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Preliminaries I: Fundamentals of Nom and

Monads



Groups
Definitions

Definition (Group )

A group G = (G, · , e) consists of a set G, a binary operation · on G, and an

element e, such that:

(i) · is associative,

(iii) every element has an inverse element.

(ii) e is neutral, and

Example: Permutation Group

A permutation π : X → X on a set X is a bijective map. It gives rise to the

permutation group SymX of X by

SymX := ({ π : X → X | π is bijective } , ◦ , idX ) .

A permutation is called finite if the set { x ∈ X | πx 6= x } is finite. With this we

get the subgroup PermX 6 SymX of finite permutations of X .
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Groups
Actions and Equivariance

Definition (Group Actions )

If X is a set and G = (G, · , e) is a group, then an action of G on X is a function

B : G × X → X , (g, x) 7→ g B x ,

such that for all g, h ∈ G and x ∈ X :

(i) e B x = x

(ii) (g · h) B x = g B (h B x)

We call the set X together with its action a G-set.

Definition (Equivariant Functions )

Let (X ,BX ) and (Y ,BY ) beG-Sets, then a function f : X → Y is called equivariant,

if

f (g BX x) = g BY fx

holds for all g ∈ G and x ∈ X .
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Groups
Orbits and Support

Definition (Orbits )

Let (X , B) be a G-Set for a group G and x ∈ X . Then the orbit of x with respect

toB isG B x := { g B x | g ∈ G } ⊆ X . These orbits are the equivalence classes

for the equivalence relation

x ∼G y :⇐⇒∃g ∈ G. y = g B x ,

and we call a G-set orbit-finite, if # (X/∼G) <∞.

Definition (Support )

Let (X , B) be a PermA set, thenA ⊆ A is a support for x ∈ X if for all π ∈ PermA

(∀a ∈ A. πa = a) ⇒ π B x = x .

We then define the support suppX x of a finitely supported x as the least of all

finite supports.

Florian Frank FAU InfSemRNNAs (Preliminaries I: Fundamentals of Nom and Monads) 5. Oktober 2022 6 / 51



Groups
Orbits and Support

Definition (Orbits )

Let (X , B) be a G-Set for a group G and x ∈ X . Then the orbit of x with respect

toB isG B x := { g B x | g ∈ G } ⊆ X . These orbits are the equivalence classes

for the equivalence relation

x ∼G y :⇐⇒∃g ∈ G. y = g B x ,

and we call a G-set orbit-finite, if # (X/∼G) <∞.

Definition (Support )

Let (X , B) be a PermA set, thenA ⊆ A is a support for x ∈ X if for all π ∈ PermA

(∀a ∈ A. πa = a) ⇒ π B x = x .

We then define the support suppX x of a finitely supported x as the least of all

finite supports.

Florian Frank FAU InfSemRNNAs (Preliminaries I: Fundamentals of Nom and Monads) 5. Oktober 2022 6 / 51



Groups
Support

Definition (Uniform Finite Support )

Let (X , B) be a finitely supported PermA set. A subset S ⊆ X is called uniformly

finitely supported (ufs) if there exists a finite set A ⊆ A that supports each x ∈ S .

Remark (U.F.S.⇒ F.S. )

Every ufs subset S ⊆ X is finitely supported by the same subset A ⊆ A. One can

also show that in those cases we have

A =
⋃
x∈S

supp x .
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Nominal Sets
Categorical Information

Definition (Category of Nominal Sets )

A nominal set X is a PermA set whose elements are all finitely supported. To-

gether with equivariant functions, identiies and compositions as in Set, they form
a category Nom.

Remark (Nom is a Cartesian Closed Category )

Since Nom has finite products and exponentials for every pair X ,Y of object of

Nom, the category is cartesian closed.

Additionally, Nom admits arbitrary coproducts.
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Nominal Sets
Power Sets

Example: Power Sets

With finitely and uniformly finitely supported subsets we get the following two

functors:

Pfs : Nom → Nom
X 7→ { S ⊆ X | S is finitely supported. }

f : X → Y 7→ Pfsf : PfsX → PfsY , S 7→ f [S ]

Pufs : Nom → Nom
X 7→ { S ⊆ X | S is ufs }

f : X → Y 7→ Pufsf : PufsX → PufsY , S 7→ f [S ]
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Nominal Sets
Freshness and α-Equivalence

Definition ( Freshness )

A name a ∈ A is fresh for an element x of a nominal set X if a /∈ supp x . We

denote this by a # x .

