Coalgebraic Infinitary Trace Semantics of Nominal Büchi-Automata

Florian Frank
Wednesday $5^{\text {th }}$ October, 2022
Friedrich-Alexander-Universität Erlangen-Nürnberg

01 Preliminaries I: Fundamentals of Nom and Monads
02 Preliminaries II: Büchi RNNA and Equational Systems
03 Coalgebraic Infinitary Trace Semantics of Büchi RNNA

Preliminaries I: Fundamentals of Nom and Monads

Definition (Group)

A group $\mathbf{G}=(G, \cdot, e)$ consists of a set G, a binary operation \cdot on G, and an element e, such that:
(i) . is associative,

Definition (Group)

A group $\mathbf{G}=(G, \cdot, e)$ consists of a set G, a binary operation \cdot on G, and an element e, such that:
(ii) e is neutral, and

Definition (Group)

A group $\mathbf{G}=(G, \cdot, e)$ consists of a set G, a binary operation \cdot on G, and an element e, such that:
(iii) every element has an inverse element.

Definitions

Definition (Group)

A group $\mathbf{G}=(G, \cdot, e)$ consists of a set G, a binary operation \cdot on G, and an element e, such that:
(i) - is associative,
(ii) e is neutral, and
(iii) every element has an inverse element.

Example: Permutation Group

A permutation $\pi: X \rightarrow X$ on a set X is a bijective map. It gives rise to the permutation group $\operatorname{Sym} X$ of X by

$$
\operatorname{Sym} X:=\left(\{\pi: X \rightarrow X \mid \pi \text { is bijective }\}, \circ, \operatorname{id}_{X}\right) .
$$

Definition (Group)

A group $\mathbf{G}=(G, \cdot, e)$ consists of a set G, a binary operation \cdot on G, and an element e, such that:
(i) - is associative,
(ii) e is neutral, and
(iii) every element has an inverse element.

Example: Permutation Group

A permutation $\pi: X \rightarrow X$ on a set X is a bijective map. It gives rise to the permutation group $\operatorname{Sym} X$ of X by

$$
\operatorname{Sym} X:=\left(\{\pi: X \rightarrow X \mid \pi \text { is bijective }\}, \circ, \operatorname{id}_{X}\right) .
$$

A permutation is called finite if the set $\{x \in X \mid \pi x \neq x\}$ is finite. With this we get the subgroup Perm $X \leqslant \operatorname{Sym} X$ of finite permutations of X.

Groups

Actions and Equivariance

Definition (Group Actions)

If X is a set and $\mathbf{G}=(G, \cdot, e)$ is a group, then an action of G on X is a function

$$
\triangleright: G \times X \rightarrow X,(g, x) \mapsto g \triangleright x,
$$

such that for all $g, h \in G$ and $x \in X$:
(i) $e \triangleright x=x$

We call the set X together with its action a G-set.

Groups

Actions and Equivariance

Definition (Group Actions)

If X is a set and $\mathbf{G}=(G, \cdot, e)$ is a group, then an action of G on X is a function

$$
\triangleright: G \times X \rightarrow X,(g, x) \mapsto g \triangleright x,
$$

such that for all $g, h \in G$ and $x \in X$:
(ii) $(g \cdot h) \triangleright x=g \triangleright(h \triangleright x)$

We call the set X together with its action a G-set.

Definition (Group Actions)

If X is a set and $\mathbf{G}=(G, \cdot, e)$ is a group, then an action of G on X is a function

$$
\triangleright: G \times X \rightarrow X,(g, x) \mapsto g \triangleright x,
$$

such that for all $g, h \in G$ and $x \in X$:
(i) $e \triangleright x=x$
(ii) $(g \cdot h) \triangleright x=g \triangleright(h \triangleright x)$

We call the set X together with its action a G-set.

Definition (Equivariant Functions)

Let $\left(X, \triangleright_{X}\right)$ and $\left(Y, \triangleright_{Y}\right)$ be G-Sets, then a function $f: X \rightarrow Y$ is called equivariant, if

$$
f\left(g \triangleright_{X} x\right)=g \triangleright_{Y} f_{X}
$$

holds for all $g \in G$ and $x \in X$.

Definition (Orbits)

Let (X, \triangleright) be a G-Set for a group G and $x \in X$. Then the orbit of x with respect to \triangleright is $G \triangleright x:=\{g \triangleright x \mid g \in G\} \subseteq X$. These orbits are the equivalence classes for the equivalence relation

$$
x \sim_{G} y: \Longleftrightarrow \exists g \in G . y=g \triangleright x
$$

and we call a G-set orbit-finite, if $\#\left(X / \sim_{G}\right)<\infty$.

Orbits and Support

Definition (Orbits)

Let (X, \triangleright) be a G-Set for a group G and $x \in X$. Then the orbit of x with respect to \triangleright is $G \triangleright x:=\{g \triangleright x \mid g \in G\} \subseteq X$. These orbits are the equivalence classes for the equivalence relation

$$
x \sim_{G} y: \Longleftrightarrow \exists g \in G . y=g \triangleright x
$$

and we call a G-set orbit-finite, if $\#\left(X / \sim_{G}\right)<\infty$.

Definition (Support)

Let (X, \triangleright) be a Perm \mathbb{A} set, then $A \subseteq \mathbb{A}$ is a support for $x \in X$ if for all $\pi \in \operatorname{Perm} \mathbb{A}$

$$
(\forall a \in A . \pi a=a) \Rightarrow \pi \triangleright x=x
$$

We then define the support $\operatorname{supp}_{x} x$ of a finitely supported x as the least of all finite supports.

Definition (Uniform Finite Support)

Let (X, \triangleright) be a finitely supported Perm \mathbb{A} set. A subset $S \subseteq X$ is called uniformly finitely supported (ufs) if there exists a finite set $A \subseteq \mathbb{A}$ that supports each $x \in S$.

Remark (U.F.S. \Rightarrow F.S.)

Every ufs subset $S \subseteq X$ is finitely supported by the same subset $A \subseteq \mathbb{A}$. One can also show that in those cases we have

$$
A=\bigcup_{x \in S} \operatorname{supp} x
$$

Nominal Sets

Categorical Information

Definition (Category of Nominal Sets)

A nominal set X is a Perm \mathbb{A} set whose elements are all finitely supported. Together with equivariant functions, identiies and compositions as in Set, they form a category Nom.

