

Friedrich-Alexander-Universität

Coalgebraic Infinitary Trace Semantics of Nominal Büchi-Automata

Florian Frank

Wednesday 5th October, 2022 Friedrich-Alexander-Universität Erlangen-Nürnberg

- **01** Preliminaries I: Fundamentals of Nom and Monads
- 02 Preliminaries II: Büchi RNNA and Equational Systems
- 03 Coalgebraic Infinitary Trace Semantics of Büchi RNNA

Friedrich-Alexander-Universität Technische Fakultät

Preliminaries I: Fundamentals of ${\bf Nom}$ and Monads

Definition (Group)

A group $G = (G, \cdot, e)$ consists of a set G, a binary operation \cdot on G, and an element e, such that:

(i) · is associative,

Definition (*Group*)

A group $G = (G, \cdot, e)$ consists of a set G, a binary operation \cdot on G, and an element e, such that:

(ii) e is neutral, and

Definition (*Group*)

A group $G = (G, \cdot, e)$ consists of a set G, a binary operation \cdot on G, and an element e, such that:

(iii) every element has an inverse element.

Definition (*Group*)

A group $G = (G, \cdot, e)$ consists of a set G, a binary operation \cdot on G, and an element e, such that:

- (i) · is associative, (ii) e is neutral, and
- (iii) every element has an inverse element.

Example: Permutation Group

A *permutation* $\pi: X \to X$ on a set X is a bijective map. It gives rise to the permutation group Sym X of X by

Sym $X := (\{ \pi : X \to X \mid \pi \text{ is bijective } \}, \circ, \operatorname{id}_X).$

Definition (*Group*)

A group $G = (G, \cdot, e)$ consists of a set G, a binary operation \cdot on G, and an element e, such that:

- (i) · is associative, (ii) e is neutral, and
- (iii) every element has an inverse element.

Example: Permutation Group

A *permutation* $\pi: X \to X$ on a set X is a bijective map. It gives rise to the permutation group Sym X of X by

Sym $X := (\{ \pi \colon X \to X \mid \pi \text{ is bijective } \}, \circ, \operatorname{id}_X).$

A permutation is called *finite* if the set { $x \in X | \pi x \neq x$ } is finite. With this we get the subgroup Perm $X \leq \text{Sym } X$ of finite permutations of X.

Definition (Group Actions)

If X is a set and $\mathbf{G} = (G, \cdot, e)$ is a group, then an *action* of G on X is a function

 $\triangleright : G \times X \to X, (g, x) \mapsto g \triangleright x,$

such that for all $g, h \in G$ and $x \in X$:

(i)
$$e \triangleright x = x$$

We call the set X together with its action a G-set.

Definition (Group Actions)

If X is a set and $\mathbf{G} = (G, \cdot, e)$ is a group, then an *action* of G on X is a function

 $\triangleright : G \times X \to X, \ (g, x) \mapsto g \triangleright x,$

such that for all $g, h \in G$ and $x \in X$:

(ii) $(g \cdot h) \triangleright x = g \triangleright (h \triangleright x)$

We call the set X together with its action a G-set.

Definition (Group Actions)

If X is a set and $\mathbf{G} = (G, \cdot, e)$ is a group, then an *action* of G on X is a function

 $\triangleright : G \times X \to X, \ (g, x) \mapsto g \triangleright x,$

such that for all $g, h \in G$ and $x \in X$:

(i) $e \triangleright x = x$ (ii) $(g \cdot h) \triangleright x = g \triangleright (h \triangleright x)$

We call the set X together with its action a G-set.

Definition (Equivariant Functions)

Let (X, \triangleright_X) and (Y, \triangleright_Y) be *G*-Sets, then a function $f \colon X \to Y$ is called *equivariant*, if

$$f(g \rhd_X x) = g \rhd_Y fx$$

holds for all $g \in G$ and $x \in X$.

Definition (Orbits)

Let (X, \triangleright) be a *G*-Set for a group *G* and $x \in X$. Then the *orbit of x with respect* $to \triangleright$ is $G \triangleright x := \{ g \triangleright x \mid g \in G \} \subseteq X$. These orbits are the equivalence classes for the equivalence relation

$$x \sim_{\mathsf{G}} y : \iff \exists g \in G. \ y = g \triangleright x,$$

and we call a *G*-set *orbit-finite*, if $\#(X/\sim_G) < \infty$.

Definition (Orbits)

Let (X, \triangleright) be a *G*-Set for a group *G* and $x \in X$. Then the *orbit of x with respect* $to \triangleright$ is $G \triangleright x := \{ g \triangleright x \mid g \in G \} \subseteq X$. These orbits are the equivalence classes for the equivalence relation

$$x \sim_G y : \iff \exists g \in G. \ y = g \triangleright x,$$

and we call a *G*-set *orbit-finite*, if $\#(X/\sim_G) < \infty$.

Definition (Support)

Let (X, \triangleright) be a Perm \mathbb{A} set, then $A \subseteq \mathbb{A}$ is a *support* for $x \in X$ if for all $\pi \in \text{Perm } \mathbb{A}$

$$(\forall a \in A. \pi a = a) \Rightarrow \pi \rhd x = x.$$

We then define *the support* $\operatorname{supp}_X x$ of a finitely supported x as the least of all finite supports.

Definition (Uniform Finite Support)

Let (X, \triangleright) be a finitely supported Perm \mathbb{A} set. A subset $S \subseteq X$ is called *uniformly finitely supported (ufs)* if there exists a finite set $A \subseteq \mathbb{A}$ that supports each $x \in S$.

Remark ($U.F.S. \Rightarrow F.S.$)

Every ufs subset $S \subseteq X$ is finitely supported by the same subset $A \subseteq A$. One can also show that in those cases we have

$$A = \bigcup_{x \in S} \operatorname{supp} x.$$

Definition (Category of Nominal Sets)

A nominal set X is a Perm \mathbb{A} set whose elements are all finitely supported. Together with equivariant functions, identiies and compositions as in Set, they form a category Nom.

Remark (Nom is a Cartesian Closed Category)

Since Nom has finite products and exponentials for every pair X, Y of object of Nom, the category is cartesian closed.

Additionally, Nom admits arbitrary coproducts.