Lemma (α-Equivalence )

Define a binary relation ≈α on A× X by

(a, x) ≈α (b, y ) :⇐⇒ (a c) B x = (b c) B y for some, equivalently all, fresh c .

Then ≈α is an equivariant equivalence relation, the equivalence class for (a, x) ∈
A× X is denoted 〈a〉 x , and called a name abstraction.

The freshness

relation # is

equivariant.
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Nominal Sets
Name Abstractions

Definition (Abstraction Set )

We call the quotient set of A× X with ≈α the nominal set of name abstractions

[A]X together with its action

B : PermA× [A]X → [A]X , (π, 〈a〉 x) 7→ 〈πa〉 (π BX x) .

Furthermore, we have supp 〈a〉 x = supp x \ { a } for all a ∈ A and x ∈ X .

Proposition ( Functoriality of [A]− )

The object map X 7→ [A]X extends to the abstraction functor as follows:

[A]− : Nom → Nom,

{
X 7→ [A]X
f 7→ [A] f : 〈a〉 x 7→ 〈a〉 fx
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Nominal Sets
Adjointness and Preservation

Theorem (Adjointness of the Abstraction Functor )

The abstraction functor [A] _ is both a left and a right adjoint:

_ ∗ A a [A] _ a R_

Proposition (Preservation of Exponentials )

The abstraction functor [A] _ preserves exponentials:

[A] (X →fs Y ) ∼= [A]X →fs [A]Y
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Nominal Sets
Distributive Laws

Corollary (Pufs distributes over [A]− )

The functor Pufs distributes over the abstraction functor by

ϕX :

{
[A]Pufs (X ) → Pufs ([A]X )

〈a〉 S 7→ { 〈a〉 x | x ∈ S } ,

ψX :

{
Pufs ([A]X ) → [A]Pufs (X )

S 7→ 〈a〉 { x | 〈a〉 x ∈ S } with a # S
.

These morphisms are mutually inverse and natural in X .
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Monads
Definition

Definition (Monads )

Let C be a category. A monad on C is a triple 〈T , η, µ〉, where T : C → C is an

endofunctor, η : idC ⇒ T and µ : T 2 ⇒ T are natural transformations, and the

following diagrams commute for every object X in C:

TX T 2X TX

TX

ηTX

µX

TηX T 3X T 2X

T 2X TX

µTX

TµX µX

µX
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Monads
Kleisli Categories

Definition (Kleisli Category )

Let 〈T , η, µ〉 be a monad on a category C. The Kleisli Category K`T of T has

the same objects as C, but arrows X 7→ Y in K`T are arrows X → TY in C. The
identity in K`T is given by the unit ηX : X → TX , and the composition of two

arrows f : X 7→ Y and g : Y 7→ Z in K`T is written as g } f and defined by

X TY T 2Z TZ .

g } f

f Tg µZ
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Monads
Kleisli Categories

Remark (Canonical Adjunction )

We have a canonical adjunction

C K`T ,

J

⊥

U

where J is defined by JX = X on objects and Jf = ηcod f ◦ f on arrows, where

cod f is the codomain of the arrow f . The functor U is defined by UX = TX on

objects and Uf = µcod f ◦ Tf on arrows.
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Monads
Distributive Law

Definition (Distributive Laws )

Let 〈T , η, µ〉 be a monad and F : C → C an endofunctor on a

category C. A distributive law of F over T is a natural transform-

ation λ : FT ⇒ TF , such that the following diagramms commute:

FTX

FX TFX

λX

ηFX

FηX

	

FTX FT 2X TFTX

TFX T 2FX

λX 	

FµX λTX

TλX

µFX

Florian Frank FAU InfSemRNNAs (Preliminaries I: Fundamentals of Nom and Monads) 5. Oktober 2022 17 / 51



Monads
Extensions and Distributive Laws

Proposition (Correspondence between Extensions and K`-Laws )

Let 〈T , η, µ〉 be a monad and F : C → C an endo-

functor on a category C. Then there is a biject-

ive correspondence between distributive laws

λ : FT ⇒ TF and extensions of F : C → C to a

functor F : K`T → K`T , i.e. a functor that makes

the diagram on the right commute. Herein, the

arrow J is the canonical left adjoint from earlier.