Remark (Nom is a Cartesian Closed Category)

Since Nom has finite products and exponentials for every pair X, Y of object of Nom, the category is cartesian closed.

Additionally, Nom admits arbitrary coproducts.

Nominal Sets

Power Sets

Example: Power Sets

With finitely and uniformly finitely supported subsets we get the following two functors:

$$
\begin{aligned}
& \mathcal{P}_{\mathrm{fs}}: \quad \text { Nom } \quad \rightarrow \text { Nom } \\
& f: X \rightarrow Y \quad \mapsto \quad \mathcal{P}_{\mathrm{fs}} f: \mathcal{P}_{\mathrm{fs}} X \rightarrow \mathcal{P}_{\mathrm{fs}} Y, S \mapsto f[S] \\
& \begin{array}{rll}
\mathcal{P}_{\text {ufs }}: & \text { Nom } & \rightarrow \text { Nom } \\
X & \mapsto & \{S \subseteq X \mid S \text { is ufs }\} \\
f: X \rightarrow Y & \mapsto & \mathcal{P}_{\text {ufs }} f: \mathcal{P}_{\text {ufs }} X \rightarrow \mathcal{P}_{\text {ufs }} Y, S \mapsto f[S]
\end{array}
\end{aligned}
$$

Nominal Sets

Freshness and α-Equivalence

Definition (Freshness)

A name $a \in \mathbb{A}$ is fresh for an element x of a nominal set X if $a \notin \operatorname{supp} x$. We denote this by $a \# x .0$

The freshness relation \# is equivariant.

Nominal Sets

Definition (Freshness)

A name $a \in \mathbb{A}$ is fresh for an element x of a nominal set X if $a \notin \operatorname{supp} x$. We denote this by $a \# x .0$

The freshness relation \# is equivariant.

Lemma (α-Equivalence)

Define a binary relation \approx_{α} on $\mathbb{A} \times X$ by
$(a, x) \approx_{\alpha}(b, y): \Longleftrightarrow(a c) \triangleright x=(b c) \triangleright y$ for some, equivalently all, fresh c.
Then \approx_{α} is an equivariant equivalence relation, the equivalence class for $(a, x) \in$ $\mathbb{A} \times X$ is denoted $\langle a\rangle x$, and called a name abstraction.

Nominal Sets

Name Abstractions

Definition (Abstraction Set)

We call the quotient set of $\mathbb{A} \times X$ with \approx_{α} the nominal set of name abstractions [A] X together with its action

$$
\triangleright: \operatorname{Perm} \mathbb{A} \times[\mathbb{A}] X \rightarrow[\mathbb{A}] X,(\pi,\langle a\rangle x) \mapsto\langle\pi a\rangle\left(\pi \triangleright_{X} x\right)
$$

Furthermore, we have $\operatorname{supp}\langle a\rangle x=\operatorname{supp} x \backslash\{a\}$ for all $a \in \mathbb{A}$ and $x \in X$.

Proposition (Functoriality of [$\mathbb{A}]$ -)

The object map $X \mapsto[\mathbb{A}] X$ extends to the abstraction functor as follows:

$$
[\mathbb{A}]-: \operatorname{Nom} \rightarrow \operatorname{Nom},\left\{\begin{array}{rll}
X & \mapsto & {[\mathbb{A}] X} \\
f & \mapsto & {[\mathbb{A}] f:\langle a\rangle x \mapsto\langle a\rangle f x}
\end{array}\right.
$$

Nominal Sets

Adjointness and Preservation

Theorem (Adjointness of the Abstraction Functor)
The abstraction functor $[\mathbb{A}]_{_}$is both a left and a right adjoint:

$$
-* \mathbb{A} \dashv[\mathbb{A}]_{-} \dashv R_{-}
$$

Nominal Sets

Adjointness and Preservation

Theorem (Adjointness of the Abstraction Functor)

The abstraction functor $[\mathbb{A}]$ _ is both a left and a right adjoint:

$$
-* \mathbb{A} \dashv[\mathbb{A}]_{-} \dashv R_{-}
$$

Proposition (Preservation of Exponentials)

The abstraction functor $[\mathbb{A}]$ _ preserves exponentials:

$$
[\mathbb{A}]\left(X \rightarrow_{\mathrm{fs}} Y\right) \cong[\mathbb{A}] X \rightarrow_{\mathrm{fs}}[\mathbb{A}] Y
$$

Nominal Sets

Distributive Laws

Corollary ($\mathcal{P}_{\text {ufs }}$ distributes over $[\mathbb{A}]$ -)

The functor $\mathcal{P}_{\text {ufs }}$ distributes over the abstraction functor by

$$
\begin{aligned}
& \varphi_{X}:\left\{\begin{array}{rll}
{[\mathbb{A}] \mathcal{P}_{\text {ufs }}(X)} & \rightarrow & \mathcal{P}_{\text {ufs }}([\mathbb{A}] X) \\
\langle a\rangle S & \mapsto & \{\langle a\rangle X \mid x \in S\}
\end{array},\right. \\
& \psi_{X}:\left\{\begin{aligned}
\mathcal{P}_{\text {ufs }}([\mathbb{A}] X) & \rightarrow[\mathbb{A}] \mathcal{P}_{\text {ufs }}(X) \\
S & \mapsto\langle a\rangle\{x \mid\langle a\rangle x \in S\} \text { with } a \# S
\end{aligned}\right.
\end{aligned}
$$

These morphisms are mutually inverse and natural in X.

Monads

Definition

Definition (Monads)

Let \mathcal{C} be a category. A monad on \mathcal{C} is a triple $\langle T, \eta, \mu\rangle$, where $T: \mathcal{C} \rightarrow \mathcal{C}$ is an endofunctor, $\eta: \mathrm{id}_{\mathcal{C}} \Rightarrow T$ and $\mu: T^{2} \Rightarrow T$ are natural transformations, and the following diagrams commute for every object X in \mathcal{C} :

Definition (Kleisli Category)

Let $\langle T, \eta, \mu\rangle$ be a monad on a category \mathcal{C}. The Kleisli Category $\mathcal{K} \ell_{T}$ of T has the same objects as \mathcal{C}, but arrows $X \rightarrow Y$ in $\mathcal{K} \ell_{T}$ are arrows $X \rightarrow T Y$ in \mathcal{C}. The identity in $\mathcal{K} \ell_{T}$ is given by the unit $\eta_{X}: X \rightarrow T X$, and the composition of two arrows $f: X \rightarrow Y$ and $g: Y \leftrightarrow Z$ in $\mathcal{K} \ell_{T}$ is written as $g \odot f$ and defined by

$$
\overbrace{X \underset{f}{\longrightarrow} T Y \underset{T g}{\longrightarrow} T^{2} Z \underset{\mu_{Z}}{ } T Z .}^{q \odot f}
$$

Remark (Canonical Adjunction)

We have a canonical adjunction

where J is defined by $J X=X$ on objects and $J f=\eta_{\operatorname{cod} f} \circ f$ on arrows, where $\operatorname{cod} f$ is the codomain of the arrow f. The functor U is defined by $U X=T X$ on objects and $U f=\mu_{\text {cod } f} \circ T f$ on arrows.