Example: Power Sets

With finitely and uniformly finitely supported subsets we get the following two functors:

 $\begin{array}{rcccc} \mathcal{P}_{\mathsf{ufs}} & : & \mathbf{Nom} & \to & \mathbf{Nom} \\ & & X & \mapsto & \{ \ S \subseteq X \mid S \text{ is ufs} \ \} \\ & & f \colon X \to Y & \mapsto & \mathcal{P}_{\mathsf{ufs}}f \colon \mathcal{P}_{\mathsf{ufs}}X \to \mathcal{P}_{\mathsf{ufs}}Y, \ S \mapsto f[S] \end{array}$

Definition (Freshness)

Definition (Abstraction Set)

We call the quotient set of $\mathbb{A} \times X$ with \approx_{α} the *nominal set of name abstractions* $[\mathbb{A}] X$ together with its action

 $\rhd \colon \operatorname{\mathsf{Perm}} \mathbb{A} \times [\mathbb{A}] \, X \to [\mathbb{A}] \, X, \ (\pi, \ \langle a \rangle \, x) \mapsto \langle \pi a \rangle \, (\pi \rhd_X \, x) \, .$

Furthermore, we have supp $\langle a \rangle x = \operatorname{supp} x \setminus \{a\}$ for all $a \in \mathbb{A}$ and $x \in X$.

Proposition (*Functoriality of* [A] -)

The object map $X \mapsto [\mathbb{A}] X$ extends to the *abstraction functor* as follows:

$$[\mathbb{A}] -: \mathbf{Nom} \to \mathbf{Nom}, \left\{ \begin{array}{ccc} X & \mapsto & [\mathbb{A}] X \\ f & \mapsto & [\mathbb{A}] f \colon \langle a \rangle \, x \mapsto \langle a \rangle \, fx \end{array} \right.$$

Theorem (Adjointness of the Abstraction Functor)

The abstraction functor $[\mathbb{A}]_$ is both a left and a right adjoint:

 $_ * \mathbb{A} \dashv [\mathbb{A}] _ \dashv R_{_}$

Theorem (Adjointness of the Abstraction Functor)

The abstraction functor $[\mathbb{A}]$ _ is both a left and a right adjoint:

 $_* \mathbb{A} \dashv [\mathbb{A}] _ \dashv R_$

Proposition (Preservation of Exponentials)

The abstraction functor $[\mathbb{A}]$ _ preserves exponentials:

 $\left[\mathbb{A}\right](X \rightarrow_{\mathsf{fs}} Y) \cong \left[\mathbb{A}\right] X \rightarrow_{\mathsf{fs}} \left[\mathbb{A}\right] Y$

Corollary (\mathcal{P}_{ufs} distributes over $[\mathbb{A}] -$)

The functor $\mathcal{P}_{\mbox{\tiny ufs}}$ distributes over the abstraction functor by

$$\varphi_{X}: \begin{cases} [\mathbb{A}] \mathcal{P}_{ufs}(X) & \to \mathcal{P}_{ufs}([\mathbb{A}] X) \\ \langle a \rangle S & \mapsto \{ \langle a \rangle x \mid x \in S \} \end{cases},$$

$$\psi_{X}: \begin{cases} \mathcal{P}_{ufs}([\mathbb{A}] X) & \to [\mathbb{A}] \mathcal{P}_{ufs}(X) \\ S & \mapsto \langle a \rangle \{ x \mid \langle a \rangle x \in S \} \text{ with } a \# S \end{cases}$$

These morphisms are mutually inverse and natural in X.

Definition (Monads)

Let C be a category. A monad on C is a triple $\langle T, \eta, \mu \rangle$, where $T : C \to C$ is an endofunctor, $\eta : \operatorname{id}_{\mathcal{C}} \Rightarrow T$ and $\mu : T^2 \Rightarrow T$ are natural transformations, and the following diagrams commute for every object X in C:

Definition (Kleisli Category)

Let $\langle T, \eta, \mu \rangle$ be a monad on a category C. The *Kleisli Category* $\mathcal{K}\ell_T$ of T has the same objects as C, but arrows $X \to Y$ in $\mathcal{K}\ell_T$ are arrows $X \to TY$ in C. The identity in $\mathcal{K}\ell_T$ is given by the unit $\eta_X \colon X \to TX$, and the composition of two arrows $f \colon X \to Y$ and $g \colon Y \to Z$ in $\mathcal{K}\ell_T$ is written as $g \odot f$ and defined by

$$\begin{array}{c} g \odot f \\ \overbrace{f}{} TY \xrightarrow{g \odot} T^2 Z \xrightarrow{\mu_Z} TZ. \end{array}$$

Remark (Canonical Adjunction)

We have a canonical adjunction

where J is defined by JX = X on objects and $Jf = \eta_{\text{cod } f} \circ f$ on arrows, where cod f is the codomain of the arrow f. The functor U is defined by UX = TX on objects and $Uf = \mu_{\text{cod } f} \circ Tf$ on arrows.

Definition (Distributive Laws)

Proposition (Correspondence between Extensions and $\mathcal{K}\ell$ -Laws)

Let $\langle T, \eta, \mu \rangle$ be a monad and $F : C \to C$ an endofunctor on a category C. Then there is a bijective correspondence between distributive laws $\lambda : FT \Rightarrow TF$ and extensions of $F : C \to C$ to a functor $\overline{F} : \mathcal{K}\ell_T \to \mathcal{K}\ell_T$, i.e. a functor that makes the diagram on the right commute. Herein, the arrow J is the canonical left adjoint from earlier.

Proposition (Correspondence between Extensions and $\mathcal{K}\ell$ -Laws)

Let $\langle T, \eta, \mu \rangle$ be a monad and $F : C \to C$ an endofunctor on a category C. Then there is a bijective correspondence between distributive laws $\lambda : FT \Rightarrow TF$ and extensions of $F : C \to C$ to a functor $\overline{F} : \mathcal{K}\ell_T \to \mathcal{K}\ell_T$, i.e. a functor that makes the diagram on the right commute. Herein, the arrow J is the canonical left adjoint from earlier.

Given a distributive law $\lambda: FT \Rightarrow TF$ one defines the functor \overline{F} by

$$\overline{F} \colon \mathcal{K}\ell_{\mathcal{T}} \to \mathcal{K}\ell_{\mathcal{T}}, \begin{cases} X & \mapsto & FX \\ X \xrightarrow{f} TY & \mapsto & FX \xrightarrow{Ff} FTY \xrightarrow{\lambda_{Y}} TFY \end{cases}$$

Proposition (Correspondence between Extensions and $\mathcal{K}\ell$ -Laws)

Let $\langle T, \eta, \mu \rangle$ be a monad and $F : C \to C$ an endofunctor on a category C. Then there is a bijective correspondence between distributive laws $\lambda : FT \Rightarrow TF$ and extensions of $F : C \to C$ to a functor $\overline{F} : \mathcal{K}\ell_T \to \mathcal{K}\ell_T$, i.e. a functor that makes the diagram on the right commute. Herein, the arrow J is the canonical left adjoint from earlier.

