Graph Liftings and Howe's Method

Henning Urbat

Friedrich-Alexander-Universität Erlangen-Nürnberg

Oberseminar WS 2022/23

Abstract GSOS [Turi & Plotkin '97]

Operational rules

$$\frac{p \xrightarrow{a} p'}{p \mid\mid q \xrightarrow{a} p' \mid\mid q}$$

GSOS laws: natural transformations

$$\varrho_X \colon \underbrace{\Sigma(X \times BX)}_{\text{premises}} \to \underbrace{B(\Sigma^*X)}_{\text{conclusion}}$$

for functors $\Sigma, B \colon \mathbb{C} \to \mathbb{C}$ representing syntax and behaviour (e.g. $B = \mathcal{P}_f^L$).

Abstract GSOS [Turi & Plotkin '97]

Operational rules

$$\frac{p \stackrel{a}{\rightarrow} p'}{p \mid\mid q \stackrel{a}{\rightarrow} p' \mid\mid q}$$

GSOS laws: natural transformations

$$\varrho_X : \underbrace{\Sigma(X \times BX)}_{\text{premises}} \to \underbrace{B(\Sigma^*X)}_{\text{conclusion}}$$

for functors $\Sigma, B \colon\thinspace \mathbb{C} \to \mathbb{C}$ representing syntax and behaviour (e.g. $B = \mathcal{P}^L_f$).

- $lackbox{ Operational model } \mu\Sigma o B(\mu\Sigma), ext{ denotational model } \Sigma(\nu B) o \nu B.$
- ▶ **Key feature:** compositionality, i.e. bisimilarity is a congruence:

$$p_i \sim q_i \quad (i = 1, \ldots, n) \quad \stackrel{f \in \Sigma}{\Longrightarrow} \quad f(p_1, \ldots, p_n) \sim f(q_1, \ldots, q_n).$$

▶ **Scope**: first-order (CCS, π -calculus, ...), higher-order (λ -calculus)

The Issue With Higher-Order Languages

HO languages require behaviours like

$$BX = X^X$$
.

This is not an endofunctor - but

$$B(X,Y)=Y^X$$

is a bifunctor contravariant in X and covariant in Y.

Key idea for higher-order abstract GSOS

endofunctors $B \colon \mathbb{C} \to \mathbb{C}$

natural transformations

 \downarrow

Higher-Order Abstract GSOS [POPL'23]

Operational rules

$$(\lambda x.p) q \to p[q/x]$$

$$\frac{p \to p'}{p q \to p' q}$$

Higher-order GSOS laws: (di-)natural trf.

$$\widehat{=} \quad \varrho_{X,Y} \colon \underbrace{\Sigma(X \times B(X,Y))}_{\text{premises}} \to \underbrace{B(X,\Sigma^*(X+Y))}_{\text{conclusion}}$$

$$\mathbb{C} = \mathsf{Set}^{\mathbb{F}}$$
 $\Sigma X = V + \delta X + X imes X$
 $\mu \Sigma = \lambda \text{-terms}$
 $B(X,Y) = \langle X,Y
angle imes (Y+Y^X+1)$

cf. Fiore, Plotkin & Turi '99

Higher-Order Abstract GSOS [POPL'23]

Operational rules

$$(\lambda x.p) q \to p[q/x]$$

$$\frac{p \to p'}{p q \to p' q}$$

Higher-order GSOS laws: (di-)natural trf.

$$\widehat{=} \quad \varrho_{X,Y} \colon \underbrace{\Sigma(X \times B(X,Y))}_{\text{premises}} \to \underbrace{B(X,\Sigma^*(X+Y))}_{\text{conclusion}}$$

- $lackbox{ }$ Operational model $\mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$, denotational model $\nu B(\mu\Sigma, -)$.
- Key feature: compositionality, i.e. bisimilarity is a congruence.
 Proof: more complex than first-order case + needs mild assumptions.

Strong Applicative Bisimilarity

Coalgebraic bisimilarity on operational model $\mu\Sigma o B(\mu\Sigma, \mu\Sigma)$

=

strong applicative bisimilarity.

Example: λ -calculus

Greatest relation \sim \subseteq \bigwedge \times \bigwedge such that for $t_1 \sim t_2$,

$$t_1 \rightarrow t_1' \implies t_2 \rightarrow t_2' \wedge t_1' \sim t_2';$$

 $t_1 = \lambda x. t_1' \implies t_2 = \lambda x. t_2' \wedge \forall e \in \Lambda. \ t_1'[e/x] \sim t_2'[e/x];$

+ two symmetric conditions

Applicative Bisimilarity [Abramsky '90]

Weak coalgebraic bisimilarity on operational model $\mu\Sigma o B(\mu\Sigma, \mu\Sigma)$

=

(weak) applicative bisimilarity.

