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Preliminaries I: Fundamentals of Nom and
Monads



Groups 7.cs EAU

Definitions

Definition ( Group)

A group G = (G, -, e) consists of a set G, a binary operation - on G, and an
element ¢, such that:

(i) -is associative,
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Definitions

Definition ( Group)

A group G = (G, -, e) consists of a set G, a binary operation - on G, and an
element ¢, such that:

(i) -is associative, (ii) eis neutral, and

(iii) every element has an inverse element.

Example: Permutation Group

A permutation w: X — X on a set X is a bijective map. It gives rise to the
permutation group Sym X of X by

Sym X := ({ 7: X — X | = is bijective }, o, idx).
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Groups 7.cs EAU

Definitions

Definition ( Group)
A group G = (G, -, e) consists of a set G, a binary operation - on G, and an
element ¢, such that:

(i) -is associative, (ii) eis neutral, and

(iii) every element has an inverse element.

Example: Permutation Group

A permutation w: X — X on a set X is a bijective map. It gives rise to the
permutation group Sym X of X by

Sym X := ({ 7: X — X | = is bijective }, o, idx).

A permutation is called finite if the set { x € X | mx # x } is finite. With this we
get the subgroup Perm X < Sym X of finite permutations of X.

L J
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Groups 7.cs EAU

Actions and Equivariance

Definition ( Group Actions)

If Xisasetand G = (G, -, e)is a group, then an action of G on X is a function
>:Gx X=X, (g,X)— g x,

such that for all g, he€ Gand x € X:
(i) e>x=x
We call the set X together with its action a G-set.
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Actions and Equivariance

Definition ( Group Actions)

If Xisasetand G = (G, -, e)is a group, then an action of G on X is a function
>:Gx X=X, (g,X)— g x,

such that for all g, he€ Gand x € X:
(i) e>x=x (i) (g-hHh>x=gr> (h> x)
We call the set X together with its action a G-set.

Definition ( Equivariant Functions')

Let (X,>x) and (Y, >y ) be G-Sets, then afunction f: X — Y is called equivariant,
if
fgox x) =gy fx

holds for all g € Gand x € X.
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Groups 7.cs EAU

Orbits and Support

Definition ( Orbits)

Let (X, >) be a G-Set for a group G and x € X. Then the orbit of x with respect
torisG> x:={gr> x| ge G} C X. These orbits are the equivalence classes
for the equivalence relation

Xr~gy<=3ge G y=9nD> X,

and we call a G-set orbit-finite, if # (X/~¢) < .
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Orbits and Support

Definition ( Orbits)

Let (X, >) be a G-Set for a group G and x € X. Then the orbit of x with respect
toisG> x:={gr> x| ge G} C X. These orbits are the equivalence classes
for the equivalence relation

Xr~gy<=3ge G y=9nD> X,

and we call a G-set orbit-finite, if # (X/~¢) < .

Definition ( Support)

Let (X, >) beaPerm A set, then A C Aiisa support for x € X if forallT € Perm A

(VaeAma=a)=7n> x=x.

We then define the support suppy x of a finitely supported x as the least of all
finite supports.
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Groups 7.cs EAU

Support

Definition ( Uniform Finite Support )

Let (X, ) be afinitely supported Perm A set. Asubset S C X is called uniformly
finitely supported (ufs) if there exists a finite set A C A that supports each x € S.

Remark ( U.F.S. = F.S.)

Every ufs subset S C X is finitely supported by the same subset A C A. One can
also show that in those cases we have

A= U supp X.

xeS
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Nominal Sets Tcs EAU

Categorical Information

Definition ( Category of Nominal Sets)

A nominal set X is a Perm A set whose elements are all finitely supported. To-
gether with equivariant functions, identiies and compositions as in Set, they form
a category Nom.

Remark ( Nom is a Cartesian Closed Category )

Since Nom has finite products and exponentials for every pair X, Y of object of
Nom, the category is cartesian closed.

Additionally, Nom admits arbitrary coproducts.
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Nominal Sets Tcs EAU

Power Sets

Example: Power Sets

With finitely and uniformly finitely supported subsets we get the following two
functors:

2 Nom — Nom
X { S C X | Sisfinitely supported. }
f: X—=Y —  Pif: P X = PiY, S f[S]

I

2V Nom — Nom
{SCX|Sisufs}
f: X—=Y = Pusf: PysX = Py Y, S+ f[S]

>
1
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Nominal Sets Tcs EAU

Freshness and a-Equivalence

Definition ( Freshness)

A name a € A is fresh for an element x of a nominal set X if @ ¢ supp x. We

denote this by a # x.© o ’rfM\

The freshness
relation # is
equivariant.
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Freshness and a-Equivalence

Definition ( Freshness)

A name a € A is fresh for an element x of a nominal set X if @ ¢ supp x. We

denote this by a # x.© o M

The freshness
relation # is
equivariant.

Lemma ( a-Equivalence)

Define a binary relation ~, on A x X by
(a,x) =a (b, y):<=(ac)> x = (bc) > yfor some, equivalently all, fresh c.

Then =, is an equivariant equivalence relation, the equivalence class for (a, x) €
A x X is denoted (a) x, and called a name abstraction.
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Nominal Sets Tcs EAU

Name Abstractions

Definition ( Abstraction Set )

We call the quotient set of A x X with ~, the nominal set of name abstractions
[A] X together with its action

>: PermA x [A] X — [A]l X, (7, (@) x) — (ma) (7 >x X).

Furthermore, we have supp (@) x =suppx \ { a } foralla € A and x € X.

Proposition ( Functoriality of [A] —)

The object map X — [A] X extends to the abstraction functor as follows:

X o [AlX

[A]—iNom—)Nom’{ f— [Alf: (a)x— (a) fx
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Nominal Sets Tcs EAU

Adjointness and Preservation

Theorem ( Adjointness of the Abstraction Functor )

The abstraction functor [A] _is both a left and a right adjoint:

_xAH[A]_HR_
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Nominal Sets Tcs EAU

Adjointness and Preservation

Theorem ( Adjointness of the Abstraction Functor )
The abstraction functor [A] _is both a left and a right adjoint:
_xAH[A]_HR_

Proposition ( Preservation of Exponentials )

The abstraction functor [A] _ preserves exponentials:

[A](X = Y) XAl X = [A] Y
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Nominal Sets Tcs EAU

Distributive Laws

Corollary (P distributes over [A] —)

The functor P, distributes over the abstraction functor by

©Ox: { [A]Pufs(x) - Pufs ([A]X)
’ (a) S — {{(ax|xeS} "’

d)X' { Pufs([A] X) - [A} Pufs (X)
' S — (a){x]|(a)xe S} witha#$S

These morphisms are mutually inverse and natural in X.
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Monads 7.cs EAU

Definition

Definition ( Monads )

Let C be a category. A monad onC is a triple (T, n, ), where T: C — Cis an
endofunctor, n: ide = T and u: T2 = T are natural transformations, and the

following diagrams commute for every object X in C:

X I T2x ™ 7y T3Xx 1T T2 x

\ Tl; / Tio | |

T2X T X
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Monads 7.cs EAU

Kleisli Categories

Definition ( Kleisli Category )

Let (T, n, u) be a monad on a category C. The Kleisli Category K¢r of T has
the same objects as C, but arrows X + Y in /7 are arrows X — TY inC. The
identity in KC¢r is given by the unit nx: X — TX, and the composition of two
arrows f: X + Yand g: Y + Zin K{r is written as g ® f and defined by

gof

N

s
X TY T?Z TZ.
f Tg 1254
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Monads 7.cs EAU

Kleisli Categories

Remark ( Canonical Adjunction)

We have a canonical adjunction

J

T
C 1 Klr,
\/

u

where J is defined by JX = X on objects and Jf = 14+ o f on arrows, where
cod f is the codomain of the arrow 7. The functor U is defined by UX = TX on
objects and Uf = picoqr © Tf On arrows.
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Monads 7.cs EAU

Distributive Law

Definition ( Distributive Laws)

Let (T,n,p) be a monad and F: C — C an endofunctor on a
category C. A distributive law of F over T is a natural transform-
ation X\: FT = TF, such that the following diagramms commute:

=7 FTX &% Frex 27 1r7X
Fnx PX TAx
25 b SIS

2
FX — TFX TFX TP T“FX
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Monads 7.cs EAU

Extensions and Distributive Laws

Proposition ( Correspondence between Extensions and K{-Laws )

Let (T, n, u) be amonad and F: C — C an endo-

functor on a category C. Then there is a biject- F

ive correspondence between distributive laws Kér ———— Kir
X: FT = TF and extensions of F: C — Cto a JT O TJ
functor F: K¢r — K5, i.e. a functor that makes c c
the diagram on the right commute. Herein, the F

arrow J is the canonical left adjoint from earlier.
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ive correspondence between distributive laws Kér ———— Kir

X: FT = TF and extensions of F: C — Cto a JT O TJ

functor F: K7 — KZr, i.e. a functor that makes c c
F

the diagram on the right commute. Herein, the
arrow J is the canonical left adjoint from earlier.

Given a distributive law \: FT = TF one defines the functor F by

Foictr o k01 % FX
N
4 " xLHry o xS Ery 2% 7RY
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Extensions and Distributive Laws

Proposition ( Correspondence between Extensions and K{-Laws )

Let (T, n, u) be amonad and F: C — C an endo-

functor on a category C. Then there is a biject- F

ive correspondence between distributive laws Kér ———— Kir

X: FT = TF and extensions of F: C — Cto a JT O TJ

functor F: K7 — KZr, i.e. a functor that makes c c
F

the diagram on the right commute. Herein, the
arrow J is the canonical left adjoint from earlier.

Given a distributive law \: FT = TF one defines the functor F by

Foictr o k01 % FX
N
4 " xLHry o xS Ery 2% 7RY

In the other direction, given F one obtains a distributive law by
Ax = F(idrx): FTX — TFX.
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Kleisli-Lattices TJ.Ccs EAU

Kl admits Lattices
7:’ufs

Proposition ( K¢-Arrows are a Complete Lattice)

For any pair X,Y of objects in Nom the hom-set of the Kleisli cat-
egory Klp (X, Y) of the monad Py, is a complete lattice, where joins
and meets are built by taking the union or intersection, respectively:

Vig/fir X = Y Nic/fir X =Y
x = U filx) x = g fi(x)

Remark ( Top and Bottom Element )

The bottom element L x,y of the lattice Kip (X, Y) and the top element T,y
are defined by the equivariant functions

Ixy: XY, x—0 and Txy: X+ Y, x—{y|suppy Csuppx }.
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Preliminaries II: Biuchi RNNA and Equational
Systems



Bar Strings T.Ccs EAU

Definition

We fix a countable infinite set A of names, and define an extended alphabet
A by A:=AuU{lalacA}.

Definition ( Bar Strings)

= A finite bar string is a finite word over A, while an infinite bar string is an
infinite word over A. We denote the sets of finite and infinite bar strings by
A* and A", respectively.

= Given aword w € A* U A the set of namesin w is defined by
N(w) := { a € A | the letter a or la occursin w }.
An infinite bar string w is finitely supportedif N(w) is finite; the set Ay C A%
denotes the finitely supported infinite bar strings.

= Aname a € A occuring in a bar string w € A* U A is freeif it occurs to the
left of any occurance of |a, and bound otherwise. We denote the set of free
namesin w by FN(w).
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Bar Strings T.Ccs EAU

a-Equivalence

Definition ( a-Equivalence on Bar Strings')

= We define a-equivalence =, on finite bar strings as the equivalence generated
by
wlav =o wlbu iff  (a) v = (b) uin [A]A™.

= This then can be extended to an equivalence relation =, on infinite bar strings
by
v=qw iff v[0:n)=4 w[0:n) forallnew.

= We write [w], for the a-equivalence class of w € A* U A, and denote by
A" /=4 and A¥ /=, the sets of a-equivalence classes of finite and infinite bar
strings, respectively.

Remark ( Right Cancellation Property )

Forall v, w € A* and x € A* U A“, we have that vx =, wx implies v =, w.
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Bar Strings T.Ccs EAU

Clean Bar Strings

Definition ( Clean Bar Strings')

A finite or infinite bar string w is clean if for each a € FN(w) the letter |la does
not occur in w, and for each a ¢ FN(w) the letter |a occurs at most once.

Lemma ( Canonical Form for Bar Strings )

Given a bar string w € A* U AY and a set S with FN(w) C S, there is an a-
equivalent clean bar string nf(w) which is unique with respect to the ordering of
the names A \ S. Additionally, the mapping nf is equivariant.
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Bar Strings T.Ccs EAU

Prefixes

Notation ( Prefixes)

Given two strings v € A” and w € A", we write v C wif v = w[0 : n) and
write v Co wif v=a w[0: n).

Lemma ( a-Equivalent Prefixes)

Given two bar strings v € A” and w € A" and a finite set S C A, such that
FN(v),FN(w) C S, we have that v C, w if and only if nf(v) C nf(w).

Proof: We show both implications singularily:

1

=" The assumption implies, that v =, w[0 : n) and therefore
nf(v) =, U=, w[0: n) =, nf(w)[0: n), where the last
a-equivalence holds because of the right cancellation property.
However, because of the uniqueness with respect to the ordering of
A\ S, we have that nf(v) = nf(w)[0 : n).
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Bar Strings T.Ccs EAU

Prefixes

‘" We now have nf(v) = nf(w)[0 : n), i.e.
U=, nf(u) =nf(w)[0: n) =, wl0: n), where the last
a-equivalence holds because of the right cancellation property. [
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RNNA T.Ccs EAU

Definition

Definition ( Regular Nondeterministic Nominal Automata)

A regular nondeterministic nominal automaton (RNNA) is a tuple A =
(Q, 4, s, Acc) consisting of

= an orbit-finite nominal set @ of states, with an initial state s € Q;

= an equivariant subset § C Q x A x Q, the transition relation, where we write
g = g for (g, , ¢') € §; transitions of type g % ¢’ are called free, and

those of type g LN g’ bound:
= an equivariant subset Acc C Q of final states

such that the following conditions are satisfied:
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RNNA T.CcS EAU

Definition ( Regular Nondeterministic Nominal Automata)

A regular nondeterministic nominal automaton (RNNA) is a tuple A =
(@, 4, s, Acc) consisting of

= an orbit-finite nominal set Q of states, with an initial state s € Q;

= an equivariant subset § C Q x A x Q, the transition relation;

= an equivariant subset Acc C Q of final states

such that the following conditions are satisfied:

= The relation § is a-invariant, i.e. closed under a-equivalence of transitions,

where transitions g LLN g and p 16, p’ are a-equivalentif g = p and (a) ¢’ =
(b)p'.

= The relation ¢ is finitely branching up to a-equivalence, i.e. for each state g

the sets
{(a, q') ] qiw’} and {<a>q’

are finite or equivalently ufs.

94 }

J
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RNNA T.Ccs EAU

Coalgebraic Viewpoint

Remark ( RNNAs as Coalgebras )

Coalgebraically, an RNNA is an orbit-finite coalgebra v: Q@ — FQ for the functor
F= 7)ufs(A X =+ [A] _)’

together with an equivariant subset Acc C Q of final statesandamap s: 1T + Q
in Kép,, for initial states.

Given an RNNA A = (Q, ¢, s, Acc), its equivalent coalgebra is given by

I

Q@ = Piu(AxQ+[A]Q)
e g = S

where (a,¢') € Sqiff ¢ 2 ¢, and (a) ¢’ € S iff g 12, o', The map of initial
statesis givenby s: 1+ Q, * — { s }.
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Biichi RNNA TJ.Ccs EAU

Definition

Definition ( Bdchi RNNA)

A Biichi RNNA is an RNNA A = (Q, 4, qo, Acc), where it acceptsarun r € Q~, if
#{i€w]|r€Acc} =w. Thestate g € Q accepts an infinite bar string w € A“,
if there is a run for w starting with g. The automaton A accepts w € A%, if its
initial state go accepts w. We then define by

Low(A) == {[W]a | weA®, Aaccepts w }

the barw-language accepted by A.
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Equational Systems TJ.Ccs EAU

Definition

Definition ( Equational Systems with Two Variables)

Fori e {1,2}let fi: Ly x Ly — L; be monotone functions where all L;'s are
posets. An equational system is then a sequence

UL =, fi(ur, v2)
U2 =y f2(U1, Uz) ’

where the u;'s are variables and n; is either v or p forall i € { 1,2 }.

Given all necessary fixed points exist, we can define the solution of such a system
by the element
(/'117 h2) €Ly x LQ,
obtained in the following way:
1) Compute the first ‘interim’ solution g1 (v2) = mix1. fi(ui, v2).
2) Substitute this solution in the remaining equation, i.e. Us =5, f2(g1(v2), U2),
and solve this system to compute Az, which is used for h1 = g1 (h2).

L J
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Equational Systems TJ.Ccs EAU

Solvability

Lemma ( Solvability Criterion)

Such an equational system for two variables has a solution if each L; is a complete
lattice.
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Coalgebraic Modelling TJ.Ccs EAU

Original Assumptions

Assumption ( Coalgebraic Assumptions after Urabe et al.)

In what follows a monad T and an endofunctor F, both on a category C, satisfy:
(1) C has a final object 1 and finite coproducts.
(2) F has afinal coalgebra¢: Z — FZinC.

(3) Thereis a distributive law A\: FT = TF,hence F: C — Cis liftedto F: K¢7 —
Ker.

(4) For every pair X, Y of objects in K/r, the hom-set K¢7 (X, Y) carries an
order <,y and is a complete lattice.

(5) Kleisli composition ® and cotupling [—, —] are monotone with respect to the
order <.

(6) The lifting Eis locally monotone, i.e. for f,g € K¢r (X, Y), f <x,y gimplies
Ff <exry F9-
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Coalgebraic Modelling TJ.Ccs EAU

BUchi RNNAs satisfy the Assumptions

BiUchi RNNAs

The category Nom, the ufs powerset monad P, and the functor
F=Ax—+[A]—-

satisfy the assumptions.

Proof: Since most of the points have already been proven, we will only look
at the final coalgebra of F: We prove that the map

(a, [W]a) if[W]a =[aw]s
(a) [Wa  if [W]a = [law']s

(1)
is the final coalgebra for the functor G by use of Addmek’s Lemma for final
coalgebras. (The wP-limit of the chain G"1 carries the structure of a final
coalgebra, if G preserves that limit)

¢: (AY/Za) = G((A%/Za)y), [Wla {
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We then prove that G"1 = A”/=,, holds by induction over n € w:

Base Case (n = (0): Obviously this holds, since
GColl=12{[e]a } =A%=,.

Step Case (n — n+ 1): Suppose now that G"1 =2 A”/=, holds for n, then
we have

G"1 = G(G") Y G(A"/=.)

_ _ (*)
=AxA"/=, +[A]A" /=, = A" /=,.

~

The last isomorphism (x) is given by
(a, [W]a) — [aw], and (@) (W] — [law]q

for a € A and [w], € A"/=,. It should be obvious to see that this
mapping is an isomorphism.
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With this, we only have to prove that

((A%/=a)¢» on: (AY/=a) = A'/=a, w = w[0 : n)) is indeed the limit
cone for the w°P chain. Indeed, our candidate is a cone since the following
diagram obviously commutes:

@n (&w/za)fs Pn—1
A=, Arl)=,

w — w[0:n—1)

So suppose (K, Vi K — K"/za) is another cone. This means that for each
k € K we have a finitely supported family «;(k) of finitely supported bar
strings that is compatible, i.e. ¥;(k) C,, ©;11(k) forall i € w.
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Since the family { 1;(k) },.,, is finitely supported, the set S := | J,.,, FN(w;)
is finite. We therefore define

ak: K = A% /=0, k= [We:w— A, 7= nf(i1 (k) ()],
and prove below that it is the unique arrow between K and our limit
candidate. It is well-defined in the sense that we have
nf(1;(k)) C nf(y;11(k)) for each i € w. The mapping is also equivariant.
Additionally, this ax fulfills the limit equations, i.e. we have for every k € K
and n € w, that ¢,(k) = ¢n(ak(k)).
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We show that o, (ak (k)) = nf(¥,(k)) by induction over n € w:

Base Case (n = 0): Obviously this holds, since
nf(¢o(k)) = [ela = wo(ak (k).

Step Case (n — n+ 1): Suppose now that nf(y,(k)) = pa(ak(k)) holds
for n. Let wy be the representant of ax(k), then we have

Pnv1(Wk) Pn(Wi) (nf(vbns1(K))(n))

nf(yn(K)) (mf(Pn11(K))(n))

0f(¢n41(K))[0 : 1) (f(Yn11(k))(M))
(k)

nf(Ypt1(K)),

where the step (A) holds because of the prefix properties of the
canonical form.