Given a distributive law $\lambda: FT \Rightarrow TF$ one defines the functor \overline{F} by

$$\overline{F}: \mathcal{K}\ell_{\mathcal{T}} \to \mathcal{K}\ell_{\mathcal{T}}, \begin{cases} X & \mapsto & FX \\ X \xrightarrow{f} TY & \mapsto & FX \xrightarrow{Ff} FTY \xrightarrow{\lambda_{Y}} TFY \end{cases}$$

In the other direction, given \overline{F} one obtains a distributive law by $\lambda_X = \overline{F}(\operatorname{id}_{TX}): FTX \to TFX.$

Kleisli-Lattices

 $\mathcal{K}\ell_{\mathcal{P}_{ufs}}$ admits Lattices

Proposition ($\mathcal{K}\ell$ -Arrows are a Complete Lattice)

For any pair X, Y of objects in Nom the hom-set of the Kleisli category $\mathcal{K}\ell_{\mathcal{P}_{ufs}}(X, Y)$ of the monad \mathcal{P}_{ufs} is a complete lattice, where joins and meets are built by taking the union or intersection, respectively:

Remark (Top and Bottom Element)

The bottom element $\perp_{X,Y}$ of the lattice $\mathcal{K}\ell_{\mathcal{P}_{ufs}}(X, Y)$ and the top element $\top_{X,Y}$ are defined by the equivariant functions

 $\bot_{X,Y} \colon X \to Y, \, x \mapsto \emptyset \qquad \text{and} \qquad \top_{X,Y} \colon X \to Y, \, x \mapsto \{ y \mid \text{supp } y \subseteq \text{supp } x \}.$

Friedrich-Alexander-Universität Technische Fakultät

Preliminaries II: Büchi RNNA and Equational Systems

Bar Strings Definition

We fix a countable infinite set \mathbb{A} of names, and define an extended alphabet $\overline{\mathbb{A}}$ by $\overline{\mathbb{A}} := \mathbb{A} \cup \{ |a| | a \in \mathbb{A} \}.$

Definition (Bar Strings)

- A finite bar string is a finite word over A
 , while an infinite bar string is an infinite word over A. We denote the sets of finite and infinite bar strings by A
 * and A
 ^ω, respectively.
- Given a word $w \in \overline{\mathbb{A}}^* \cup \overline{\mathbb{A}}^{\omega}$ the set of names in w is defined by

 $N(w) := \{ a \in \mathbb{A} \mid \text{the letter } a \text{ or } | a \text{ occurs in } w \}.$

An infinite bar string *w* is *finitely supported* if N(w) is finite; the set $\overline{\mathbb{A}}_{fs}^{\omega} \subseteq \overline{\mathbb{A}}^{\omega}$ denotes the finitely supported infinite bar strings.

A name $a \in \mathbb{A}$ occuring in a bar string $w \in \overline{\mathbb{A}}^* \cup \overline{\mathbb{A}}^{\omega}$ is free if it occurs to the left of any occurance of |a|, and bound otherwise. We denote the set of free names in w by FN(w).

Definition (α -Equivalence on Bar Strings)

■ We define *α*-equivalence ≡_{*α*} on finite bar strings as the equivalence generated by

$$w|av \equiv_{\alpha} w|bu$$
 iff $\langle a \rangle v = \langle b \rangle u$ in $[\mathbb{A}] \overline{\mathbb{A}}^*$.

This then can be extended to an equivalence relation \equiv_{α} on infinite bar strings by

$$v \equiv_{\alpha} w$$
 iff $v[0:n) \equiv_{\alpha} w[0:n)$ for all $n \in \omega$.

■ We write $[w]_{\alpha}$ for the α -equivalence class of $w \in \overline{\mathbb{A}}^* \cup \overline{\mathbb{A}}^{\omega}$, and denote by $\overline{\mathbb{A}}^*/\equiv_{\alpha}$ and $\overline{\mathbb{A}}^{\omega}/\equiv_{\alpha}$ the sets of α -equivalence classes of finite and infinite bar strings, respectively.

Remark (Right Cancellation Property)

For all $v, w \in \overline{\mathbb{A}}^*$ and $x \in \overline{\mathbb{A}}^* \cup \overline{\mathbb{A}}^{\omega}$, we have that $vx \equiv_{\alpha} wx$ implies $v \equiv_{\alpha} w$.

Definition (Clean Bar Strings)

A finite or infinite bar string w is *clean* if for each $a \in FN(w)$ the letter |a does not occur in w, and for each $a \notin FN(w)$ the letter |a occurs at most once.

Lemma (Canonical Form for Bar Strings)

Given a bar string $w \in \overline{\mathbb{A}}^* \cup \overline{\mathbb{A}}_{\mathrm{fs}}^{\omega}$ and a set *S* with $\mathrm{FN}(w) \subseteq S$, there is an α -equivalent clean bar string $\mathrm{nf}(w)$ which is unique with respect to the ordering of the names $\mathbb{A} \setminus S$. Additionally, the mapping nf is equivariant.

Notation (Prefixes)

Given two strings $v \in \overline{\mathbb{A}}^n$ and $w \in \overline{\mathbb{A}}^{n+1}$, we write $v \sqsubseteq w$ if v = w[0:n) and write $v \sqsubseteq_{\alpha} w$ if $v \equiv_{\alpha} w[0:n)$.

Lemma (α -Equivalent Prefixes)

Given two bar strings $v \in \overline{\mathbb{A}}^n$ and $w \in \overline{\mathbb{A}}^{n+1}$ and a finite set $S \subseteq \mathbb{A}$, such that $FN(v), FN(w) \subseteq S$, we have that $v \sqsubseteq_{\alpha} w$ if and only if $nf(v) \sqsubseteq nf(w)$.

Proof: We show both implications singularily:

"⇒" The assumption implies, that $u \equiv_{\alpha} w[0:n)$ and therefore $nf(u) \equiv_{\alpha} u \equiv_{\alpha} w[0:n] \equiv_{\alpha} nf(w)[0:n]$, where the last α -equivalence holds because of the *right cancellation property*. However, because of the uniqueness with respect to the ordering of $A \setminus S$, we have that nf(u) = nf(w)[0:n].

