formulas of depth *n* for a graded logic as maps $M_n 1 \rightarrow \{\perp, \top\}$.

- Recall that the behaviour of a coalgebra is represented as sequence in (M_n1)_{n∈N}
- The motivation is to define the semantics of formulas of depth *n* for a graded logic as maps $M_n 1 \rightarrow \{\perp, \top\}$.
- A Hennessy-Milner logic formula like φ := □◊⊤ will be interpreted as a map [[φ]] : M₂1 → {⊥, ⊤}.

- Recall that the behaviour of a coalgebra is represented as sequence in (M_n1)_{n∈ℕ}
- The motivation is to define the semantics of formulas of depth *n* for a graded logic as maps $M_n 1 \rightarrow \{\perp, \top\}$.
- A Hennessy-Milner logic formula like φ := □◊⊤ will be interpreted as a map [[φ]] : M₂1 → {⊥, ⊤}.
- What about $\Diamond \varphi$?

- Recall that the behaviour of a coalgebra is represented as sequence in (M_n1)_{n∈ℕ}
- The motivation is to define the semantics of formulas of depth *n* for a graded logic as maps $M_n 1 \rightarrow \{\perp, \top\}$.
- A Hennessy-Milner logic formula like φ := □◊⊤ will be interpreted as a map [[φ]] : M₂1 → {⊥, ⊤}.
- What about $\Diamond \varphi$?
- The semantics for a modality like ◊ will be defined by a map *M*₁{⊥, ⊤} → {⊥, ⊤}, the semantics [[◊φ]] : *M*₃1 → {⊥, ⊤} shall be derivable from that.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

For a monad M, an Eilenberg-Moore algebra (A, a) consists of a carrier set A and a structure map $a : MA \to A$ such that the following diagrams commute:

Giving Graded Terms Value

For a graded monad \mathbb{M} , a graded M_n -algebra $((A_k)_{k \leq n}, (a^{mk})_{m+k \leq n})$ consists of a carrier sets A_k and structure maps $a^{mk} : M_m A_k \to A_{m+k}$ such that the following diagrams commute for all r, m, k with $r + m + k \leq n$:

M_0 and M_1

• M_0 -algebras are just Eilenberg-Moore algebras for (M_0, η, μ^{00}) .

(3)

M_0 and M_1

- M_0 -algebras are just Eilenberg-Moore algebras for (M_0, η, μ^{00}) .
- E.g. (M_nX, μ^{0n}) is an M_0 -algebra, as $\mu_X^{0n}: M_0M_nX \to M_nX$.

3. 3

M_0 and M_1

- M_0 -algebras are just Eilenberg-Moore algebras for (M_0, η, μ^{00}) .
- E.g. (M_nX, μ^{0n}) is an M_0 -algebra, as $\mu_X^{0n}: M_0M_nX \to M_nX$.
- M_1 -algebras are a 5-tuple $(A_0, A_1, a^{00}, a^{01}, a^{10})$, where (A_0, a^{00}) and (A_1, a^{01}) are both M_0 -algebras, and the structure map a^{10} satisfies:

Canonical M₁-Algebra

$$M_1 M_0 A_0 \xrightarrow[\mu^{10}]{\mu^{10}_{A_0}} M_1 A_0 \xrightarrow[\mu^{10}]{a^{10}} A_1$$

• If (A_1, a^{10}) is the coequalizer in the category of M_0 -algebras, then $A := (A_0, A_1, a^{00}, a^{01}, a^{10})$ is called a canonical M_1 -algebra.

Canonical M₁-Algebra

$$M_1 M_0 A_0 \xrightarrow[\mu^{10}]{\mu^{10}_{A_0}} M_1 A_0 \xrightarrow[\mu^{10}]{a^{10}} A_1$$

- If (A_1, a^{10}) is the coequalizer in the category of M_0 -algebras, then $A := (A_0, A_1, a^{00}, a^{01}, a^{10})$ is called a canonical M_1 -algebra.
- For canonical M_1 -algebra A, we get for any M_1 -algebra B that any M_0 -algebra homomorphism $A_0 \rightarrow B_0$ extends (freely) to a unique M_1 -algebra homomorphism $A \rightarrow B$, i.e. a map $A_1 \rightarrow B_1$ joins in.

Canonical M₁-Algebra

$$M_1 M_0 A_0 \xrightarrow[\mu^{10}]{\mu^{10}_{A_0}} M_1 A_0 \xrightarrow[\mu^{10}]{a^{10}} A_1$$

- If (A_1, a^{10}) is the coequalizer in the category of M_0 -algebras, then $A := (A_0, A_1, a^{00}, a^{01}, a^{10})$ is called a canonical M_1 -algebra.
- For canonical M_1 -algebra A, we get for any M_1 -algebra B that any M_0 -algebra homomorphism $A_0 \rightarrow B_0$ extends (freely) to a unique M_1 -algebra homomorphism $A \rightarrow B$, i.e. a map $A_1 \rightarrow B_1$ joins in.
- In short, if the left algebra is canonical, we get this:

$$\begin{array}{c} M_1 M_n 2 \xrightarrow{M_1 \llbracket \varphi \rrbracket} M_1 2 \\ \mu_2^{1n} \downarrow & \qquad \qquad \downarrow \llbracket \Diamond \rrbracket \\ M_{n+1} 2 \xrightarrow{- \underset{\llbracket \Diamond \varphi \rrbracket}{- \underset{\blacksquare}{\circ} \varphi \rrbracket} \rightarrow 2 \end{array}$$

Depth-1ness Returns

• For that to hold, all pairs of M_0 -algebras (M_n, μ^{0n}) and $(M_{n+1}, \mu^{0,n+1})$ have to form a canonical M_1 -algebra with μ^{1n} .