Definition (Distributive Laws)

Let $\langle T, \eta, \mu\rangle$ be a monad and $F: \mathcal{C} \rightarrow \mathcal{C}$ an endofunctor on a category \mathcal{C}. A distributive law of F over T is a natural transformation $\lambda: F T \Rightarrow T F$, such that the following diagramms commute:

Proposition (Correspondence between Extensions and $\mathcal{K} \ell$-Laws)

Let $\langle T, \eta, \mu\rangle$ be a monad and $F: \mathcal{C} \rightarrow \mathcal{C}$ an endofunctor on a category \mathcal{C}. Then there is a bijective correspondence between distributive laws $\lambda: F T \Rightarrow T F$ and extensions of $F: \mathcal{C} \rightarrow \mathcal{C}$ to a functor $\bar{F}: \mathcal{K} \ell_{T} \rightarrow \mathcal{K} \ell_{T}$, i.e. a functor that makes the diagram on the right commute. Herein, the
 arrow J is the canonical left adjoint from earlier.

Proposition (Correspondence between Extensions and $\mathcal{K} \ell$-Laws)

Let $\langle T, \eta, \mu\rangle$ be a monad and $F: \mathcal{C} \rightarrow \mathcal{C}$ an endofunctor on a category \mathcal{C}. Then there is a bijective correspondence between distributive laws $\lambda: F T \Rightarrow T F$ and extensions of $F: \mathcal{C} \rightarrow \mathcal{C}$ to a functor $\bar{F}: \mathcal{K} \ell_{T} \rightarrow \mathcal{K} \ell_{T}$, i.e. a functor that makes the diagram on the right commute. Herein, the
 arrow J is the canonical left adjoint from earlier.

Given a distributive law $\lambda: F T \Rightarrow T F$ one defines the functor \bar{F} by

$$
\bar{F}: \mathcal{K} \ell_{T} \rightarrow \mathcal{K} \ell_{T}, \begin{cases}X & \mapsto \\ X X \\ X \xrightarrow{f} T Y & \mapsto \\ F X \xrightarrow{F f} F T Y \xrightarrow{\lambda_{Y}} T F Y\end{cases}
$$

Proposition (Correspondence between Extensions and \mathcal{K}-Laws)

Let $\langle T, \eta, \mu\rangle$ be a monad and $F: \mathcal{C} \rightarrow \mathcal{C}$ an endofunctor on a category \mathcal{C}. Then there is a bijective correspondence between distributive laws $\lambda: F T \Rightarrow T F$ and extensions of $F: \mathcal{C} \rightarrow \mathcal{C}$ to a functor $\bar{F}: \mathcal{K} \ell_{T} \rightarrow \mathcal{K} \ell_{T}$, i.e. a functor that makes the diagram on the right commute. Herein, the
 arrow J is the canonical left adjoint from earlier.

Given a distributive law $\lambda: F T \Rightarrow T F$ one defines the functor \bar{F} by

$$
\bar{F}: \mathcal{K} \ell_{T} \rightarrow \mathcal{K} \ell_{T}, \begin{cases}X & \mapsto \\ X X \\ X \xrightarrow{f} T Y & \mapsto F X \xrightarrow{F f} F T Y \xrightarrow{\lambda_{Y}} T F Y\end{cases}
$$

In the other direction, given \bar{F} one obtains a distributive law by $\lambda_{X}=\bar{F}\left(\mathrm{id}_{T X}\right): F T X \rightarrow T F X$.

Kleisli-Lattices

$\mathcal{K} \ell_{\mathcal{P}_{\text {Ufs }}}$ admits Lattices

Proposition ($\mathcal{K l}$-Arrows are a Complete Lattice)

For any pair X, Y of objects in Nom the hom-set of the Kleisli category $\mathcal{K} \ell_{\mathcal{P}_{\text {ufs }}}(X, Y)$ of the monad $\mathcal{P}_{\text {ufs }}$ is a complete lattice, where joins and meets are built by taking the union or intersection, respectively:

$$
\begin{array}{rlllll}
\bigvee_{i \in I} f_{i}: & X & \mapsto y & \bigwedge_{i \in I} f_{i}: & X & \mapsto \\
& x & \mapsto & \bigcup_{i \in I} f_{i}(x) & & \mapsto
\end{array} \bigcap_{i \in I} f_{i}(x)
$$

Remark (Top and Bottom Element)

The bottom element $\perp_{X, Y}$ of the lattice $\mathcal{K} \ell_{\mathcal{P}_{\text {ufs }}}(X, Y)$ and the top element $\top_{X, Y}$ are defined by the equivariant functions

$$
\perp_{X, Y}: X \rightarrow Y, x \mapsto \emptyset \quad \text { and } \quad \top_{X, Y}: X \rightarrow Y, x \mapsto\{y \mid \operatorname{supp} y \subseteq \operatorname{supp} x\}
$$

Preliminaries II: Büchi RNNA and Equational

Systems

Bar Strings

Definition

We fix a countable infinite set \mathbb{A} of names, and define an extended alphabet $\overline{\mathbb{A}}$ by

$$
\overline{\mathbb{A}}:=\mathbb{A} \cup\{|a| a \in \mathbb{A}\} .
$$

Definition (Bar Strings)

- A finite bar string is a finite word over $\overline{\mathbb{A}}$, while an infinite bar string is an infinite word over $\overline{\mathbb{A}}$. We denote the sets of finite and infinite bar strings by $\overline{\mathbb{A}}^{*}$ and $\overline{\mathbb{A}}^{\omega}$, respectively.
- Given a word $w \in \overline{\mathbb{A}}^{*} \cup \overline{\mathbb{A}}^{\omega}$ the set of names in w is defined by

$$
\mathrm{N}(w):=\{a \in \mathbb{A} \mid \text { the letter } a \text { or la occurs in } w\} .
$$

An infinite bar string w is finitely supported if $\mathrm{N}(w)$ is finite; the set $\overline{\mathbb{A}}_{\mathrm{f}}^{\omega} \subseteq \overline{\mathbb{A}}^{\omega}$ denotes the finitely supported infinite bar strings.