"\equiv We now have
$$nf(u) = nf(w)[0:n)$$
, i.e.
 $u \equiv_{\alpha} nf(u) = nf(w)[0:n] \equiv_{\alpha} w[0:n)$, where the last
 α -equivalence holds because of the *right cancellation property*.

Definition (Regular Nondeterministic Nominal Automata)

A regular nondeterministic nominal automaton (RNNA) is a tuple $A = (Q, \delta, s, Acc)$ consisting of

- an orbit-finite nominal set *Q* of states, with an *initial state s* ∈ *Q*;
- an equivariant subset $\delta \subseteq Q \times \overline{\mathbb{A}} \times Q$, the *transition relation*, where we write $q \xrightarrow{\alpha} q'$ for $(q, \alpha, q') \in \delta$; transitions of type $q \xrightarrow{a} q'$ are called *free*, and those of type $q \xrightarrow{la} q'$ bound;
- an equivariant subset Acc ⊆ *Q* of *final* states

such that the following conditions are satisfied:

T.CS FAU

Definition (*Regular Nondeterministic Nominal Automata*)

- A regular nondeterministic nominal automaton (RNNA) is a tuple A $= (\mathbf{Q}, \delta, \mathbf{s}, \mathrm{Acc})$ consisting of
- an orbit-finite nominal set Q of states, with an *initial state* $s \in Q$;
- an equivariant subset $\delta \subseteq \mathbf{Q} \times \overline{\mathbb{A}} \times \mathbf{Q}$, the *transition relation*;
- an equivariant subset $Acc \subseteq Q$ of *final* states

such that the following conditions are satisfied:

- The relation δ is α -invariant, i.e. closed under α -equivalence of transitions, where transitions $q \xrightarrow{la} q'$ and $p \xrightarrow{lb} p'$ are α -equivalent if q = p and $\langle a \rangle q' = \langle b \rangle p'$.
- The relation δ is *finitely branching up to* α *-equivalence*, i.e. for each state q the sets

$$\left\{ \left. \left(a,\,q'\right) \;\middle|\; q \xrightarrow{a} q' \;\right\} \; ext{and} \; \left\{ \left. \left\langle a
ight
angle \, q' \;\middle|\; q \xrightarrow{\mid a} q' \;\right\}
ight.$$

are finite or equivalently ufs.

Remark (RNNAs as Coalgebras)

Coalgebraically, an RNNA is an orbit-finite coalgebra $\gamma: Q \rightarrow FQ$ for the functor

$$F = \mathcal{P}_{ufs}(\mathbb{A} \times - + [\mathbb{A}] -),$$

together with an equivariant subset Acc $\subseteq Q$ of final states and a map $s \colon 1 \to Q$ in $\mathcal{K}\ell_{\mathcal{P}_{ufs}}$ for initial states.

Given an RNNA $A = (Q, \delta, s, Acc)$, its equivalent coalgebra is given by

$$\gamma_{G} \colon \left\{ \begin{array}{cc} \mathcal{Q} & \to & \mathcal{P}_{\mathsf{ufs}} \left(\mathbb{A} \times \mathcal{Q} + [\mathbb{A}] \, \mathcal{Q} \right) \\ q & \mapsto & \mathcal{S}_{q} \end{array} \right.$$

where $(a, q') \in S_q$ iff $q \xrightarrow{a} q'$, and $\langle a \rangle q' \in S_q$ iff $q \xrightarrow{la} q'$. The map of initial states is given by $s : \mathbb{1} \to Q, * \mapsto \{s\}$.

Definition (Büchi RNNA)

A Büchi RNNA is an RNNA $A = (Q, \delta, q_0, Acc)$, where it accepts a run $r \in Q^{\omega}$, if $\# \{ i \in \omega \mid r_i \in Acc \} = \omega$. The state $q \in Q$ accepts an infinite bar string $w \in \overline{\mathbb{A}}^{\omega}$, if there is a run for w starting with q. The automaton A accepts $w \in \overline{\mathbb{A}}^{\omega}$, if its initial state q_0 accepts w. We then define by

$$L_{\alpha,\omega}(A) := \left\{ [w]_{\alpha} \mid w \in \overline{\mathbb{A}}^{\omega}, A \text{ accepts } w \right\}$$

the bar ω -language accepted by A.

Definition (Equational Systems with Two Variables)

For $i \in \{1, 2\}$ let $f_i: L_1 \times L_2 \rightarrow L_i$ be monotone functions where all L_i 's are posets. An *equational system* is then a sequence

 $\left[\begin{array}{c} \boldsymbol{u}_1 =_{\eta_1} f_1(\boldsymbol{u}_1, \boldsymbol{u}_2) \\ \boldsymbol{u}_2 =_{\eta_2} f_2(\boldsymbol{u}_1, \boldsymbol{u}_2) \end{array}\right],$

where the u_i 's are variables and η_i is either ν or μ for all $i \in \{1, 2\}$.

Given all necessary fixed points exist, we can define the *solution* of such a system by the element

$$(h_1, h_2) \in L_1 \times L_2,$$

obtained in the following way:

- 1) Compute the first 'interim' solution $g_1(u_2) = \eta_1 x_1$. $f_1(u_1, u_2)$.
- 2) Substitute this solution in the remaining equation, i.e. $u_2 =_{\eta_2} f_2(g_1(u_2), u_2)$, and solve this system to compute h_2 , which is used for $h_1 = g_1(h_2)$.

Lemma (Solvability Criterion)

Such an equational system for two variables has a solution if each L_i is a complete lattice.

Friedrich-Alexander-Universität Technische Fakultät

Coalgebraic Infinitary Trace Semantics of Büchi RNNA

Original Assumptions

Assumption (*Coalgebraic Assumptions after Urabe et al.*)

In what follows a monad T and an endofunctor F, both on a category C, satisfy:

- (1) $\, {\cal C}$ has a final object 1 and finite coproducts.
- (2) *F* has a final coalgebra $\zeta : Z \to FZ$ in *C*.
- (3) There is a distributive law $\lambda \colon FT \Rightarrow TF$, hence $F \colon C \to C$ is lifted to $\overline{F} \colon \mathcal{K}\ell_T \to \mathcal{K}\ell_T$.
- (4) For every pair X, Y of objects in $\mathcal{K}\ell_T$, the hom-set $\mathcal{K}\ell_T(X, Y)$ carries an order $\preccurlyeq_{X,Y}$ and is a complete lattice.
- (5) Kleisli composition \odot and cotupling [-, -] are monotone with respect to the order \preccurlyeq .

(6) The lifting \overline{F} is *locally monotone*, i.e. for $f, g \in \mathcal{K}\ell_T(X, Y)$, $f \preccurlyeq_{X,Y} g$ implies $\overline{F}f \preccurlyeq_{\overline{F}X,\overline{F}Y} \overline{F}g$.

Büchi RNNAs satisfy the Assumptions

Büchi RNNAs

The category \mathbf{Nom} , the ufs powerset monad $\mathcal{P}_{\mathsf{ufs}}$ and the functor

$$F = \mathbb{A} \times - + [\mathbb{A}] -$$

satisfy the assumptions.

Proof: Since most of the points have already been proven, we will only look at the final coalgebra of *F*: We prove that the map

$$\zeta \colon \left(\overline{\mathbb{A}}^{\omega}/\equiv_{\alpha}\right)_{\mathsf{fs}} \to \mathcal{G}(\left(\overline{\mathbb{A}}^{\omega}/\equiv_{\alpha}\right)_{\mathsf{fs}}), \ [w]_{\alpha} \mapsto \begin{cases} (a, [w']_{\alpha}) & \text{if } [w]_{\alpha} = [aw']_{\alpha} \\ \langle a \rangle [w']_{\alpha} & \text{if } [w]_{\alpha} = [law']_{\alpha} \end{cases}$$
(1)

is the final coalgebra for the functor G by use of Adámek's Lemma for final coalgebras. (The ω^{op} -limit of the chain G^n 1 carries the structure of a final coalgebra, if G preserves that limit)

Büchi RNNAs satisfy the Assumptions

We then prove that $G^n \mathbb{1} \cong \overline{\mathbb{A}}^n / \equiv_{\alpha}$ holds by induction over $n \in \omega$:

Base Case (n = 0): Obviously this holds, since $G^0 \mathbb{1} = \mathbb{1} \cong \{ [\varepsilon]_{\alpha} \} = \overline{\mathbb{A}}^0 / \equiv_{\alpha}.$

Step Case ($n \to n+1$ **):** Suppose now that $G^n \mathbb{1} \cong \overline{\mathbb{A}}^n / \equiv_{\alpha}$ holds for *n*, then we have

$$\begin{aligned} G^{n+1} \mathbb{1} &= G(G^n \mathbb{1}) \stackrel{\text{I.H.}}{\cong} G(\overline{\mathbb{A}}^n / \equiv_{\alpha}) \\ &= \mathbb{A} \times \overline{\mathbb{A}}^n / \equiv_{\alpha} + [\mathbb{A}] \overline{\mathbb{A}}^n / \equiv_{\alpha} \stackrel{(*)}{\cong} \overline{\mathbb{A}}^{n+1} / \equiv_{\alpha}. \end{aligned}$$

The last isomorphism (*) is given by

 $(a, [w]_{\alpha}) \mapsto [aw]_{\alpha}$ and $\langle a \rangle [w]_{\alpha} \mapsto [|aw]_{\alpha}$

for $a \in \mathbb{A}$ and $[w]_{\alpha} \in \overline{\mathbb{A}}^n / \equiv_{\alpha}$. It should be obvious to see that this mapping is an isomorphism.

Büchi RNNAs satisfy the Assumptions

With this, we only have to prove that

 $((\overline{\mathbb{A}}^{\omega}/\equiv_{\alpha})_{fs}, \varphi_n: (\overline{\mathbb{A}}^{\omega}/\equiv_{\alpha})_{fs} \to \overline{\mathbb{A}}^n/\equiv_{\alpha}, w \mapsto w[0:n))$ is indeed the limit cone for the ω^{op} chain. Indeed, our candidate is a cone since the following diagram obviously commutes:

So suppose $(K, \psi_i \colon K \to \overline{\mathbb{A}}^i / \equiv_{\alpha})$ is another cone. This means that for each $k \in K$ we have a finitely supported family $\psi_i(k)$ of finitely supported bar strings that is compatible, i.e. $\psi_i(k) \sqsubseteq_{\alpha} \psi_{i+1}(k)$ for all $i \in \omega$.

Since the family $\{ \psi_i(k) \}_{i \in \omega}$ is finitely supported, the set $S := \bigcup_{i \in \omega} FN(w_i)$ is finite. We therefore define

$$a_{K}: K \to \overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}, \ k \mapsto \left[w_{k}: \omega \to \overline{\mathbb{A}}, \ i \mapsto \operatorname{nf}(\psi_{i+1}(k))(i) \right]_{\alpha}$$

and prove below that it is the unique arrow between K and our limit candidate. It is well-defined in the sense that we have $\operatorname{nf}(\psi_i(k)) \sqsubseteq \operatorname{nf}(\psi_{i+1}(k))$ for each $i \in \omega$. The mapping is also equivariant. Additionally, this a_K fulfills the limit equations, i.e. we have for every $k \in K$ and $n \in \omega$, that $\psi_n(k) = \varphi_n(a_K(k))$.

Büchi RNNAs satisfy the Assumptions

We show that $\varphi_n(a_k(k)) = nf(\psi_n(k))$ by induction over $n \in \omega$:

Base Case (n = 0**):** Obviously this holds, since $nf(\psi_0(k)) = [\varepsilon]_{\alpha} = \varphi_0(a_{\kappa}(k)).$

Step Case ($n \rightarrow n+1$ **):** Suppose now that $nf(\psi_n(k)) = \varphi_n(a_k(k))$ holds for *n*. Let w_k be the representant of $a_k(k)$, then we have

$$\begin{aligned} \varphi_{n+1}(w_k) &= \varphi_n(w_k) \left(\operatorname{nf}(\psi_{n+1}(k))(n) \right) \\ \stackrel{I.H.}{=} & \operatorname{nf}(\psi_n(k)) \left(\operatorname{nf}(\psi_{n+1}(k))(n) \right) \\ \stackrel{(\Delta)}{=} & \operatorname{nf}(\psi_{n+1}(k))[0:n) \left(\operatorname{nf}(\psi_{n+1}(k))(n) \right) \\ &= & \operatorname{nf}(\psi_{n+1}(k)), \end{aligned}$$

where the step $\left(\Delta\right)$ holds because of the prefix properties of the canonical form.