Example: λ -calculus

Greatest relation $\approx \subseteq \Lambda \times \Lambda$ such that for $t_1 \approx t_2$,

$$t_1 \to^* \lambda x. t_1' \implies t_2 \to^* \lambda x. t_2' \land \forall e \in \Lambda. \ t_1'[e/x] \approx t_2'[e/x];$$

 $t_2 \to^* \lambda x. t_2' \implies t_1 \to^* \lambda x. t_1' \land \forall e \in \Lambda. \ t_1'[e/x] \approx t_2'[e/x].$

Goal: Compositionality of higher-order GSOS w.r.t. weak bisimilarity.

Bisimilarity \sim on $\mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.

1. Take the closure $\hat{\sim}$ of \sim under contexts and transitivity:

$$\frac{p \sim q}{p \stackrel{\sim}{\sim} q} \qquad \frac{p_i \stackrel{\sim}{\sim} q_i \ (i = 1, \dots, n)}{f(p_1, \dots, p_n) \stackrel{\sim}{\sim} f(q_1, \dots, q_n)} \qquad \frac{p \stackrel{\sim}{\sim} q, \ q \stackrel{\sim}{\sim} r}{p \stackrel{\sim}{\sim} r}$$

2. Prove that $\hat{\sim}$ is a bisimulation, e.g. for the λ -calculus:

$$t_1 \stackrel{\sim}{\sim} t_2 \wedge t_1 = \lambda x. t_1' \implies t_2 = \lambda x. t_2' \wedge \forall e \in \Lambda. \ t_1'[e/x] \stackrel{\sim}{\sim} t_2'[e/x]$$
 ...

3. This implies $\hat{\sim} \subseteq \sim$, hence the latter is a congruence.

Weak bisimilarity \approx on $\mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.

1. Take the closure $\hat{\approx}$ of \approx under contexts and transitivity:

$$\frac{p \approx q}{p \stackrel{\widehat{\approx}}{\approx} q} \qquad \frac{p_i \stackrel{\widehat{\approx}}{\approx} q_i \ (i = 1, \dots, n)}{f(p_1, \dots, p_n) \stackrel{\widehat{\approx}}{\approx} f(q_1, \dots, q_n)} \qquad \frac{p \stackrel{\widehat{\approx}}{\approx} q, \ q \stackrel{\widehat{\approx}}{\approx} r}{p \stackrel{\widehat{\approx}}{\approx} r}$$

2. Prove that $\hat{\approx}$ is a **weak** bisimulation, e.g. for the λ -calculus:

 $t_1 \stackrel{\sim}{\approx} t_2 \wedge t_1 \rightarrow^{\star} \lambda x. t_1' \implies t_2 \rightarrow^{\star} \lambda x. t_2' \wedge \forall e \in \Lambda. \ t_1'[e/x] \stackrel{\sim}{\approx} t_2'[e/x]$...

3. This implies $\hat{\approx} \subseteq \approx$, hence the latter is a congruence.

Weak bisimilarity \approx on $\mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.

1. Take the closure $\hat{\approx}$ of \approx under contexts and transitivity:

$$\frac{p \approx q}{p \stackrel{\widehat{\approx}}{\approx} q} \qquad \frac{p_i \stackrel{\widehat{\approx}}{\approx} q_i \ (i = 1, \dots, n)}{f(p_1, \dots, p_n) \stackrel{\widehat{\approx}}{\approx} f(q_1, \dots, q_n)} \qquad \frac{p \stackrel{\widehat{\approx}}{\approx} q, \ q \stackrel{\widehat{\approx}}{\approx} r}{p \stackrel{\widehat{\approx}}{\approx} r}$$

2. Prove that $\widehat{\approx}$ is a **weak** bisimulation, e.g. for the λ -calculus:

$$t_1 \widehat{\approx} t_2 \wedge t_1 \to^{\star} \lambda x. t_1' \implies t_2 \to^{\star} \lambda x. t_2' \wedge \forall e \in \Lambda. \ t_1'[e/x] \widehat{\approx} t_2'[e/x]$$
...

3. This implies $\hat{\approx} \subseteq \approx$, hence the latter is a congruence.

... but Step 2 fails 🙂

Weak bisimilarity \approx on $\mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.

1. Take the **Howe closure** $\widehat{\approx}$ of \approx :

$$\frac{p \approx q}{p \stackrel{$\widehat{\approx}$ }{q}} \qquad \frac{p_i \stackrel{$\widehat{\approx}$ }{q_i} \ (i = 1, \dots, n)}{f(p_1, \dots, p_n) \stackrel{$\widehat{\approx}$ }{q_i} f(q_1, \dots, q_n)} \qquad \frac{p \stackrel{$\widehat{\approx}$ }{q_i} \ q \approx r}{p \stackrel{$\widehat{\approx}$ }{q_i} r}$$

2. Prove that $\hat{\approx}$ is a **weak** bisimulation, e.g. for the λ -calculus:

$$t_1 \mathrel{\widehat{\approx}} t_2 \wedge t_1 \to^\star \lambda x. t_1' \implies t_2 \to^\star \lambda x. t_2' \wedge \forall e \in \Lambda. \ t_1'[e/x] \mathrel{\widehat{\approx}} t_2'[e/x]$$
 ...

3. This implies $\hat{\approx} \subseteq \approx$, hence the latter is a congruence.

Weak bisimilarity \approx on $\mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.

1. Take the **Howe closure** $\widehat{\approx}$ of \approx :

$$\frac{p \approx q}{p \stackrel{\widehat{\approx}}{\approx} q} \qquad \frac{p_i \stackrel{\widehat{\approx}}{\approx} q_i \ (i = 1, \dots, n)}{f(p_1, \dots, p_n) \stackrel{\widehat{\approx}}{\approx} f(q_1, \dots, q_n)} \qquad \frac{p \stackrel{\widehat{\approx}}{\approx} q, \ q \approx r}{p \stackrel{\widehat{\approx}}{\approx} r}$$

2. Prove that $\hat{\approx}$ is a **logical weak** bisimulation, e.g. for the λ -calculus:

. . .

$$t_1 \stackrel{\sim}{\approx} t_2 \wedge t_1 \rightarrow^{\star} \lambda x. t_1' \implies t_2 \rightarrow^{\star} \lambda x. t_2' \wedge \forall d \stackrel{\sim}{\approx} e. \ t_1'[d/x] \stackrel{\sim}{\approx} t_2'[e/x]$$

3. This implies $\hat{\approx} \subseteq \approx$, hence the latter is a congruence.

Weak bisimilarity \approx on $\mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.

1. Take the **Howe closure** $\widehat{\approx}$ of \approx :

$$\frac{p \approx q}{p \stackrel{\widehat{\approx}}{\approx} q} \qquad \frac{p_i \stackrel{\widehat{\approx}}{\approx} q_i \ (i = 1, \dots, n)}{f(p_1, \dots, p_n) \stackrel{\widehat{\approx}}{\approx} f(q_1, \dots, q_n)} \qquad \frac{p \stackrel{\widehat{\approx}}{\approx} q, \ q \approx r}{p \stackrel{\widehat{\approx}}{\approx} r}$$

2. Prove that $\widehat{\approx}$ is a **logical weak** bisimulation, e.g. for the λ -calculus:

. . .

$$t_1 \mathrel{\widehat{\approx}} t_2 \wedge t_1 \to^{\star} \lambda x. t_1' \implies t_2 \to^{\star} \lambda x. t_2' \wedge \forall d \mathrel{\widehat{\approx}} e. \ t_1'[d/x] \mathrel{\widehat{\approx}} t_2'[e/x]$$
 ...

3. This implies $\hat{\approx} \subseteq \approx$, hence the latter is a congruence.

Categorical perspective: Graph liftings of (bi-)functors.

The category $\operatorname{Gra}(\mathbb{C})$ of graphs in \mathbb{C} is given by objects and morphisms

If $\mathbb C$ has pullbacks, the projection $(X,R)\to X$ is a bifibration.

Fibres of the category of graphs

 $\operatorname{Gra}_X(\mathbb{C}) = \operatorname{graphs} \operatorname{with} \operatorname{vertices} X \operatorname{and} \operatorname{morphisms} (\operatorname{id}_X, \cdot)$

Preorder on $Gra_X(\mathbb{C})$

$$(X,R) \leq (X,S) \iff (X,R) \xrightarrow{\exists} (X,S) \text{ in } Gra_X(\mathbb{C}).$$

The category of graphs in $\mathbb C$ is given by objects and morphisms

Opcartesian lift of $f: X \to Y$

$$f_{\star} \colon \mathsf{Gra}_{X}(\mathbb{C}) o \mathsf{Gra}_{Y}(\mathbb{C}), \qquad \bigvee_{\mathsf{outl}_{R}} \bigvee_{\mathsf{outr}_{R}} \mapsto \bigvee_{\mathsf{outl}_{R}} \bigvee_{\mathsf{outr}_{R}} \bigvee_{\mathsf{outr}_{R}} \bigvee_{\mathsf{outr}_{R}} \bigvee_{\mathsf{f} \to \mathsf{f}} \mathsf{Y}$$

The category of graphs in $\mathbb C$ is given by objects and morphisms

14

The category of graphs in $\mathbb C$ is given by objects and morphisms

Canonical graph lifting of endofunctor $F \colon \mathbb{C} \to \mathbb{C}$

Weak bisimilarity \approx on $\mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.

1. Take the **Howe closure** $\widehat{\approx}$ of \approx :

$$\frac{p \approx q}{p \stackrel{\widehat{\approx}}{\approx} q} \qquad \frac{p_i \stackrel{\widehat{\approx}}{\approx} q_i \ (i = 1, \dots, n)}{f(p_1, \dots, p_n) \stackrel{\widehat{\approx}}{\approx} f(q_1, \dots, q_n)} \qquad \frac{p \stackrel{\widehat{\approx}}{\approx} q, \ q \approx r}{p \stackrel{\widehat{\approx}}{\approx} r}$$

2. Prove that $\hat{\approx}$ is a **logical weak** bisimulation, e.g. for the λ -calculus:

. . .

$$t_1 \mathrel{\widehat{\approx}} t_2 \wedge t_1 \to^{\star} \lambda x. t_1' \implies t_2 \to^{\star} \lambda x. t_2' \wedge \forall d \mathrel{\widehat{\approx}} e. \ t_1'[d/x] \mathrel{\widehat{\approx}} t_2'[e/x] \dots$$

3. This implies $\hat{\approx} \subseteq \approx$, hence the latter is a congruence.

Categorical perspective: Graph liftings of (bi-)functors.

Howe closure, categorically

Howe closure \widehat{R} of a relation $R \subseteq X \times X$ w.r.t. Σ -algebra $\xi \colon \Sigma X \to X$:

$$\frac{p R q}{p \widehat{R} q} \qquad \frac{p_i \widehat{R} q_i \ (i = 1, \dots, n)}{f(p_1, \dots, p_n) \widehat{R} f(q_1, \dots, q_n)} \qquad \frac{p \widehat{R} q, q R r}{p \widehat{R} r}$$

Equivalently, \widehat{R} is the least fixed point of the following operator on Rel(X):

$$S \mapsto R \cup \Sigma(S)$$
; R .

Howe closure, categorically

Howe closure \widehat{R} of a relation $R \subseteq X \times X$ w.r.t. Σ -algebra $\xi \colon \Sigma X \to X$:

$$\frac{p R q}{p \widehat{R} q} \qquad \frac{p_i \widehat{R} q_i \ (i = 1, \dots, n)}{f(p_1, \dots, p_n) \widehat{R} f(q_1, \dots, q_n)} \qquad \frac{p \widehat{R} q, q R r}{p \widehat{R} r}$$

Equivalently, \widehat{R} is the least fixed point of the following operator on Rel(X):

$$S \mapsto R \cup \Sigma(S)$$
; R .

Howe closure of graph $(X,R) \in Gra(\mathbb{C})$ w.r.t. Σ -algebra $\xi \colon \Sigma X \to X$ Initial algebra of the functor $\overline{\Sigma}_{R,\xi} \colon Gra_X(\mathbb{C}) \to Gra_X(\mathbb{C})$ given by

$$(X,S) \mapsto (X,R) + (\xi_{\star}\overline{\Sigma}(X,S)); (X,R).$$

Weak bisimilarity \approx on $\mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.

1. Take the **Howe closure** $\widehat{\approx}$ of \approx :

$$\frac{p \approx q}{p \stackrel{\widehat{\approx}}{\approx} q} \qquad \frac{p_i \stackrel{\widehat{\approx}}{\approx} q_i \ (i = 1, \dots, n)}{f(p_1, \dots, p_n) \stackrel{\widehat{\approx}}{\approx} f(q_1, \dots, q_n)} \qquad \frac{p \stackrel{\widehat{\approx}}{\approx} q, \ q \approx r}{p \stackrel{\widehat{\approx}}{\approx} r}$$

2. Prove that $\hat{\approx}$ is a **logical weak** bisimulation, e.g. for the λ -calculus:

. . .

$$t_1 \stackrel{\sim}{\approx} t_2 \wedge t_1 \rightarrow^{\star} \lambda x. t_1' \implies t_2 \rightarrow^{\star} \lambda x. t_2' \wedge \forall d \stackrel{\sim}{\approx} e. \ t_1'[d/x] \stackrel{\sim}{\approx} t_2'[e/x]$$

3. This implies $\hat{\approx} \subseteq \approx$, hence the latter is a congruence.

Categorical perspective: Graph liftings of (bi-)functors.

Bisimulations

Bisimulation on coalgebra $c: X \to FX = \text{graph } (X, R)$ such that

$$\begin{array}{ccc} R & \xrightarrow{\exists c_R} & FR \\ \mathsf{outl}_R & & \mathsf{Foutl}_R & & \bigvee \mathsf{Foutr}_R \\ X & \xrightarrow{c} & & FX \end{array}$$

Equivalently, in terms of the canonical lifting \overline{F} : $Gra(\mathbb{C}) \to Gra(\mathbb{C})$:

$$c_{\star}(X,R) \leq \overline{F}(X,R).$$

Bisimulations

Bisimulation on coalgebra $c: X \to FX = \text{graph } (X, R)$ such that

$$\begin{array}{ccc} R & \xrightarrow{\exists c_R} & FR \\ \operatorname{outl}_R & & \operatorname{Foutl}_R & & \\ X & \xrightarrow{c} & & FX \end{array}$$

Equivalently, in terms of the canonical lifting \overline{F} : $Gra(\mathbb{C}) \to Gra(\mathbb{C})$:

$$c_{\star}(X,R) \leq \overline{F}(X,R).$$

Key step towards logical bisimulations

To abstractly express properties like

$$t_1 \mathbin{\widehat{\approx}}\ t_2 \wedge t_1 = \lambda x. t_1' \implies t_2 = \lambda x. t_2' \wedge \forall d \mathbin{\widehat{\approx}}\ e.\ t_1'[d/x] \mathbin{\widehat{\approx}}\ t_2'[e/x],$$

need to lift $B \colon \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C}$ to $\overline{B} \colon \mathsf{Gra}(\mathbb{C})^{\mathsf{op}} \times \mathsf{Gra}(\mathbb{C}) \to \mathsf{Gra}(\mathbb{C})$.

$$B(X,Y) = Y^X \qquad \overline{B}((X,R),(Y,S)) = (Y,S)^{(X,R)}$$

Graph Liftings of Bifunctors

Canonical lifting \overline{B} : $\operatorname{Gra}(\mathbb{C})^{\operatorname{op}} \times \operatorname{Gra}(\mathbb{C}) \to \operatorname{Gra}(\mathbb{C})$ of B: $\mathbb{C}^{\operatorname{op}} \times \mathbb{C} \to \mathbb{C}$:

$$\begin{array}{ccc}
R & I_{R,S} \\
\operatorname{outl}_{R} \bigvee \operatorname{outr}_{R} & \mapsto & \operatorname{outl}_{R,S} \bigvee \operatorname{outr}_{R,S} \\
X & B(X,Y)
\end{array}$$

with $T_{R,S}$ defined via the following triple-pullback diagram:

Logical Bisimulations for Bifunctors

$$\mathsf{Gra}(\mathbb{C})^{\mathsf{op}} \times \mathsf{Gra}(\mathbb{C}) \to \mathsf{Gra}(\mathbb{C}) \xrightarrow{\overline{B}} \mathsf{Gra}(\mathbb{C})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C} \xrightarrow{B} \mathbb{C}$$

Logical bisimulation on $c: X \to B(X, X) = graph(X, R)$ such that

$$c_{\star}(X,R) \leq \overline{B}((X,R),(X,R)).$$

This captures properties like

$$t_1 \mathrel{\widehat{\approx}} t_2 \wedge t_1 = \lambda x. t_1' \implies t_2 = \lambda x. t_2' \wedge \forall d \mathrel{\widehat{\approx}} e. \ t_1'[d/x] \mathrel{\widehat{\approx}} t_2'[e/x],$$

Summary and Ongoing Work

- ▶ Howe's method and logical bisimulations, categorically.
- ► **Key technique:** Graph liftings of (bi-)functors.
- ► First application: a generalized version of our [POPL'23] result.

Theorem (Compositionality of Higher-Order Abstract GSOS)

Suppose that the following conditions hold:

. . .

Then for every higher-order abstract GSOS law, bisimilarity on the canonical model $\mu\Sigma \to B(\mu\Sigma, \mu\Sigma)$ is a congruence.

Proof: Howe's method and primitive recursion (not coinduction).

▶ **Next step:** Extension to **weak** bisimilarity.

Logical Bisimulations for Bifunctors