K`T K`T

C C

F

	
F

J J

Given a distributive law λ : FT ⇒ TF one defines the functor F by

F : K`T → K`T ,

{
X 7→ FX

X
f−→ TY 7→ FX

Ff−→ FTY
λY−−→ TFY

.

In the other direction, given F one obtains a distributive law by

λX = F (idTX ) : FTX → TFX .
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Kleisli-Lattices
K`P

ufs
admits Lattices

Proposition (K`-Arrows are a Complete Lattice )

For any pair X ,Y of objects in Nom the hom-set of the Kleisli cat-

egory K`P
ufs
(X , Y ) of the monad Pufs is a complete lattice, where joins

and meets are built by taking the union or intersection, respectively:∨
i∈I fi : X 7→ Y

x 7→
⋃

i∈I fi (x)

∧
i∈I fi : X 7→ Y

x 7→
⋂

i∈I fi (x)

Remark (Top and Bottom Element )

The bottom element ⊥X ,Y of the lattice K`P
ufs
(X , Y ) and the top element >X ,Y

are defined by the equivariant functions

⊥X ,Y : X 7→ Y , x 7→ ∅ and >X ,Y : X 7→ Y , x 7→ { y | supp y ⊆ supp x } .
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Preliminaries II: Büchi RNNA and Equational

Systems



Bar Strings
Definition

We fix a countable infinite set A of names, and define an extended alphabet

A by A := A ∪ { a | a ∈ A } .

Definition (Bar Strings )

A finite bar string is a finite word over A, while an infinite bar string is an

infinite word over A. We denote the sets of finite and infinite bar strings by

A∗ and Aω , respectively.

Given a word w ∈ A∗ ∪ Aω the set of names in w is defined by

N(w ) := { a ∈ A | the letter a or a occurs in w } .

An infinite bar string w is finitely supported if N(w ) is finite; the set Aω
fs ⊆ Aω

denotes the finitely supported infinite bar strings.

A name a ∈ A occuring in a bar string w ∈ A∗ ∪ Aω is free if it occurs to the

left of any occurance of a, and bound otherwise. We denote the set of free

names in w by FN(w ).
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Bar Strings
α-Equivalence

Definition (α-Equivalence on Bar Strings )

We define α-equivalence≡α on finite bar strings as the equivalence generated

by

w av ≡α w bu iff 〈a〉 v = 〈b〉 u in [A]A∗.

This then can be extended to an equivalence relation≡α on infinite bar strings

by

v ≡α w iff v [0 : n) ≡α w [0 : n) for all n ∈ ω.

We write [w ]α for the α-equivalence class of w ∈ A∗ ∪ Aω , and denote by

A∗/≡α and Aω/≡α the sets of α-equivalence classes of finite and infinite bar

strings, respectively.

Remark (Right Cancellation Property )

For all v ,w ∈ A∗ and x ∈ A∗ ∪ Aω , we have that vx ≡α wx implies v ≡α w .

Florian Frank FAU InfSemRNNAs (Preliminaries II: Büchi RNNA and Equational Systems) 5. Oktober 2022 22 / 51



Bar Strings
Clean Bar Strings

Definition (Clean Bar Strings )

A finite or infinite bar string w is clean if for each a ∈ FN(w ) the letter a does

not occur in w , and for each a /∈ FN(w ) the letter a occurs at most once.

Lemma (Canonical Form for Bar Strings )

Given a bar string w ∈ A∗ ∪ Aω
fs and a set S with FN(w ) ⊆ S , there is an α-

equivalent clean bar string nf(w ) which is unique with respect to the ordering of

the names A \ S . Additionally, the mapping nf is equivariant.
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Bar Strings
Prefixes

Notation (Prefixes )

Given two strings v ∈ An and w ∈ An+1, we write v v w if v = w [0 : n) and
write v vα w if v ≡α w [0 : n).