Büchi RNNAs satisfy the Assumptions

The uniqueness of the mapping $a_{\mathcal{K}}$ is easy to prove since the cone projections are jointly monic:

- Let $g, h: X \to (\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha})_{fs}$ be two maps with $\varphi_i \circ g = \varphi_i \circ h$ for all $i \in \omega$.
- This means that for every $x \in X$, putting $[w]_{\alpha} = g(x)$ and $[w']_{\alpha} = h(x)$, we have $w[0:i) \equiv_{\alpha} w'[0:i)$ for every $i \in \omega$.
- But this means $w \equiv_{\alpha} w'$ and therefore g(x) = h(x).

With this in mind, we see that for every other map f between K and $(\overline{\mathbb{A}}^{\omega}/\equiv_{\alpha})_{fs}$ with $\varphi_i \circ f = \psi_i$ we have $\varphi_i \circ f = \varphi_i \circ a_K$ and thus $f = a_K$. Hereby, uniqueness is shown, and because

$$\mathbf{a}_{G} \colon G(\left(\overline{\mathbb{A}}^{\omega}/\equiv_{\alpha}\right)_{\mathsf{fs}}) \to \left(\overline{\mathbb{A}}^{\omega}/\equiv_{\alpha}\right)_{\mathsf{fs}}, \begin{cases} (\mathbf{a}, [\mathbf{w}]_{\alpha}) & \mapsto & [\mathbf{aw}]_{\alpha} \\ \langle \mathbf{a} \rangle [\mathbf{w}]_{\alpha} & \mapsto & [|\mathbf{aw}]_{\alpha} \end{cases}$$

is the unique limit mapping between $G((\overline{\mathbb{A}}^{\omega}/\equiv_{\alpha})_{fs})$ and $(\overline{\mathbb{A}}^{\omega}/\equiv_{\alpha})_{fs}$, we see that its inverse must be the final coalgebra of G.

Büchi (T, F)-Systems

Definition (*Büchi* (*T*, *F*)-*System*)

A Büchi(T, F)-System is given by a triple $\mathcal{X} = ((X_1, X_2), c: X \to \overline{F}X, s: 1 \to X)$, where X is defined as the coproduct $X_1 + X_2$ in C, the state objects with their priorities, meaning that X_1 encodes the non-final, and X_2 the final states of the Büchi automaton. Additionally, $c: X \to \overline{F}X$ is an arrow in $\mathcal{K}\ell_T$, the dynamics, and $s: 1 \to X$ an arrow in $\mathcal{K}\ell_T$ providing *initial states*. We define for each i = 1, 2 the arrow $c_i: X_i \to \overline{F}X$ to be the restriction $c \circ \kappa_i: X_i \to \overline{F}X$ along the coproduct injections $\kappa_i: X_i \to X$.

Trace Semantics of Büchi-Systems

Definition (Trace Semantics of Büchi (T, F)-Systems)

Let $\mathcal{X} = ((X_1, X_2), c \colon X \to \overline{F}X, s \colon \mathbb{1} \to X)$ be a Büchi (T, F)-System. It induces the following equational system $E_{\mathcal{X}}$, where $\zeta \colon Z \to FZ$ is the final coalgebra of F in \mathcal{C} . Herein, the variable u_i ranges over the poset $\mathcal{K}\ell_T(X_i, Z)$:

$$\mathsf{E}_{\mathcal{X}} := \left[\begin{array}{cc} u_1 & =_{\mu} & (J\zeta)^{-1} \circledcirc \overline{\mathsf{F}}[u_1, u_2] \circledcirc c_1 \\ u_2 & =_{\nu} & (J\zeta)^{-1} \circledcirc \overline{\mathsf{F}}[u_1, u_2] \circledcirc c_2 \end{array} \right]$$

(T, F) consitutes a *Büchi trace situation*, if $E_{\mathcal{X}}$ has a solution for any Büchi (T, F)-System \mathcal{X} , denoted by trace^b_i (\mathcal{X}) : $X_i \rightarrow Z$ for $i \in \{1, 2\}$. The composite

$$\mathsf{trace}^{\mathsf{b}}(\mathcal{X}) := \left(\mathbb{1} \xrightarrow{s} X_1 + X_2 \xrightarrow{[\mathsf{trace}^{\mathsf{b}}_1(\mathcal{X}),\mathsf{trace}^{\mathsf{b}}_2(\mathcal{X})]}{+} Z \right)$$

is called the *trace semantics* of the Büchi (T, F)-System \mathcal{X} .

Coincidence Result for Büchi RNNA

Theorem (Coincidence with RNNAs)

Every Büchi RNNA System $\mathcal{A} = ((Q \setminus Acc, Acc), c_{\mathcal{A}} : Q \rightarrow FQ, s : 1 \rightarrow Q)$ consitutes a Büchi trace situation, where the trace mappings are given by:

$$\operatorname{trace}_{1}^{\mathrm{b}}(\mathcal{A}) \colon Q \setminus \operatorname{Acc} o \overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}, q \mapsto L_{\alpha,\omega}(q) \quad \text{ and} \\ \operatorname{trace}_{2}^{\mathrm{b}}(\mathcal{A}) \colon \operatorname{Acc} o \overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}, q \mapsto L_{\alpha,\omega}(q)$$

Additionally its trace semantics is given by

$$\mathsf{trace}^{\mathsf{b}}(\mathcal{A}) \colon \mathbb{1} \to \overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}, * \mapsto \mathit{L}_{\alpha,\omega}(\mathcal{A}).$$

Proof of Coincidence Result

Proof: Since every Kleisli hom-set $\mathcal{K}\ell_{\mathcal{P}_{ufs}}(Y, Z)$ is a complete lattice, it is obvious that every Büchi RNNA System consitutes a Büchi trace situation. For this prove, we will calculate the solution of the following equational system:

$$E_{\mathcal{A}} := \begin{bmatrix} u_1 & =_{\mu} & (J\zeta)^{-1} \odot \overline{F}[u_1, u_2] \odot c_1 \\ u_2 & =_{\nu} & (J\zeta)^{-1} \odot \overline{F}[u_1, u_2] \odot c_2 \end{bmatrix}$$

Herein, the state set Q is divided into $Q_1 := Q \setminus Acc$ and $Q_2 := Acc$, the mapping $c_i : Q_i \rightarrow FQ$ is the restriction of the coalgebra along the coproduct injections, the functor $F = \mathbb{A} \times - + [\mathbb{A}] - is$ the Büchi RNNA functor, while

$$\zeta \colon \left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathsf{fs}} \to F(\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathsf{fs}}), \ [w]_{\alpha} \mapsto \begin{cases} (a, [w']_{\alpha}) & \text{if } [w]_{\alpha} = [aw']_{\alpha} \\ \langle a \rangle [w']_{\alpha} & \text{if } [w]_{\alpha} = [law']_{\alpha} \end{cases}$$

is the final coalgebra for F.