- A name $a \in \mathbb{A}$ occuring in a bar string $w \in \overline{\mathbb{A}}^{*} \cup \overline{\mathbb{A}}^{\omega}$ is free if it occurs to the left of any occurance of la, and bound otherwise. We denote the set of free names in w by $\mathrm{FN}(w)$.

Definition (α-Equivalence on Bar Strings)

- We define α-equivalence $\equiv{ }_{\alpha}$ on finite bar strings as the equivalence generated by

$$
w\left|a v \equiv \equiv_{\alpha} w\right| b u \quad \text { iff } \quad\langle a\rangle v=\langle b\rangle \cup \text { in }[\mathbb{A}] \overline{\mathbb{A}}^{*} .
$$

- This then can be extended to an equivalence relation \equiv_{α} on infinite bar strings by

$$
v \equiv_{\alpha} w \quad \text { iff } \quad v[0: n) \equiv{ }_{\alpha} w[0: n) \quad \text { for all } n \in \omega .
$$

- We write $[w]_{\alpha}$ for the α-equivalence class of $w \in \overline{\mathbb{A}}^{*} \cup \overline{\mathbb{A}}^{\omega}$, and denote by $\overline{\mathbb{A}}^{*} / \equiv_{\alpha}$ and $\overline{\mathbb{A}}^{\omega} / \equiv{ }_{\alpha}$ the sets of α-equivalence classes of finite and infinite bar strings, respectively.

Remark (Right Cancellation Property)

For all $v, w \in \overline{\mathbb{A}}^{*}$ and $x \in \overline{\mathbb{A}}^{*} \cup \overline{\mathbb{A}}^{\omega}$, we have that $v x \equiv_{\alpha} w x$ implies $v \equiv{ }_{\alpha} w$.

Clean Bar Strings

Definition (Clean Bar Strings)

A finite or infinite bar string w is clean if for each $a \in \mathrm{FN}(w)$ the letter la does not occur in w, and for each $a \notin \mathrm{FN}(w)$ the letter la occurs at most once.

Lemma (Canonical Form for Bar Strings)

Given a bar string $w \in \overline{\mathbb{A}}^{*} \cup \overline{\mathbb{A}}_{\mathrm{fs}}^{\omega}$ and a set S with $\mathrm{FN}(w) \subseteq S$, there is an α equivalent clean bar string $n f(w)$ which is unique with respect to the ordering of the names $\mathbb{A} \backslash S$. Additionally, the mapping nf is equivariant.

Bar Strings

Notation (Prefixes)

Given two strings $v \in \overline{\mathbb{A}}^{n}$ and $w \in \overline{\mathbb{A}}^{n+1}$, we write $v \sqsubseteq w$ if $v=w[0: n)$ and write $v \sqsubseteq_{\alpha} w$ if $v \equiv_{\alpha} w[0: n)$.

Lemma (α-Equivalent Prefixes)

Given two bar strings $v \in \overline{\mathbb{A}}^{n}$ and $w \in \overline{\mathbb{A}}^{n+1}$ and a finite set $S \subseteq \mathbb{A}$, such that $\mathrm{FN}(v), \mathrm{FN}(w) \subseteq S$, we have that $v \sqsubseteq \alpha w$ if and only if $\operatorname{nf}(v) \sqsubseteq \operatorname{nf}(w)$.

Proof: We show both implications singularily:
${ }^{\prime} \Rightarrow$ ' The assumption implies, that $u \equiv_{\alpha} w[0: n)$ and therefore $\operatorname{nf}(u) \equiv_{\alpha} u \equiv_{\alpha} w[0: n) \equiv_{\alpha} \operatorname{nf}(w)[0: n)$, where the last α-equivalence holds because of the right cancellation property. However, because of the uniqueness with respect to the ordering of $\mathbb{A} \backslash S$, we have that $\operatorname{nf}(\boldsymbol{U})=\operatorname{nf}(w)[0: n)$.

Bar Strings

Prefixes
$' \Leftarrow '$
We now have $\operatorname{nf}(\boldsymbol{u})=\operatorname{nf}(w)[0: n)$, i.e. $u \equiv{ }_{\alpha} \operatorname{nf}(u)=\operatorname{nf}(w)[0: n) \equiv{ }_{\alpha} w[0: n)$, where the last α-equivalence holds because of the right cancel/ation property.

Definition (Regular Nondeterministic Nominal Automata)

A regular nondeterministic nominal automaton (RNNA) is a tuple $A=$ ($Q, \delta, s, A c c$) consisting of

- an orbit-finite nominal set Q of states, with an initial state $s \in Q$;
- an equivariant subset $\delta \subseteq Q \times \overline{\mathbb{A}} \times Q$, the transition relation, where we write $q \xrightarrow{\alpha} q^{\prime}$ for $\left(q, \alpha, q^{\prime}\right) \in \delta$; transitions of type $q \xrightarrow{a} q^{\prime}$ are called free, and those of type $q \xrightarrow{\text { la }} q^{\prime}$ bound;
- an equivariant subset Acc $\subseteq Q$ of final states
such that the following conditions are satisfied:

Definition (Regular Nondeterministic Nominal Automata)

A regular nondeterministic nominal automaton (RNNA) is a tuple $A=$ ($Q, \delta, s, A c c$) consisting of

- an orbit-finite nominal set Q of states, with an initial state $s \in Q$;
- an equivariant subset $\delta \subseteq Q \times \overline{\mathbb{A}} \times Q$, the transition relation;
- an equivariant subset Acc $\subseteq Q$ of final states
such that the following conditions are satisfied:
- The relation δ is α-invariant, i.e. closed under α-equivalence of transitions, where transitions $q \xrightarrow{\text { 1a }} q^{\prime}$ and $p \xrightarrow{\text { Ib }} p^{\prime}$ are α-equivalent if $q=p$ and $\langle a\rangle q^{\prime}=$ $\langle b\rangle p^{\prime}$.
- The relation δ is finitely branching up to α-equivalence, i.e. for each state q the sets

$$
\left\{\left(a, q^{\prime}\right) \mid q \xrightarrow{a} q^{\prime}\right\} \text { and }\left\{\langle a\rangle q^{\prime} \mid q \xrightarrow{\text { la }} q^{\prime}\right\}
$$

are finite or equivalently ufs.