Lemma (α-Equivalent Prefixes )

Given two bar strings v ∈ An and w ∈ An+1 and a finite set S ⊆ A, such that

FN(v ), FN(w ) ⊆ S , we have that v vα w if and only if nf(v ) v nf(w ).

Proof: We show both implications singularily:

‘⇒’ The assumption implies, that u ≡α w [0 : n) and therefore

nf(u) ≡α u ≡α w [0 : n) ≡α nf(w )[0 : n), where the last

α-equivalence holds because of the right cancellation property.

However, because of the uniqueness with respect to the ordering of

A \ S , we have that nf(u) = nf(w )[0 : n).
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Bar Strings
Prefixes

‘⇐’ We now have nf(u) = nf(w )[0 : n), i.e.
u ≡α nf(u) = nf(w )[0 : n) ≡α w [0 : n), where the last

α-equivalence holds because of the right cancellation property.
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RNNA
Definition

Definition (Regular Nondeterministic Nominal Automata )

A regular nondeterministic nominal automaton (RNNA) is a tuple A =
(Q, δ, s, Acc) consisting of

an orbit-finite nominal set Q of states, with an initial state s ∈ Q;

an equivariant subset δ ⊆ Q × A× Q, the transition relation, where we write

q
α−→ q′ for

(
q, α, q′) ∈ δ; transitions of type q

a−→ q′ are called free, and

those of type q
a−→ q′ bound;

an equivariant subset Acc ⊆ Q of final states

such that the following conditions are satisfied:
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where transitions q
a−→ q′ and p

b−→ p′ are α-equivalent if q = p and 〈a〉 q′ =
〈b〉p′.

The relation δ is finitely branching up to α-equivalence, i.e. for each state q

the sets { (
a, q′) ∣∣∣ q a−→ q

′
}

and
{
〈a〉q′

∣∣∣ q a−→ q
′
}

are finite or equivalently ufs.
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RNNA
Coalgebraic Viewpoint

Remark (RNNAs as Coalgebras )

Coalgebraically, an RNNA is an orbit-finite coalgebra γ : Q → FQ for the functor

F = Pufs(A×−+ [A]−),

together with an equivariant subset Acc ⊆ Q of final states and a map s : 1 7→ Q

in K`P
ufs

for initial states.

Given an RNNA A = (Q, δ, s, Acc), its equivalent coalgebra is given by

γG :

{
Q → Pufs (A× Q + [A]Q)
q 7→ Sq

,

where
(
a, q′) ∈ Sq iff q

a−→ q′, and 〈a〉q′ ∈ Sq iff q
a−→ q′. The map of initial

states is given by s : 1 7→ Q, ∗ 7→ { s }.
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Büchi RNNA
Definition

Definition (Büchi RNNA )

A Büchi RNNA is an RNNA A = (Q, δ, q0, Acc), where it accepts a run r ∈ Qω , if

# { i ∈ ω | ri ∈ Acc } = ω. The state q ∈ Q accepts an infinite bar string w ∈ Aω ,

if there is a run for w starting with q. The automaton A accepts w ∈ Aω , if its

initial state q0 accepts w . We then define by

Lα,ω(A) :=
{
[w ]α

∣∣ w ∈ Aω, A accepts w
}

the bar ω-language accepted by A.
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Equational Systems
Definition

Definition (Equational Systems with Two Variables )

For i ∈ { 1, 2 } let fi : L1 × L2 → Li be monotone functions where all Li ’s are

posets. An equational system is then a sequence[
u1 =η1 f1(u1, u2)
u2 =η2 f2(u1, u2)

]
,

where the ui ’s are variables and ηi is either ν or µ for all i ∈ { 1, 2 }.

Given all necessary fixed points exist, we can define the solution of such a system

by the element

(h1, h2) ∈ L1 × L2,

obtained in the following way:

1) Compute the first ‘interim’ solution g1(u2) = η1x1. f1(u1, u2).