Proof of Coincidence Result

Notation (Paths in Büchi RNNAs)

Given some $q, q' \in Q$ and $v \in \overline{\mathbb{A}}^* / \equiv_{\alpha}$, we write $q \xrightarrow{v} q'$ if there is a *v*-labeled path from $q \to q'$, and $q \xrightarrow{v} q'$ if, additionally, all intermediate states on the path are from Q_1 . Note, that q and q' may still be elements of Q_2 .

We will then solve this system just like it was mentioned earlier:

Proof of Coincidence Result

Step 1 For every fixed $u_2: Q_2 \rightarrow (\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha})_{fs'}$ define the interim solution $I_1^{(1)}$ by

$$I_1^{(1)}(\mathbf{U}_2) := \mu \,\mathfrak{n}_1. \, (\mathbf{J}\zeta)^{-1} \odot \overline{\mathbf{F}}[\mathfrak{n}_1, \mathbf{U}_2] \odot \mathbf{C}_1$$

and solve this by using Kleene. To make the notation less convoluted, we define the 'helper function' f_1 to be

$$f_{1} \colon \begin{cases} \mathcal{K}\ell_{\mathcal{P}_{\mathsf{ufs}}}\left(\mathbf{Q}_{1}, \left(\overline{\mathbb{A}}^{\omega}/\equiv_{\alpha}\right)_{\mathsf{fs}}\right) \to \mathcal{K}\ell_{\mathcal{P}_{\mathsf{ufs}}}\left(\mathbf{Q}_{1}, \left(\overline{\mathbb{A}}^{\omega}/\equiv_{\alpha}\right)_{\mathsf{fs}}\right), \\ \mathfrak{n}_{1} \mapsto (\mathbf{J}\zeta)^{-1} \odot \overline{\mathbf{F}}[\mathfrak{n}_{1}, \mathbf{U}_{2}] \odot \mathbf{c}_{1}. \end{cases}$$

We claim, that for all $k \in \omega$ and $q \in Q_1$, we have

$$f^{k}(\bot)(\boldsymbol{q}) = \left\{ \begin{bmatrix} \boldsymbol{v}\boldsymbol{w} \end{bmatrix}_{\alpha} \middle| \begin{array}{c} \boldsymbol{v} \in \overline{\mathbb{A}}^{\leqslant k}, \, \boldsymbol{w} \in \overline{\mathbb{A}}^{\omega} \\ \exists \boldsymbol{q}' \in \boldsymbol{Q}_{2}. \, \boldsymbol{q} \stackrel{\boldsymbol{v}}{\Rightarrow}^{*} \boldsymbol{q}' \wedge [\boldsymbol{w}]_{\alpha} \in \boldsymbol{u}_{2}(\boldsymbol{q}'). \end{array} \right\}.$$

Herein, \mathfrak{f}_1^k denotes the *k*-fold application of \mathfrak{f}_1 . We prove this claim per induction over $k \in \omega$:

Proof of Coincidence Result

Base Case (k = 0**):** For k = 0 the claim obviously holds: Since $f_1^0(\bot)(q) = \bot(q) = \emptyset$ by definition and $q \in Q_1$, we do not have $q \xrightarrow{\varepsilon} q'$ for any $q' \in Q_2$.

Step Case ($k \to k + 1$ **):** Suppose now that the claim holds for some $k \in \omega$. Let, furthermore, $[u]_{\alpha} = [aw]_{\alpha} \in (\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha})_{fs}$, where $a \in \overline{\mathbb{A}}$ and $w \in \overline{\mathbb{A}}^{\omega}$. Then, the following statements are equivalent:

- (i) $[u]_{\alpha} \in \mathfrak{f}_1(\mathfrak{f}_1^k(\perp))(q).$
- (ii) There is a $q_1 \in Q_1$, such that $q \xrightarrow{a} q_1$ and $[w]_{\alpha} \in \mathfrak{f}_1^k(\bot)(q_1)$, or a $q_2 \in Q_2$, such that $q \xrightarrow{a} q_2$ and $[w]_{\alpha} \in u_2(q_2)$.
- (iii) There is a $q_1 \in Q_1, q_2 \in Q_2, v \in \overline{\mathbb{A}}^{\leq k}$, and $w' \in \left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}}$, such that

$$[w]_{\alpha} = [vw']_{\alpha}, q \xrightarrow{a} q_1 \xrightarrow{v} q_2, \text{ and } [w']_{\alpha} \in u_2(q_2),$$

or a $q_2 \in Q_2$, such that $q \stackrel{a}{\to} q_2$ and $[w]_{\alpha} \in u_2(q_2)$. (iv) There is a $q_2 \in Q_2$, $v \in \overline{\mathbb{A}}^{\leq k+1}$, and $w' \in (\overline{\mathbb{A}}^{\omega}/\equiv_{\alpha})_{\mathrm{fs}}$, such that

$$[u]_{\alpha} = [vw']_{\alpha}, \ q \stackrel{v}{\Longrightarrow}^* q_2, \text{ and } [w']_{\alpha} \in u_2(q_2).$$

Because the function f_1 is clearly ω -continuous, the interim solution $l_1^{(1)}(u_2)$ is obtained by taking the supremum of the Kleene chain. Therfore, we get the explicit description

$$\mathcal{J}_1^{(1)}(\pmb{u}_2)(\pmb{q}) = \left\{ \left[\pmb{v}\pmb{w}
ight]_lpha \; \middle| \; \pmb{v} \in \overline{\mathbb{A}}^+, \; \pmb{w} \in \overline{\mathbb{A}}^\omega, \exists \pmb{q}' \in \pmb{Q}_2.\pmb{q} \stackrel{\pmb{v}}{\Rightarrow} ^* \pmb{q}' \wedge [\pmb{w}]_lpha \in \pmb{u}_2(\pmb{q}')
ight\}$$

of our interim solution.