Remark (RNNAs as Coalgebras)

Coalgebraically, an RNNA is an orbit-finite coalgebra $\gamma: Q \rightarrow F Q$ for the functor

$$
F=\mathcal{P}_{\mathrm{ufs}}(\mathbb{A} \times-+[\mathbb{A}]-)
$$

together with an equivariant subset $\operatorname{Acc} \subseteq Q$ of final states and a map $s: \mathbb{1} \rightarrow Q$ in $\mathcal{K} \ell_{\mathcal{P}_{\text {ufs }}}$ for initial states.

Given an RNNA $A=(Q, \delta, s, A c c)$, its equivalent coalgebra is given by

$$
\gamma_{G}:\left\{\begin{array}{rll}
Q & \rightarrow & \mathcal{P}_{\mathrm{ufs}}(\mathbb{A} \times Q+[\mathbb{A}] Q) \\
q & \mapsto & S_{q}
\end{array}\right.
$$

where $\left(a, q^{\prime}\right) \in S_{q}$ iff $q \xrightarrow{a} q^{\prime}$, and $\langle a\rangle q^{\prime} \in S_{q}$ iff $q \xrightarrow{\text { la }} q^{\prime}$. The map of initial states is given by $s: \mathbb{1} \rightarrow Q, * \mapsto\{s\}$.

Büchi RNNA

Definition

Definition (Büchi RNNA)

A Büchi RNNA is an RNNA $A=\left(Q, \delta, q_{0}\right.$, Acc), where it accepts a run $r \in Q^{\omega}$, if $\#\left\{i \in \omega \mid r_{i} \in \operatorname{Acc}\right\}=\omega$. The state $q \in Q$ accepts an infinite bar string $w \in \overline{\mathbb{A}}^{\omega}$, if there is a run for w starting with q. The automaton A accepts $w \in \mathbb{A}^{\omega}$, if its initial state q_{0} accepts w. We then define by

$$
L_{\alpha, \omega}(A):=\left\{[w]_{\alpha} \mid w \in \overline{\mathbb{A}}^{\omega}, A \text { accepts } w\right\}
$$

the barw-language accepted by A.

Equational Systems
 Definition

Definition (Equational Systems with Two Variables)

For $i \in\{1,2\}$ let $f_{i}: L_{1} \times L_{2} \rightarrow L_{i}$ be monotone functions where all L_{i} 's are posets. An equational system is then a sequence

$$
\left[\begin{array}{l}
u_{1}=\eta_{1} f_{1}\left(u_{1}, u_{2}\right) \\
u_{2}=\eta_{2} \\
f_{2}\left(u_{1}, u_{2}\right)
\end{array}\right]
$$

where the u_{i} 's are variables and η_{i} is either ν or μ for all $i \in\{1,2\}$.

Given all necessary fixed points exist, we can define the solution of such a system by the element

$$
\left(h_{1}, h_{2}\right) \in L_{1} \times L_{2},
$$

obtained in the following way:

1) Compute the first 'interim' solution $g_{1}\left(U_{2}\right)=\eta_{1} x_{1} . f_{1}\left(u_{1}, u_{2}\right)$.
2) Substitute this solution in the remaining equation, i.e. $u_{2}={ }_{\eta} f_{2}\left(g_{1}\left(u_{2}\right), u_{2}\right)$, and solve this system to compute h_{2}, which is used for $h_{1}=g_{1}\left(h_{2}\right)$.

Equational Systems

Solvability

Lemma (Solvability Criterion)

Such an equational system for two variables has a solution if each L_{i} is a complete lattice.

Coalgebraic Infinitary Trace Semantics of Büchi RNNA

Coalgebraic Modelling

Original Assumptions

Assumption (Coalgebraic Assumptions after Urabe et al.)

In what follows a monad T and an endofunctor F, both on a category \mathcal{C}, satisfy:
(1) \mathcal{C} has a final object $\mathbb{1}$ and finite coproducts.
(2) F has a final coalgebra $\zeta: Z \rightarrow F Z$ in \mathcal{C}.
(3) There is a distributive law $\lambda: F T \Rightarrow T F$, hence $F: \mathcal{C} \rightarrow \mathcal{C}$ is lifted to $\bar{F}: \mathcal{K} \ell_{T} \rightarrow$ $\mathcal{K} \ell_{T}$.
(4) For every pair X, Y of objects in $\mathcal{K} \ell_{T}$, the hom-set $\mathcal{K} \ell_{T}(X, Y)$ carries an order $\preccurlyeq x, Y$ and is a complete lattice.
(5) Kleisli composition \odot and cotupling $[-,-]$ are monotone with respect to the order \preccurlyeq.
(6) The lifting \bar{F} is locally monotone, i.e. for $f, g \in \mathcal{K} \ell_{T}(X, Y), f \preccurlyeq x, y \quad g$ implies $F f \preccurlyeq \bar{F} X, \bar{F} Y F g$.

Büchi RNNAs

The category Nom, the ufs powerset monad $\mathcal{P}_{\text {ufs }}$ and the functor

$$
F=\mathbb{A} \times-+[\mathbb{A}]-
$$

satisfy the assumptions.
Proof: Since most of the points have already been proven, we will only look at the final coalgebra of F : We prove that the map

$$
\zeta:\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}} \rightarrow \boldsymbol{G}\left(\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}}\right),[w]_{\alpha} \mapsto \begin{cases}\left(a,\left[w^{\prime}\right]_{\alpha}\right) & \text { if }[w]_{\alpha}=\left[a w^{\prime}\right]_{\alpha} \tag{1}\\ \langle a\rangle\left[w^{\prime}\right]_{\alpha} & \text { if }[w]_{\alpha}=\left[l a w^{\prime}\right]_{\alpha}\end{cases}
$$

is the final coalgebra for the functor G by use of Adámek's Lemma for final coalgebras. (The ω^{op}-limit of the chain $G^{n} \mathbb{1}$ carries the structure of a final coalgebra, if G preserves that limit)

Coalgebraic Modelling

We then prove that $G^{n} \mathbb{1} \cong \overline{\mathbb{A}}^{n} / \equiv{ }_{\alpha}$ holds by induction over $n \in \omega$:
Base Case ($n=0$): Obviously this holds, since

$$
\boldsymbol{G}^{0} \mathbb{1}=\mathbb{1} \cong\left\{[\varepsilon]_{\alpha}\right\}=\overline{\mathbb{A}}^{0} / \equiv_{\alpha} .
$$

Step Case ($n \rightarrow n+1$): Suppose now that $G^{n} \mathbb{1} \cong \overline{\mathbb{A}}^{n} / \equiv_{\alpha}$ holds for n, then we have

$$
\begin{aligned}
G^{n+1} \mathbb{1} & =G\left(G^{n} \mathbb{1}\right) \stackrel{\stackrel{1 . H .}{\cong}}{\cong} G\left(\overline{\mathbb{A}}^{n} / \equiv_{\alpha}\right) \\
& =\mathbb{A} \times \overline{\mathbb{A}}^{n} / \equiv_{\alpha}+[\mathbb{A}] \mathbb{A}^{n} / \equiv_{\alpha} \stackrel{(*)}{\cong} \mathbb{A}^{n+1} / \equiv_{\alpha} .
\end{aligned}
$$

The last isomorphism (*) is given by

$$
\left(a,[w]_{\alpha}\right) \mapsto[a w]_{\alpha} \quad \text { and } \quad\langle a\rangle[w]_{\alpha} \mapsto[\mid a w]_{\alpha}
$$

for $a \in \mathbb{A}$ and $[w]_{\alpha} \in \overline{\mathbb{A}}^{n} / \equiv_{\alpha}$. It should be obvious to see that this mapping is an isomorphism.

Coalgebraic Modelling

Büchi RNNAs satisfy the Assumptions

With this, we only have to prove that $\left(\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}}, \varphi_{n}:\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}} \rightarrow \overline{\mathbb{A}}^{n} / \equiv_{\alpha}, w \mapsto w[0: n)\right)$ is indeed the limit cone for the ω^{op} chain. Indeed, our candidate is a cone since the following diagram obviously commutes:

So suppose $\left(K, \psi_{i}: K \rightarrow \overline{\mathbb{A}}^{i} / \equiv_{\alpha}\right)$ is another cone. This means that for each $k \in K$ we have a finitely supported family $\psi_{i}(k)$ of finitely supported bar strings that is compatible, i.e. $\psi_{i}(k) \sqsubseteq_{\alpha} \psi_{i+1}(k)$ for all $i \in \omega$.

Coalgebraic Modelling

Since the family $\left\{\psi_{i}(k)\right\}_{i \in \omega}$ is finitely supported, the set $S:=\bigcup_{i \in \omega} \mathrm{FN}\left(w_{i}\right)$ is finite. We therefore define

$$
a_{K}: K \rightarrow \overline{\mathbb{A}}^{\omega} / \equiv{ }_{\alpha}, k \mapsto\left[w_{k}: \omega \rightarrow \overline{\mathbb{A}}, i \mapsto \operatorname{nf}\left(\psi_{i+1}(k)\right)(i)\right]_{\alpha}
$$

and prove below that it is the unique arrow between K and our limit candidate. It is well-defined in the sense that we have $\mathrm{nf}\left(\psi_{i}(k)\right) \sqsubseteq \mathrm{nf}\left(\psi_{i+1}(k)\right)$ for each $i \in \omega$. The mapping is also equivariant. Additionally, this a_{K} fulfills the limit equations, i.e. we have for every $k \in K$ and $n \in \omega$, that $\psi_{n}(k)=\varphi_{n}\left(a_{K}(k)\right)$.

Coalgebraic Modelling

We show that $\varphi_{n}\left(a_{K}(k)\right)=\operatorname{nf}\left(\psi_{n}(k)\right)$ by induction over $n \in \omega$:
Base Case ($n=0$): Obviously this holds, since

$$
\operatorname{nf}\left(\psi_{0}(k)\right)=[\varepsilon]_{\alpha}=\varphi_{0}\left(a_{K}(k)\right) .
$$

Step Case ($n \rightarrow n+1$): Suppose now that $n f\left(\psi_{n}(k)\right)=\varphi_{n}\left(a_{K}(k)\right)$ holds for n. Let w_{k} be the representant of $a_{K}(k)$, then we have

$$
\begin{aligned}
\varphi_{n+1}\left(w_{k}\right) & = \\
& \stackrel{\text { I.H. }}{=} \\
& \varphi_{n}\left(w_{k}\right)\left(\operatorname{nf}\left(\psi_{n+1}(k)\right)(n)\right) \\
& \stackrel{(\Delta)}{=} \\
& \operatorname{nf}\left(\psi_{n+1}(k)\right)\left(\operatorname{nf}\left(\psi_{n+1}(k)\right)(n)\right) \\
& =n f\left(\psi_{n+1}(k)\right)
\end{aligned}
$$

where the step (Δ) holds because of the prefix properties of the canonical form.

The uniqueness of the mapping a_{K} is easy to prove since the cone projections are jointly monic:

- Let $g, h: X \rightarrow\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}}$ be two maps with $\varphi_{i} \circ g=\varphi_{i} \circ h$ for all $i \in \omega$.
- This means that for every $x \in X$, putting $[w]_{\alpha}=g(x)$ and $\left[w^{\prime}\right]_{\alpha}=h(x)$, we have $w[0: i) \equiv{ }_{\alpha} w^{\prime}[0: i)$ for every $i \in \omega$.
- But this means $w \equiv_{\alpha} w^{\prime}$ and therefore $g(x)=h(x)$.

With this in mind, we see that for every other map f between K and $\left(\overline{\mathbb{A}}^{\omega} / \equiv \equiv_{\alpha}\right)_{\mathrm{fs}}$ with $\varphi_{i} \circ f=\psi_{i}$ we have $\varphi_{i} \circ f=\varphi_{i} \circ a_{K}$ and thus $f=a_{K}$. Hereby, uniqueness is shown, and because

$$
a_{G}: G\left(\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}}\right) \rightarrow\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}},\left\{\begin{array}{ccc}
\left(a,[w]_{\alpha}\right) & \mapsto & {[a w]_{\alpha}} \\
\langle a\rangle[w]_{\alpha} & \mapsto & {[l a w]_{\alpha}}
\end{array}\right.
$$

is the unique limit mapping between $G\left(\left(\overline{\mathbb{A}}^{\omega} / \equiv\right)_{\mathrm{fs}^{\prime}}\right)$ and $\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}^{\prime}}$, we see that its inverse must be the final coalgebra of G.

Coalgebraic Modelling

Büchi (T, F)-Systems

Definition (Büchi ($T, F)$-System)

A Büchi (T, F)-System is given by a triple $\mathcal{X}=\left(\left(X_{1}, X_{2}\right), c: X \rightarrow \bar{F} X, s: \mathbb{1} \rightarrow X\right)$, where X is defined as the coproduct $X_{1}+X_{2}$ in \mathcal{C}, the state objects with their priorities, meaning that X_{1} encodes the non-final, and X_{2} the final states of the Büchi automaton. Additionally, $c: X \rightarrow \bar{F} X$ is an arrow in $\mathcal{K} \ell_{T}$, the dynamics, and $s: \mathbb{1} \rightarrow X$ an arrow in $\mathcal{K} \ell_{T}$ providing initial states. We define for each $i=1,2$ the arrow $c_{i}: X_{i} \rightarrow \bar{F} X$ to be the restriction $c \circ \kappa_{i}: X_{i} \rightarrow \bar{F} X$ along the coproduct injections $\kappa_{i}: X_{i} \rightarrow X$.

Coalgebraic Semantics

Trace Semantics of Büchi-Systems

Definition (Trace Semantics of Büchi ($T, F)$-Systems)

Let $\mathcal{X}=\left(\left(X_{1}, X_{2}\right), c: X \rightarrow \bar{F} X, s: \mathbb{1} \rightarrow X\right)$ be a Büchi (T, F)-System. It induces the following equational system $E_{\mathcal{X}}$, where $\zeta: Z \rightarrow F Z$ is the final coalgebra of F in \mathcal{C}. Herein, the variable U_{i} ranges over the poset $\mathcal{K} \ell_{T}\left(X_{i}, Z\right)$:

$$
E_{\mathcal{X}}:=\left[\begin{array}{lll}
u_{1} & ={ }_{\mu} & (J \zeta)^{-1} \odot \bar{F}\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right] \odot c_{1} \\
U_{2} & ={ }_{\nu} & (J \zeta)^{-1} \odot \bar{F}\left[u_{1}, \boldsymbol{u}_{2}\right] \odot c_{2}
\end{array}\right]
$$

(T, F) consitutes a Büchi trace situation, if $E_{\mathcal{X}}$ has a solution for any Büchi (T, F) System \mathcal{X}, denoted by $\operatorname{trace}_{i}^{\mathrm{b}}(\mathcal{X}): X_{i} \rightarrow Z$ for $i \in\{1,2\}$. The composite

$$
\operatorname{trace}^{\mathrm{b}}(\mathcal{X}):=\left(\mathbb{1} \xrightarrow{s} X_{1}+X_{2} \xrightarrow{\left[\operatorname{trace}_{1}^{\mathrm{b}}(\mathcal{X}), \operatorname{trace}_{2}^{\mathrm{b}}(\mathcal{X})\right]} Z\right)
$$

is called the trace semantics of the Büchi (T, F)-System \mathcal{X}.

Coalgebraic Semantics

Coincidence Result for Büchi RNNA

Theorem (Coincidence with RNNAs)

Every Büchi RNNA System $\mathcal{A}=\left((Q \backslash \mathrm{Acc}, \mathrm{Acc}), c_{A}: Q \rightarrow F Q, s: \mathbb{1} \rightarrow Q\right)$ consitutes a Büchi trace situation, where the trace mappings are given by:

$$
\begin{aligned}
\operatorname{trace}_{1}^{\mathrm{b}}(\mathcal{A}): Q \backslash \mathrm{Acc} & \rightarrow \overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}, q \mapsto L_{\alpha, \omega}(q) \quad \text { and } \\
\operatorname{trace}_{2}^{\mathrm{b}}(\mathcal{A}): \operatorname{Acc} & \rightarrow \overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}, q \mapsto L_{\alpha, \omega}(q)
\end{aligned}
$$

Additionally its trace semantics is given by

$$
\operatorname{trace}^{\mathrm{b}}(\mathcal{A}): \mathbb{1} \mapsto \overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}, * \mapsto L_{\alpha, \omega}(\boldsymbol{A}) .
$$

Coalgebraic Semantics

Proof: Since every Kleisli hom-set $\mathcal{K} \ell_{\mathcal{P}_{\text {uts }}}(Y, Z)$ is a complete lattice, it is obvious that every Büchi RNNA System consitutes a Büchi trace situation. For this prove, we will calculate the solution of the following equational system:

$$
E_{\mathcal{A}}:=\left[\begin{array}{lll}
u_{1} & ={ }_{\mu} & (J \zeta)^{-1} \odot \bar{F}\left[u_{1}, u_{2}\right] \odot c_{1} \\
u_{2} & ={ }_{\nu} & (J \zeta)^{-1} \odot \bar{F}\left[u_{1}, u_{2}\right] \odot c_{2}
\end{array}\right]
$$

Herein, the state set Q is divided into $Q_{1}:=Q \backslash$ Acc and $Q_{2}:=$ Acc, the mapping $c_{i}: Q_{i} \rightarrow F Q$ is the restriction of the coalgebra along the coproduct injections, the functor $F=\mathbb{A} \times-+[\mathbb{A}]-$ is the Büchi RNNA functor, while

$$
\zeta:\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}} \rightarrow F\left(\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}}\right),[\boldsymbol{w}]_{\alpha} \mapsto \begin{cases}\left(a,\left[w^{\prime}\right]_{\alpha}\right) & \text { if }[\boldsymbol{w}]_{\alpha}=\left[a w^{\prime}\right]_{\alpha} \\ \langle a\rangle\left[w^{\prime}\right]_{\alpha} & \text { if }[w]_{\alpha}=\left[l a w^{\prime}\right]_{\alpha}\end{cases}
$$

is the final coalgebra for F.