2) Substitute this solution in the remaining equation, i.e. u2 =η2 f2(g1(u2), u2),
and solve this system to compute h2, which is used for h1 = g1(h2).
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Equational Systems
Solvability

Lemma (Solvability Criterion )

Such an equational system for two variables has a solution if each Li is a complete

lattice.
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Coalgebraic Infinitary Trace Semantics of Büchi

RNNA



Coalgebraic Modelling
Original Assumptions

Assumption (Coalgebraic Assumptions after Urabe et al. )

In what follows a monad T and an endofunctor F , both on a category C, satisfy:
(1) C has a final object 1 and finite coproducts.

(2) F has a final coalgebra ζ : Z → FZ in C.
(3) There is a distributive law λ : FT ⇒ TF , hence F : C → C is lifted to F : K`T →

K`T .
(4) For every pair X ,Y of objects in K`T , the hom-set K`T (X , Y ) carries an

order 4X ,Y and is a complete lattice.

(5) Kleisli composition } and cotupling [−,−] are monotone with respect to the

order 4.

(6) The lifting F is locally monotone, i.e. for f , g ∈ K`T (X , Y ), f 4X ,Y g implies

F f 4FX ,FY Fg .
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Coalgebraic Modelling
Büchi RNNAs satisfy the Assumptions

Büchi RNNAs

The category Nom, the ufs powerset monad Pufs and the functor

F = A×−+ [A]−

satisfy the assumptions.

Proof: Since most of the points have already been proven, we will only look

at the final coalgebra of F : We prove that the map

ζ :
(
Aω/≡α

)
fs
→ G(

(
Aω/≡α

)
fs
), [w ]α 7→

{
(a, [w ′]α) if [w ]α = [aw ′]α

〈a〉 [w ′]α if [w ]α = [ aw ′]α
(1)

is the final coalgebra for the functor G by use of Adámek’s Lemma for final

coalgebras. (The ωop-limit of the chain Gn1 carries the structure of a final

coalgebra, if G preserves that limit)
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Coalgebraic Modelling
Büchi RNNAs satisfy the Assumptions

We then prove that Gn1 ∼= An/≡α holds by induction over n ∈ ω:

Base Case (n = 0): Obviously this holds, since
G01 = 1 ∼= { [ε]α } = A0/≡α.

Step Case (n → n + 1): Suppose now that Gn1 ∼= An/≡α holds for n, then

we have

Gn+11 = G (Gn1)
I.H.∼= G

(
An/≡α

)
= A× An/≡α + [A]An/≡α

(∗)∼= An+1/≡α.

The last isomorphism (∗) is given by

(a, [w ]α) 7→ [aw ]α and 〈a〉 [w ]α 7→ [ aw ]α

for a ∈ A and [w ]α ∈ An/≡α. It should be obvious to see that this

mapping is an isomorphism.
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Coalgebraic Modelling
Büchi RNNAs satisfy the Assumptions

With this, we only have to prove that((
Aω/≡α

)
fs
, ϕn :

(
Aω/≡α

)
fs
→ An

/≡α, w 7→ w [0 : n)
)
is indeed the limit

cone for the ωop chain. Indeed, our candidate is a cone since the following

diagram obviously commutes: (
Aω/≡α

)
fs

An/≡α An−1/≡α

ϕn ϕn−1

w 7→ w [0:n−1)

So suppose
(
K , ψi : K → Ai/≡α

)
is another cone. This means that for each

k ∈ K we have a finitely supported family ψi (k) of finitely supported bar

strings that is compatible, i.e. ψi (k) vα ψi+1(k) for all i ∈ ω.
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Coalgebraic Modelling
Büchi RNNAs satisfy the Assumptions

Since the family { ψi (k) }i∈ω is finitely supported, the set S :=
⋃

i∈ω FN(wi )
is finite. We therefore define

aK : K → Aω/≡α, k 7→
[
wk : ω → A, i 7→ nf(ψi+1(k))(i )

]
α

and prove below that it is the unique arrow between K and our limit

candidate. It is well-defined in the sense that we have

nf(ψi (k)) v nf(ψi+1(k)) for each i ∈ ω. The mapping is also equivariant.

Additionally, this aK fulfills the limit equations, i.e. we have for every k ∈ K

and n ∈ ω, that ψn(k) = ϕn(aK (k)).
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Coalgebraic Modelling
Büchi RNNAs satisfy the Assumptions

We show that ϕn(aK (k)) = nf(ψn(k)) by induction over n ∈ ω:

Base Case (n = 0): Obviously this holds, since
nf(ψ0(k)) = [ε]α = ϕ0(aK (k)).

Step Case (n → n + 1): Suppose now that nf(ψn(k)) = ϕn(aK (k)) holds
for n. Let wk be the representant of aK (k), then we have

ϕn+1(wk ) = ϕn(wk ) (nf(ψn+1(k))(n))
I .H .
= nf(ψn(k)) (nf(ψn+1(k))(n))
(∆)
= nf(ψn+1(k))[0 : n) (nf(ψn+1(k))(n))

= nf(ψn+1(k)),

where the step (∆) holds because of the prefix properties of the

canonical form.
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Coalgebraic Modelling
Büchi RNNAs satisfy the Assumptions

The uniqueness of the mapping aK is easy to prove since the cone

projections are jointly monic:

Let g,h : X →
(
Aω/≡α

)
fs
be two maps with ϕi ◦ g = ϕi ◦ h for all i ∈ ω.

This means that for every x ∈ X , putting [w ]α = g(x) and [w ′]α = h(x),
we have w [0 : i ) ≡α w ′[0 : i ) for every i ∈ ω.

But this means w≡αw
′ and therefore g(x) = h(x).

With this in mind, we see that for every other map f between K and(
Aω/≡α

)
fs
with ϕi ◦ f = ψi we have ϕi ◦ f = ϕi ◦ aK and thus f = aK .

Hereby, uniqueness is shown, and because

aG : G(
(
Aω/≡α

)
fs
) →

(
Aω/≡α

)
fs
,

{
(a, [w ]α) 7→ [aw ]α
〈a〉 [w ]α 7→ [ aw ]α

is the unique limit mapping between G(
(
Aω/≡α

)
fs
) and

(
Aω/≡α

)
fs
, we see

that its inverse must be the final coalgebra of G.
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Coalgebraic Modelling
Büchi (T , F )-Systems

Definition (Büchi (T , F )-System )

ABüchi (T , F )-System is given by a tripleX =
(
(X1, X2) , c : X 7→ FX , s : 1 7→ X

)
,

where X is defined as the coproduct X1 + X2 in C, the state objects with their

priorities, meaning that X1 encodes the non-final, and X2 the final states of the

Büchi automaton. Additionally, c : X 7→ FX is an arrow inK`T , the dynamics, and

s : 1 7→ X an arrow in K`T providing initial states. We define for each i = 1, 2 the
arrow ci : Xi 7→ FX to be the restriction c ◦ κi : Xi 7→ FX along the coproduct

injections κi : Xi → X .
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Coalgebraic Semantics
Trace Semantics of Büchi-Systems

Definition (Trace Semantics of Büchi (T , F )-Systems )

Let X =
(
(X1, X2) , c : X 7→ FX , s : 1 7→ X

)
be a Büchi (T , F )-System. It induces

the following equational system EX , where ζ : Z → FZ is the final coalgebra of F

in C. Herein, the variable ui ranges over the poset K`T (Xi , Z ):

EX :=

[
u1 =µ (Jζ)−1 } F [u1, u2]} c1
u2 =ν (Jζ)−1 } F [u1, u2]} c2

]
(T , F ) consitutes a Büchi trace situation, if EX has a solution for any Büchi (T , F )-
System X , denoted by tracebi (X ) : Xi 7→ Z for i ∈ {1, 2}. The composite

traceb(X ) :=
(
1 X1 + X2 Z

)
s [traceb1(X ),traceb2(X )]

is called the trace semantics of the Büchi (T , F )-System X .
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Coalgebraic Semantics
Coincidence Result for Büchi RNNA

Theorem (Coincidence with RNNAs )

Every Büchi RNNA System A = ((Q \ Acc, Acc) , cA : Q 7→ FQ, s : 1 7→ Q) con-
situtes a Büchi trace situation, where the trace mappings are given by:

trace
b
1(A) : Q \ Acc 7→ Aω/≡α,q 7→ Lα,ω(q) and

trace
b
2(A) : Acc 7→ Aω/≡α,q 7→ Lα,ω(q)

Additionally its trace semantics is given by

trace
b(A) : 1 7→ Aω/≡α, ∗ 7→ Lα,ω(A).
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Coalgebraic Semantics
Proof of Coincidence Result

Proof: Since every Kleisli hom-set K`P
ufs
(Y , Z ) is a complete lattice, it is

obvious that every Büchi RNNA System consitutes a Büchi trace situation.