T

ISHE
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The uniqueness of the mapping ax is easy to prove since the cone
projections are jointly monic:
Let g, h: X — (A¥/=.),, be two maps with ;0 g = p; o hforall j € w.
This means that for every x € X, putting [w], = g(x) and [w'], = h(x),
we have w[0: /)=, w/[0: /) forevery j € w.
But this means w=,w’ and therefore g(x) = h(x).

With this in mind, we see that for every other map 7 between K and
(A“ /=) With ;o f = ¢; we have p; o f = ¢; 0 ax and thus f = ax.
Hereby, uniqueness is shown, and because

(a [w]a)

(a) [Wa

[aw],

—
= [law],

ac: G((A”/=a)s) = (A% /=a)s, {

is the unique limit mapping between G((A¥/=,),) and (A¥/=,),, we see
that its inverse must be the final coalgebra of G.
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Definition ( Bichi (T, F)-System)

A Biichi (T, F)-Systemis given by atriple X = ((X1, X2), c: X - FX,s: 1 + X),
where X is defined as the coproduct X; + Xz in C, the state objects with their
priorities, meaning that X1 encodes the non-final, and X> the final states of the
Biichi automaton. Additionally, c: X -+ FX is an arrow in 47, the dynamics, and
s: 1 - X an arrow in K¢r providing initial states. We define for each / = 1, 2 the
arrow ¢;: X; - FX to be the restriction c o x;: X; -+ FX along the coproduct
injections x;: X; — X.
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Definition ( Trace Semantics of Bichi (T, F)-Systems )

Let X = ((X1, X2), c: X - FX, s: 1+ X) be aBichi (T, F)-System. It induces
the following equational system Ex, where (: Z — FZ is the final coalgebra of F
in C. Herein, the variable u; ranges over the poset K/r (X;, Z):

U =y (JC)_l@f[ULUQ]@Cl]

S [ v =, (JO 'eF[u,wlec

(T, F) consitutes a Blichi trace situation, if Ex has a solution for any Buchi (T, F)-
System X, denoted by trace?(X): X; + Z for i € {1,2}. The composite

b (X)), tracel (X
trace®(x) := (1 —i Xy 4 ) D) 2)

is called the trace semantics of the Bichi (T, F)-System X.
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Theorem ( Coincidence with RNNAs )

Every Buchi RNNA System A = ((Q\ Acc, Acc), ca: Q@ = FQ,s: 1 -+ Q) con-
situtes a Bichi trace situation, where the trace mappings are given by:

trace (A): @\ Acc + A” /=4, q — La,u(q) and
traceb(A): Acc + A% /=4, q — La.w(q)

Additionally its trace semantics is given by

trace®(A): 1+ AY /=4, % = La,o(A).
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Proof: Since every Kleisli hom-set Kip (Y, Z)is a complete lattice, it is
obvious that every Bichi RNNA System consitutes a Bichi trace situation.
For this prove, we will calculate the solution of the following equational
system:
Eg=| 9t = (VO 'eFlu, wlea ]
Tl = (JO)T'eFlu,wlec

Herein, the state set Q is divided into @, := @\ Acc and @, := Acc, the
mapping ¢;: Q; + FQ is the restriction of the coalgebra along the
coproduct injections, the functor F = A x — 4 [A] — is the Buchi RNNA
functor, while

€3 (:&w/za)fs — F((Aw/za)fs), W]y — {E

is the final coalgebra for F.
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Notation ( Paths in Bichi RNNAs)

Givensome g, ¢’ € Qand v € A*/=,, we write g —*¢’ if there is a v-labeled
path from g — @', and g =* ¢’ if, additionally, all intermediate states on the path

are from @;. Note, that g and g’ may still be elements of Q.

We will then solve this system just like it was mentioned earlier:
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Step 1

For every fixed vy: @y + (K“/za)fs, define the interim solution /1(1)
by
/1(1)(U2) = pny. (JO)T @ Flny, ] ® €1

and solve this by using Kleene. To make the notation less
convoluted, we define the ‘helper function’ f; to be

fi: K:gpufs (Ql’ (&w/za)fs) — Kgpufs (Ql’ (‘&w/zo‘)fs) ’
' ny — (JC)*1®?[H1,UQ]@C1.

We claim, that for all K € wand g € @;, we have

veAsk we Av
39’ € Q. g =*g AN [W]a € a(q'). (-

F(L)(q) = { [vwa

Herein, f% denotes the k-fold application of f;. We prove this claim
per induction over k € w:

Florian Frank
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Base Case (k = 0): For kK = 0 the claim obviously holds: Since
P(L)(g) = L(g) = 0 by definition and g € Q;, we do not have
g = g forany g’ € Q..
Step Case (k — k + 1): Suppose now that the claim holds for some k € w.
Let, furthermore, [u], = [aw], € (A¥/=,),,, Where a € A and
w € A¥. Then, the following statements are equivalent:
(i) [ula € F(FF (L)) (a)-
(i) There is a ¢; € Q1, such that ¢ = ¢; and [w], € ff(L)(q1), or a g € Qa, such that

g% g2 and [w]y € uz(gz). - b
(iii) Thereis a g € Q1, g2 € Q2, v € ASF and w' € (A“/Ea)fs, such that

[Wla = [vw']a,q = g1 ="qo, and [w']s € ua(ga),

or a g € Qy, such that ¢ = g2 and [w], € ua(g2)-
(iv) Thereis a gy € Qo, v € ASFH and w’ € (A¥/=,),,, such that

[l = [vw']as ¢ =g, and [w']s € ua(ga).
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Because the function £ is clearly w-continuous, the interim solution /fl)(UQ)
is obtained by taking the supremum of the Kleene chain. Therfore, we get
the explicit description

()@ ={ vl | v e B*, w € B¥,3¢' € @.q 579 A [Wla € wa(q) }

of our interim solution.
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Proof of Coincidence Result

Step 2 Define the iterim solution /2(2) by
(2 = vny. (JO)1OF [/1(1)(112), nQ} ® G.

Again, to make the notation less convoluted, we define the ‘helper
function’ f to be

fg: Ny (JC)_I @f |:/1(1)(TI2)7T12:| © Cy.
Similar to Step 1, {5 is given by

veAt, weA¥ 3¢ € @.qg =" ¢ A[W]a € Ua(g

fa(02)(q) = { [vwla

We then claim that /% (q) = L2 ,(q). Here, L7, , is the restriction of

1 ow

the language mapping L, ., to Q.. Since ng,w is obviously a fixed
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Florian Frank

point of f,, we have L2 ,(q) C /2(2)(q). It remains to prove
£7(q) C L2 ,(q). Let [W]o € K7 (q) = F2(h”)(g) and w € A“ be a
representant of [w],. We shall construct infinite sequences of states
Qo, 1, --- € @ and non-empty words v;, vo, --- € AT, such that
(i) g = qoand g; —*g,.1 holds for all / € w;
(ii) for each k € wthe word v; - - - v, is a prefix of w,
ie. w=v---yw forsome w € A“ and the equivalence
class [w'],, of the suffix w’ lies in /2(2)(qk).
Given this, (ii) implies that w = vi v - - -, while (i) implies that w has
an accepting run from g. Therefore, we can conclude that
[W]a € L2 .(q).
We construct this sequence recursively. Obviously, we fix gy = g.
Moreover, fix k € w and suppose that we already defined
g0, ..., gcrand vy, ..., V, such that

(i) g=qo B*qn 2. Lo gy
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(ii") the word v; - -- vy is a prefix of w,i.e. w=v;---yw' for
some w’ € A“ and the equivalence class [w'],, of the suffix

w' lies in 4% (qy).
Because of (ii’), we have that w’ € /(2)(qk) = fg( )(qk)
Therefore, there are v/ € AT, w” € A¥, and g’ € (, such that
w=,v'w”, gy £’>*q’ and [w'], € /2(2)(q’). Thus, v¢41 = v/ and
gx+1 = ¢ fulfill all desired properties.

Step 3 Lastly, we calculate the trace mappings. Obviously,
traceS(A): Acc + (A“/za)fs ,q+— Ly, (q) holds, since

traceg(A) = /2(2). Moreover, we get the trace map for @; by
/1(1)(/2(2)). Thus, for any g € Q;, we have

(L2 )(g) = { [vW]a ’ veAt weA¥ thereisaq € @y, st. g =*q', and [w], € L2 (') }

This is clearly equal to La o the restriction of L, ., to .
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This concludes the proof that the trace mappings are given by the language
mappings. It is obvious, that the composite [trace’l’(A), traceg(A)] ®©s

maps the singular element x € 1 to the accepted bar w-language by the
BUchi RNNA A.
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