Depth-1ness Returns

- For that to hold, all pairs of M_0 -algebras (M_n, μ^{0n}) and $(M_{n+1}, \mu^{0,n+1})$ have to form a canonical M_1 -algebra with μ^{1n} .
- E.g. so that we can have this:

$$\begin{array}{cccc} M_1 M_0 1 & \xrightarrow{M_1[\top]} & M_1 \{\bot, \top\} & & M_1 M_1 1 & \xrightarrow{M_1[[\Diamond \top]]} & M_1 \{\bot, \top\} \\ \mu_1^{10} & & & \downarrow [[\Diamond]] & & & \mu_1^{11} & & \downarrow [[\Box]] \\ M_1 1 & - & & \hline \\ & & & M_2 1 & - & \hline \\ & & & & & M_2 1 & - & \hline \\ & & & & & & I \\ \end{array}$$

Depth-1ness Returns

- For that to hold, all pairs of M_0 -algebras (M_n, μ^{0n}) and $(M_{n+1}, \mu^{0,n+1})$ have to form a canonical M_1 -algebra with μ^{1n} .
- E.g. so that we can have this:

$$\begin{array}{cccc} M_1 M_0 1 & \xrightarrow{M_1[\top]} & M_1 \{\bot, \top\} & & M_1 M_1 1 & \xrightarrow{M_1[\Diamond \top]} & M_1 \{\bot, \top\} \\ \mu_1^{10} & & & \downarrow [[\Diamond]] & & & \mu_1^{11} & & \downarrow [[\Box]] \\ M_1 1 & - & & & & M_2 1 & - & & & \\ \hline & & & & & & M_2 1 & - & & & \\ \hline & & & & & & & & & & \\ \end{array}$$

Luckily, depth-1 monads are characterised by

$$M_1 M_0 M_n \xrightarrow{M_1 \mu^{10}} M_1 M_n \xrightarrow{\mu^{1n}} M_{n+1}$$

being a coequalizer diagram in M_0 -algebras.

Fix an M_0 -algebra (Ω, o) of truth values.

∃ ⇒

Image: A matrix

э

Fix an M_0 -algebra (Ω, o) of truth values. Graded logics are comprised of

• Truth constants $c\in\Theta,$ which are understood as maps $\hat{c}:1 o\Omega$

Fix an M_0 -algebra (Ω, o) of truth values. Graded logics are comprised of

- Truth constants $c\in \Theta$, which are understood as maps $\hat{c}:1
 ightarrow \Omega$
- *k*-ary propositional operators $p \in \mathcal{O}$, which are understood as M_0 -morphisms $[\![p]\!] : \Omega^k \to \Omega$

Fix an M_0 -algebra (Ω, o) of truth values. Graded logics are comprised of

- Truth constants $c\in \Theta$, which are understood as maps $\hat{c}:1 o \Omega$
- *k*-ary propositional operators $p \in \mathcal{O}$, which are understood as M_0 -morphisms $[\![p]\!] : \Omega^k \to \Omega$
- Modal operators L ∈ Λ, which are understood as M₁-algebras (with (Ω, o) as both M₀-algebras and [[L]] : M₁Ω → Ω as the structure morphism between them).

Fix an M_0 -algebra (Ω, o) of truth values. Graded logics are comprised of

- Truth constants $c\in \Theta$, which are understood as maps $\hat{c}:1 o \Omega$
- *k*-ary propositional operators $p \in \mathcal{O}$, which are understood as M_0 -morphisms $[\![p]\!] : \Omega^k \to \Omega$
- Modal operators L ∈ Λ, which are understood as M₁-algebras (with (Ω, o) as both M₀-algebras and [[L]] : M₁Ω → Ω as the structure morphism between them).

The semantics of φ is an M_0 -morphism $\llbracket \varphi \rrbracket : M_n 1 \to \Omega$ recursively defined by:

$$\begin{bmatrix} c \end{bmatrix} : M_0 1 \xrightarrow{M_0 \hat{c}} M_0 \Omega \xrightarrow{o} \Omega, \\ \llbracket p(\varphi_1, ..., \varphi_k) \rrbracket = \llbracket p \rrbracket (\llbracket \varphi_1 \rrbracket, ..., \llbracket \varphi_k \rrbracket), \\ \llbracket L \varphi \rrbracket = \llbracket L \rrbracket (\llbracket \varphi \rrbracket)$$

3

Graded Monads and Fixpoints

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

・ロト ・四ト ・ヨト ・ヨト

æ

• We think it's here:

Image: A math

Image: A image: A

э

• We think it's here:

$$\prod_{n\in\mathbb{N}}M_n1$$

 \bullet So the semantics of a formula φ is supposed to be a map:

$$\llbracket \varphi \rrbracket : (\prod_{n \in \mathbb{N}} M_n 1) \to \{\bot, \top\}$$

э

• We think it's here:

$$\prod_{n\in\mathbb{N}}M_n1$$

 $\bullet\,$ So the semantics of a formula φ is supposed to be a map:

$$\llbracket \varphi \rrbracket : (\prod_{n \in \mathbb{N}} M_n 1) \to \{\bot, \top\}$$

• The *M*₁-part of the canonical *M*₁-algebra is the codomain of the coequalizer

$$M_{1}M_{0}\Pi_{n}M_{n} \xrightarrow{\mu^{10}} M_{1}\rho_{0} \xrightarrow{M_{1}\rho_{0}} M_{1}\Pi_{n}M_{n} \xrightarrow{c} C$$

$$M_{1}\langle M_{0}\pi_{n}\rangle \xrightarrow{M_{1}} M_{1}\Pi_{n}M_{0}M_{n}$$
Conjecture

December 20, 2022

э

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで