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Abstract GSOS [Turi & Plotkin '97]

Operational rules GSOS laws: natural transformations
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for functors ¥, B: C — C representing

syntax and behaviour (e.g. B = P}).
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» Operational model > — B(uX), denotational model X(vB) — vB.
programs abstract behaviours

» Key feature: compositionality, i.e. bisimilarity is a congruence:

pi~a (i=1...,n) = f(pr,....ps) ~ gL, ... qn).

» Scope: (CCS, m-calculus, ...), higher-erder (\-calculus)



The Issue With Higher-Order Languages

HO languages require behaviours like
BX = x*.
This is not an endofunctor — but
B(X,Y) =YX
is a bifunctor contravariant in X and covariant in Y.

Key idea for higher-order abstract GSOS

endofunctors B: C — C + natural transformations

bifunctors B: C°? xC — C + dinatural transformations.



Higher-Order Abstract GSOS [POPL’23]

Operational rules Higher-order GSOS laws: (di-)natural trf.

(Ax.p) g — pla/x]

I

oxy: (X x B(X,Y)) = B(X,Z*(X+Y))

premises conclusion

p—p
pPq—p'q

C = Set"
YX=V+X+XxX
ux = A-terms
B(X,Y)=(X,Y)x (Y +YX+1)

cf. Fiore, Plotkin & Turi '99



Higher-Order Abstract GSOS [POPL’23]

Operational rules Higher-order GSOS laws: (di-)natural trf.

(Ax.p) g — pla/x]

I

oxy: (X x B(X,Y)) = B(X,Z*(X+Y))

premises conclusion

p—p
pPq—p'q

» Operational model u¥ — B(uX, uY), denotationatmedel vB(uX, —).

programs abstract behaviours

> Key feature: compositionality, i.e. bisimilarity is a congruence.

Proof: more complex than first-order case + needs mild assumptions.



Strong Applicative Bisimilarity

Coalgebraic bisimilarity on operational model ¥ — B(ux, ux)

strong applicative bisimilarity.

Example: \-calculus
Greatest relation ~ C A x A such that for t; ~ to,

closed A\-terms

L=t = bty At~ty

t1 = Mx.t; = th=Ax.ty A Ve €A ti[e/x] ~ tyle/x];

+ two symmetric conditions



Applicative Bisimilarity [Abramsky "90]

Weak coalgebraic bisimilarity on operational model puX — B(uX, uX)

(weak) applicative bisimilarity.

Example: \-calculus
Greatest relation ~ C A x A such that for t; = to,

t1 = Ax.t] = t =" Ax.tp A Ve e ti[e/x] = tie/x];

th > Ax.th = t =" Mx.t; A Ve €A ti[e/x] = ti[e/x].

Goal: Compositionality of higher-order GSOS w.r.t. weak bisimilarity.



Proof of compositionality w.r.t. strong applicative bisimilarity

Bisimilarity ~ on uX — B(uX, uX) is a congruence.

1. Take the closure =~ of ~ under contexts and transitivity:

p~q pi~gqi(i=1,...,n) p~q,q~r
p~q f(pi,---,pPn) ~ f(q1,-..,qn) p~r

2. Prove that ~ is a bisimulation, e.g. for the A-calculus:

t1 <t At =Mxt; = th=Mxth A Ve€eA. ti[e/x] = thle/x]

3. This implies ~ C ~, hence the latter is a congruence.



Proof of compositionality w.r.t. weak applicative bisimilarity

Weak bisimilarity ~ on u¥ — B(uX, uX) is a congruence.

1. Take the closure = of ~ under contexts and transitivity:
pP~q pirgi(i=1,...,n) PRG qRr
p=~q f(p1,...,pn) = f(q1,-.-,qn) pxr

2. Prove that = is a weak bisimulation, e.g. for the A-calculus:

R bHAL = At = th =" Aty AVe € A ti[e/x] = tyle/x]

3. This implies & C =, hence the latter is a congruence.



Proof of compositionality w.r.t. weak applicative bisimilarity

Weak bisimilarity ~ on u¥ — B(uX, uX) is a congruence.

1. Take the closure = of ~ under contexts and transitivity:
pP~q pirgi(i=1,...,n) PRG qRr
p=~q f(p1,...,pn) = f(q1,-.-,qn) pxr

2. Prove that = is a weak bisimulation, e.g. for the A-calculus:

R bHAL = At = th =" Aty AVe € A ti[e/x] = tyle/x]

3. This implies & C =, hence the latter is a congruence.

... but Step 2 fails ®



Proof of compositionality w.r.t. weak applicative bisimilarity

Weak bisimilarity ~ on uX — B(uX, uX) is a congruence.

1. Take the Howe closure =~ of ~:

p~q piRq (i=1,...,n) pPRq, qr
p=q f(plv"'vpn)%f(qla"'vqn) p=r

2. Prove that = is a weak bisimulation, e.g. for the A-calculus:
1Rt At =" Ax.t] = th =" dIx.th AVe € A. tj[e/x] = th[e/x]

3. This implies & C =, hence the latter is a congruence.
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Categorical perspective: Graph liftings of (bi-)functors.
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Graphs in a Category

The category Gra(C) of graphs in C is given by objects and morphisms

R R h S
outhﬁ )outrR and outhﬁ \)outrR outlsf/ )outrs
X X o Y

If C has pullbacks, the projection (X, R) — X is a bifibration.

Fibres of the category of graphs

Grax(C) = graphs with vertices X and morphisms (idx, -)

Preorder on Grax(C)
(X,R) < (X,S) <= (X,R)=>(X,S) in Grax(C).
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Graphs in a Category

The category of graphs in C is given by objects and morphisms

hy

R R S
outIR(/ )outrR and outIR(/ )outrR outlsi )outrs
X X 5 %
Opcartesian lift of F: X — Y
R R
f: GraX(C) — Gray(C), OLIt|R£ )outrg — outhg )outrR
X X —t5v
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Graphs in a Category

The category of graphs in C is given by objects and morphisms

R R i S
outIR(/ )outrR and outIR(/ )outrR outlsi )outrs
X X i 4

Composite (X, R); (X, R') of graphs (X,R) and (X, R’)

outlg. rr outrpg. g

R: R
WR;V N Y‘R/’Rl
R R’

OUV w}? ouy Yr}?/
X X X
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Graphs in a Category

The category of graphs in C is given by objects and morphisms

R R il S
outIR(/ )outrR and outIR(/ )outrR outlsi )outrs
X X 5 %
Canonical graph lifting of endofunctor F: C — C
Gra(C) —— Gra(C) R FR
i l given by outhg )outrR = Fouthﬁ )FoutrR
c—Ff sc X FX

ii5)



Proof of compositionality w.r.t. weak applicative bisimilarity

Weak bisimilarity ~ on u¥ — B(uX, uX) is a congruence.

1. Take the Howe closure ~ of ~:
p~q pi=qgi (i=1,...,n) pRqg, g=r
peq  f(p1,...,pn) = f(q1,...,qn) pRr

2. Prove that & is a logical weak bisimulation, e.g. for the A-calculus:

R AL = At = th =" Aty AVd Re. t[d/x] = thle/x]

3. This implies & C =, hence the latter is a congruence.

Categorical perspective: Graph liftings of (bi-)functors.
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Howe closure, categorically

Howe closure R of a relation R C X x X w.r.t. T-algebra &: £X — X:

~

PRq pi R q; (i
pRq  f(p,--.,pn)

Equivalently, R is the least fixed point of the following operator on Rel(X):

1,...,n) pPRq. qRr
f(Q17~--7CIn) pRr

) ||

S — RUX(S):R.
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Howe closure, categorically

Howe closure R of a relation R C X x X w.r.t. > -algebra £: X — X:

pRq piRqi (i=1,...,n) pRq, qRr
pRgq f(p1s---,pn) R f(q1,- ... qn) pRr

Equivalently, R is the least fixed point of the following operator on Rel(X):

S — RUX(S);R.

Howe closure of graph (X, R) € Gra(C) w.r.t. X-algebra : X — X
Initial algebra of the functor £g¢: Grax(C) — Grax(C) given by

(X,S) =  (X,R)+ (&Z(X,S9)); (X, R).
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Proof of compositionality w.r.t. weak applicative bisimilarity

Weak bisimilarity ~ on u¥ — B(uX, uX) is a congruence.

1. Take the Howe closure ~ of ~:
p~q pi=qgi (i=1,...,n) pRqg, g=r
peq  f(p1,...,pn) = f(q1,...,qn) pRr

2. Prove that & is a logical weak bisimulation, e.g. for the A-calculus:

R AL = At = th =" Aty AVd Re. t[d/x] = thle/x]

3. This implies & C =, hence the latter is a congruence.

Categorical perspective: Graph liftings of (bi-)functors.
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Bisimulations

Bisimulation on coalgebra ¢: X — FX = graph (X, R) such that

R e MR, FR
outIRf/ )outrR FoutIRﬁ )FoutrR
X < FX

Equivalently, in terms of the canonical lifting F: Gra(C) — Gra(C):
(X, R) < F(X,R).
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Bisimulations

Bisimulation on coalgebra ¢: X — FX = graph (X, R) such that

R e MR, FR
outIR(/ )outrR FoutIR(/ )FoutrR
X < FX

Equivalently, in terms of the canonical lifting F: Gra(C) — Gra(C):
(X, R) < F(X,R).

Key step towards logical bisimulations

To abstractly express properties like
R AL =Mt = t=MthAVd=Re. tj[d/x] = t)le/x],

need to lift B: C°P x C — C to B: Gra(C)°P x Gra(C) — Gra(C).

B(X,Y) =YX B((X,R),(Y,S)) = (Y,5)*R 19



Graph Liftings of Bifunctors

Canonical lifting B: Gra(C)°P x Gra(C) — Gra(C) of B: C°® xC — C:

R Tr;s
outhﬁ )outrR = 0Ut|R,5(/ \)outrRﬁs
X B(X,Y)

with Tgr s defined via the following triple-pullback diagram:
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Logical Bisimulations for Bifunctors

Gra(C)°P x Gra(C) — Gra(C) _B, Gra(C)

| |

CPxC—C B C

Logical bisimulation on c: X — B(X, X) = graph (X, R) such that
C*(Xa R) é E((X7 R)7 (Xa R))
This captures properties like

AL =Mt = t=MMthAVd=e. tj[d/x] = t)le/x],

21



Summary and Ongoing Work

» Howe's method and logical bisimulations, categorically.
» Key technique: Graph liftings of (bi-)functors.
» First application: a generalized version of our [POPL'23] result.

Theorem (Compositionality of Higher-Order Abstract GSOS)
Suppose that the following conditions hold:

Then for every higher-order abstract GSOS law, bisimilarity on the
canonical model uX — B(uX, uX) is a congruence.

Proof: Howe's method and primitive recursion (not coinduction).

» Next step: Extension to weak bisimilarity.
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ogical Bisimulations for Bifunctors

E(E % BT uE)) (i x B(uE, uT)) B(WE, E*(E + %)) SLEET) BT E(ux) L=t BT uT)
sl ) dinat. oz a0
(7 % B(A uE)) BT E(A+ 15) Bh ) Bz esn) a6 )
st anm) AT (s .
Snanbna) (A x B(AE)) B(A (A +1i5)) BA T (A+ 1) BA (i + %)) 2 BA T (1)) Bhx
dinat o,z
E(Ax B(AE) B(A.T(A+E) A
morph. h
(A x B(A,A) BA T (A A) — BATA) — B(AA) 2o B(AT) 93|

(A x B(AT)