For this prove, we will calculate the solution of the following equational

system:

EA :=

[
u1 =µ (Jζ)−1 } F [u1,u2]} c1
u2 =ν (Jζ)−1 } F [u1,u2]} c2

]
Herein, the state set Q is divided into Q1 := Q \ Acc and Q2 := Acc, the

mapping ci : Qi 7→ FQ is the restriction of the coalgebra along the

coproduct injections, the functor F = A×−+ [A]− is the Büchi RNNA

functor, while

ζ :
(
Aω/≡α

)
fs
→ F (

(
Aω/≡α

)
fs
), [w ]α 7→

{
(a, [w ′]α) if [w ]α = [aw ′]α

〈a〉 [w ′]α if [w ]α = [ aw ′]α

is the final coalgebra for F .
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Coalgebraic Semantics
Proof of Coincidence Result

Notation (Paths in Büchi RNNAs )

Given some q,q′ ∈ Q and v ∈ A∗/≡α, we write q
v−→∗q′ if there is a v -labeled

path from q → q′, and q
v=⇒∗q′ if, additionally, all intermediate states on the path

are from Q1. Note, that q and q′ may still be elements of Q2.

We will then solve this system just like it was mentioned earlier:
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Coalgebraic Semantics
Proof of Coincidence Result

Step1 For every fixed u2 : Q2 7→
(
Aω/≡α

)
fs
, define the interim solution l

(1)
1

by

l
(1)
1 (u2) := µ n1. (Jζ)

−1 } F [n1,u2]} c1

and solve this by using Kleene. To make the notation less

convoluted, we define the ‘helper function’ f1 to be

f1 :

{
K`P

ufs

(
Q1,

(
Aω/≡α

)
fs

)
→ K`P

ufs

(
Q1,

(
Aω/≡α

)
fs

)
,

n1 7→ (Jζ)−1 } F [n1,u2]} c1.

We claim, that for all k ∈ ω and q ∈ Q1, we have

f k (⊥)(q) =

{
[vw ]α

∣∣∣∣∣ v ∈ A6k ,w ∈ Aω

∃q ′ ∈ Q2. q
v=⇒∗q ′ ∧ [w ]α ∈ u2(q

′).

}
.

Herein, fk1 denotes the k -fold application of f1. We prove this claim

per induction over k ∈ ω:

Florian Frank FAU InfSemRNNAs (Coalgebraic Infinitary Trace Semantics of Büchi RNNA) 5. Oktober 2022 44 / 51



Coalgebraic Semantics
Proof of Coincidence Result

Base Case (k = 0): For k = 0 the claim obviously holds: Since

f 01 (⊥)(q) = ⊥(q) = ∅ by definition and q ∈ Q1, we do not have

q
ε−→ q ′ for any q ′ ∈ Q2.

Step Case (k → k + 1): Suppose now that the claim holds for some k ∈ ω.
Let, furthermore, [u]α = [aw ]α ∈

(
Aω/≡α

)
fs
, where a ∈ A and

w ∈ Aω. Then, the following statements are equivalent:
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Coalgebraic Semantics
Proof of Coincidence Result

Because the function f1 is clearly ω-continuous, the interim solution l
(1)
1 (u2)

is obtained by taking the supremum of the Kleene chain. Therfore, we get

the explicit description

l
(1)
1 (u2)(q) =

{
[vw ]α

∣∣∣ v ∈ A+, w ∈ Aω,∃q ′ ∈ Q2.q
v=⇒∗q ′ ∧ [w ]α ∈ u2(q

′)
}

of our interim solution.
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Coalgebraic Semantics
Proof of Coincidence Result

Step2 Define the iterim solution l
(2)
2 by

l
(2)
2 := ν n2. (Jζ)

−1 } F
[
l
(1)
1 (n2), n2

]
} c2.