Proof of Coincidence Result

Step 2 Define the iterim solution $I_2^{(2)}$ by

$$I_2^{(2)} := \nu \, \mathfrak{n}_2. \, (J\zeta)^{-1} \circledcirc \overline{\mathcal{F}} \left[I_1^{(1)}(\mathfrak{n}_2), \mathfrak{n}_2 \right] \circledcirc \mathbf{C}_2.$$

Again, to make the notation less convoluted, we define the 'helper function' \mathfrak{f}_2 to be

$$\mathfrak{f}_2\colon \mathfrak{n}_2\mapsto (\boldsymbol{J}\zeta)^{-1}\odot \overline{\boldsymbol{F}}\left[\boldsymbol{I}_1^{(1)}(\mathfrak{n}_2),\mathfrak{n}_2\right]\odot \boldsymbol{c}_2.$$

Similar to Step 1, f_2 is given by

$$\mathfrak{f}_2(\boldsymbol{\textit{u}}_2)(\boldsymbol{\textit{q}}) = \Big\{ \left[\boldsymbol{\textit{v}} \boldsymbol{\textit{w}} \right]_\alpha \ \Big| \ \boldsymbol{\textit{v}} \in \overline{\mathbb{A}}^+, \ \boldsymbol{\textit{w}} \in \overline{\mathbb{A}}^\omega, \exists \boldsymbol{\textit{q}}' \in \boldsymbol{\textit{Q}}_2.\boldsymbol{\textit{q}} \stackrel{\boldsymbol{\textit{v}}}{\Rightarrow} \boldsymbol{^{*}} \boldsymbol{\textit{q}}' \wedge [\boldsymbol{\textit{w}}]_\alpha \in \boldsymbol{\textit{u}}_2(\boldsymbol{\textit{q}}) \Big\}$$

We then claim that $I_2^{(2)}(q) = L^2_{\alpha,\omega}(q)$. Here, $L^2_{\alpha,\omega}$ is the restriction of the language mapping $L_{\alpha,\omega}$ to Q_2 . Since $L^2_{\alpha,\omega}$ is obviously a fixed

Proof of Coincidence Result

point of f_2 , we have $L^2_{\alpha,\omega}(q) \subseteq I^{(2)}_2(q)$. It remains to prove $I_2^{(2)}(q) \subseteq L_{\alpha,\omega}^2(q)$. Let $[w]_{\alpha} \in I_2^{(2)}(q) = \mathfrak{f}_2(I_2^{(2)})(q)$ and $w \in \overline{\mathbb{A}}^{\omega}$ be a representant of $[w]_{\alpha}$. We shall construct infinite sequences of states $q_0, q_1, \dots \in Q_2$ and non-empty words $v_1, v_2, \dots \in \overline{\mathbb{A}}^+$, such that (i) $q = q_0$ and $q_i \xrightarrow{v_{i+1}} q_{i+1}$ holds for all $i \in \omega$; (ii) for each $k \in \omega$ the word $v_1 \cdots v_k$ is a prefix of w_i , i.e. $w = v_1 \cdots v_k w'$ for some $w' \in \overline{\mathbb{A}}^{\omega}$ and the equivalence class $[w']_{\alpha}$ of the suffix w' lies in $I_2^{(2)}(q_k)$. Given this, (ii) implies that $w = v_1 v_2 \cdots$, while (i) implies that w has an accepting run from q. Therefore, we can conclude that $[w]_{\alpha} \in L^2_{\alpha}$, (q). We construct this sequence recursively. Obviously, we fix $q_0 = q$. Moreover, fix $k \in \omega$ and suppose that we already defined q_0, \ldots, q_k and v_1, \ldots, v_k , such that (i') $q = q_0 \xrightarrow{\nu_1} q_1 \xrightarrow{\nu_2} \cdots \xrightarrow{\nu_k} q_k$

Proof of Coincidence Result

(ii') the word $v_1 \cdots v_k$ is a prefix of w, i.e. $w = v_1 \cdots v_k w'$ for some $w' \in \overline{\mathbb{A}}^{\omega}$ and the equivalence class $[w']_{\alpha}$ of the suffix w' lies in $I_2^{(2)}(q_k)$.

Because of (ii'), we have that $w' \in l_2^{(2)}(q_k) = f_2(l_2^{(2)})(q_k)$. Therefore, there are $v' \in \overline{\mathbb{A}}^+$, $w'' \in \overline{\mathbb{A}}^{\omega}$, and $q' \in Q_2$, such that $w' \equiv_{\alpha} v' w''$, $q_k \stackrel{v'}{\Longrightarrow}^* q'$ and $[w'']_{\alpha} \in l_2^{(2)}(q')$. Thus, $v_{k+1} = v'$ and $q_{k+1} = q'$ fulfill all desired properties.

Step 3 Lastly, we calculate the trace mappings. Obviously, trace₂^b(\mathcal{A}): Acc $\rightarrow (\overline{\mathbb{A}}^{\omega}/\equiv_{\alpha})_{\mathsf{fs}}, q \mapsto L_{\alpha,\omega}(q)$ holds, since trace₂^b(\mathcal{A}) = $I_2^{(2)}$. Moreover, we get the trace map for Q_1 by $I_1^{(1)}(I_2^{(2)})$. Thus, for any $q \in Q_1$, we have

 $I_1^{(1)}(\mathcal{L}^2_{\alpha,\omega})(\boldsymbol{q}) = \Big\{ \left[\boldsymbol{v} \boldsymbol{w} \right]_\alpha \ \Big| \ \boldsymbol{v} \in \overline{\mathbb{A}}^+, \ \boldsymbol{w} \in \overline{\mathbb{A}}^\omega, \text{ there is a } \boldsymbol{q}' \in \mathbf{Q}_2, \text{ s.t. } \boldsymbol{q} \xrightarrow{\boldsymbol{v}} \boldsymbol{q}', \text{ and } [\boldsymbol{w}]_\alpha \in \mathcal{L}^2_{\alpha,\omega}(\boldsymbol{q}') \Big\}.$

This is clearly equal to $L^1_{\alpha,\omega}$, the restriction of $L_{\alpha,\omega}$ to Q_1 .

Proof of Coincidence Result

This concludes the proof that the trace mappings are given by the language mappings. It is obvious, that the composite $\left[\operatorname{trace}_{1}^{\mathsf{b}}(\mathcal{A}), \operatorname{trace}_{2}^{\mathsf{b}}(\mathcal{A})\right] \odot s$ maps the singular element $* \in \mathbb{1}$ to the accepted bar ω -language by the Büchi RNNA \mathcal{A} .

Friedrich-Alexander-Universität Technische Fakultät

Thank you for your attention!