Again, to make the notation less convoluted, we define the ‘helper

function’ f2 to be

f2 : n2 7→ (Jζ)−1 } F
[
l
(1)
1 (n2), n2

]
} c2.

Similar to Step1, f2 is given by

f2(u2)(q) =
{
[vw ]α

∣∣∣ v ∈ A+, w ∈ Aω,∃q ′ ∈ Q2.q
v=⇒∗q ′ ∧ [w ]α ∈ u2(q

′)
}
.

We then claim that l
(2)
2 (q) = L2α,ω(q). Here, L

2
α,ω is the restriction of

the language mapping Lα,ω to Q2. Since L
2
α,ω is obviously a fixed
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Coalgebraic Semantics
Proof of Coincidence Result

point of f2, we have L2α,ω(q) ⊆ l
(2)
2 (q). It remains to prove

l
(2)
2 (q) ⊆ L2α,ω(q). Let [w ]α ∈ l

(2)
2 (q) = f2(l

(2)
2 )(q) and w ∈ Aω be a

representant of [w ]α. We shall construct infinite sequences of states

q0, q1, · · · ∈ Q2 and non-empty words v1, v2, · · · ∈ A+, such that

(i) q = q0 and qi
vi+1−−−→∗qi+1 holds for all i ∈ ω;

(ii) for each k ∈ ω the word v1 · · · vk is a prefix of w ,

i.e. w = v1 · · · vkw ′ for some w ′ ∈ Aω and the equivalence

class [w ′]α of the suffix w ′ lies in l
(2)
2 (qk ).

Given this, (ii) implies that w = v1v2 · · · , while (i) implies that w has

an accepting run from q. Therefore, we can conclude that

[w ]α ∈ L2α,ω(q).
We construct this sequence recursively. Obviously, we fix q0 = q.

Moreover, fix k ∈ ω and suppose that we already defined

q0, . . . , qk and v1, . . . , vk , such that

(i’) q = q0
v1−→∗q1

v2−→∗ · · · vk−→∗qk ;
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Coalgebraic Semantics
Proof of Coincidence Result

(ii’) the word v1 · · · vk is a prefix of w , i.e. w = v1 · · · vkw ′ for

some w ′ ∈ Aω and the equivalence class [w ′]α of the suffix

w ′ lies in l
(2)
2 (qk ).

Because of (ii’), we have that w ′ ∈ l
(2)
2 (qk ) = f2(l

(2)
2 )(qk ).

Therefore, there are v ′ ∈ A+, w ′′ ∈ Aω , and q ′ ∈ Q2, such that

w ′≡αv
′w ′′, qk

v ′
=⇒∗q ′ and [w ′′]α ∈ l

(2)
2 (q ′). Thus, vk+1 = v ′ and

qk+1 = q ′ fulfill all desired properties.

Step3 Lastly, we calculate the trace mappings. Obviously,

traceb2(A) : Acc 7→
(
Aω/≡α

)
fs
,q 7→ Lα,ω(q) holds, since

traceb2(A) = l
(2)
2 . Moreover, we get the trace map for Q1 by

l
(1)
1 (l

(2)
2 ). Thus, for any q ∈ Q1, we have

l
(1)
1 (L2α,ω)(q) =

{
[vw ]α

∣∣∣ v ∈ A+, w ∈ Aω, there is a q ′ ∈ Q2, s.t. q
v=⇒∗q ′, and [w ]α ∈ L2α,ω(q

′)
}
.

This is clearly equal to L1α,ω , the restriction of Lα,ω to Q1.
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Coalgebraic Semantics
Proof of Coincidence Result

This concludes the proof that the trace mappings are given by the language

mappings. It is obvious, that the composite
[
traceb1(A), traceb2(A)

]
} s

maps the singular element ∗ ∈ 1 to the accepted bar ω-language by the

Büchi RNNA A.
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Thank you for your attention!