Coalgebraic Semantics
 Proof of Coincidence Result

Notation (Paths in Büchi RNNAs)

Given some $q, q^{\prime} \in Q$ and $v \in \overline{\mathbb{A}}^{*} / \equiv_{\alpha}$, we write $q \stackrel{v}{\rightarrow}^{*} q^{\prime}$ if there is a v-labeled path from $q \rightarrow q^{\prime}$, and $q \stackrel{\diamond}{\Rightarrow}{ }^{*} q^{\prime}$ if, additionally, all intermediate states on the path are from Q_{1}. Note, that q and q^{\prime} may still be elements of Q_{2}.

We will then solve this system just like it was mentioned earlier:

Coalgebraic Semantics

Step 1 For every fixed $U_{2}: Q_{2} \rightarrow\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}}$, define the interim solution $l_{1}^{(1)}$ by

$$
I_{1}^{(1)}\left(U_{2}\right):=\mu \mathfrak{n}_{1} \cdot(J \zeta)^{-1} \odot \bar{F}\left[\mathfrak{n}_{1}, U_{2}\right] \odot c_{1}
$$

and solve this by using Kleene. To make the notation less convoluted, we define the 'helper function' f_{1} to be

$$
f_{1}:\left\{\begin{array}{l}
\mathcal{K} \ell_{\mathcal{P}_{\text {vis }}}\left(Q_{1},\left(\overline{\mathbb{A}}^{\omega} / \equiv \equiv_{\alpha}\right)_{\mathrm{fs}}\right) \rightarrow \mathcal{K} \ell_{\mathcal{P}_{\text {ufs }}}\left(Q_{1},\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}}\right), \\
\mathfrak{n}_{1} \mapsto(J \zeta)^{-1} \odot \bar{F}\left[\mathfrak{n}_{1}, U_{2}\right] \odot c_{1} .
\end{array}\right.
$$

We claim, that for all $k \in \omega$ and $q \in Q_{1}$, we have

$$
f^{k}(\perp)(q)=\left\{\begin{array}{l|l}
{[v w]_{\alpha}} & \begin{array}{l}
v \in \overline{\mathbb{A}} \leqslant k, w \in \overline{\mathbb{A}}^{\omega} \\
\exists q^{\prime} \in Q_{2} . q \stackrel{v}{\Rightarrow}{ }^{*} q^{\prime} \wedge[w]_{\alpha} \in U_{2}\left(q^{\prime}\right) .
\end{array}
\end{array}\right\} .
$$

Herein, f_{1}^{k} denotes the k-fold application of f_{1}. We prove this claim per induction over $k \in \omega$:

Coalgebraic Semantics

Base Case ($k=0$): For $k=0$ the claim obviously holds: Since
$f_{1}^{0}(\perp)(q)=\perp(q)=\emptyset$ by definition and $q \in Q_{1}$, we do not have $q \xrightarrow{\varepsilon} q^{\prime}$ for any $q^{\prime} \in Q_{2}$.
Step Case ($k \rightarrow k+1$): Suppose now that the claim holds for some $k \in \omega$. Let, furthermore, $[u]_{\alpha}=[a w]_{\alpha} \in\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\text {fs }^{\prime}}$ where $a \in \overline{\mathbb{A}}$ and $w \in \overline{\mathbb{A}}^{\omega}$. Then, the following statements are equivalent:
(i) $[u]_{\alpha} \in f_{1}\left(f_{1}^{k}(\perp)\right)(q)$.
(ii) There is a $q_{1} \in Q_{1}$, such that $q \xrightarrow{a} q_{1}$ and $[w]_{\alpha} \in \dagger_{1}^{k}(\perp)\left(q_{1}\right)$, or a $q_{2} \in Q_{2}$, such that $q \xrightarrow{a} q_{2}$ and $[w]_{\alpha} \in u_{2}\left(q_{2}\right)$.
(iii) There is a $q_{1} \in Q_{1}, q_{2} \in Q_{2}, v \in \overline{\mathbb{A}}^{\leqslant k}$, and $w^{\prime} \in\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}}$, such that

$$
[w]_{\alpha}=\left[v w^{\prime}\right]_{\alpha, q} \xrightarrow{a} q_{1} \stackrel{v}{\Rightarrow} q_{2}, \text { and }\left[w^{\prime}\right]_{\alpha} \in u_{2}\left(q_{2}\right),
$$

or a $q_{2} \in Q_{2}$, such that $\underset{\rightarrow}{a} q_{2}$ and $[w]_{\alpha} \in u_{2}\left(q_{2}\right)$.
(iv) There is a $q_{2} \in Q_{2}, v \in \overline{\mathbb{A}}^{\leqslant k+1}$, and $w^{\prime} \in\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}}$, such that

$$
[u]_{\alpha}=\left[v w^{\prime}\right]_{\alpha}, q \stackrel{v}{\Rightarrow}{ }^{*} q_{2} \text {, and }\left[w^{\prime}\right]_{\alpha} \in u_{2}\left(q_{2}\right) .
$$

Coalgebraic Semantics
 Proof of Coincidence Result

Because the function f_{1} is clearly ω-continuous, the interim solution $I_{1}^{(1)}\left(U_{2}\right)$ is obtained by taking the supremum of the Kleene chain. Therfore, we get the explicit description
$l_{1}^{(1)}\left(U_{2}\right)(q)=\left\{[v w]_{\alpha} \mid v \in \overline{\mathbb{A}}^{+}, w \in \overline{\mathbb{A}}^{\omega}, \exists q^{\prime} \in Q_{2} \cdot q \stackrel{v}{\Rightarrow}^{*} q^{\prime} \wedge[w]_{\alpha} \in U_{2}\left(q^{\prime}\right)\right\}$ of our interim solution.

Coalgebraic Semantics

Step 2 Define the iterim solution $I_{2}^{(2)}$ by

$$
I_{2}^{(2)}:=\nu \mathfrak{n}_{2} .(J \zeta)^{-1} \odot \bar{F}\left[I_{1}^{(1)}\left(\mathfrak{n}_{2}\right), \mathfrak{n}_{2}\right] \odot c_{2} .
$$

Again, to make the notation less convoluted, we define the 'helper function' f_{2} to be

$$
\mathfrak{f}_{2}: \mathfrak{n}_{2} \mapsto(J \zeta)^{-1} \odot \bar{F}\left[l_{1}^{(1)}\left(\mathfrak{n}_{2}\right), \mathfrak{n}_{2}\right] \odot c_{2}
$$

Similar to Step 1, \mathfrak{f}_{2} is given by
$\mathrm{f}_{2}\left(u_{2}\right)(q)=\left\{[v w]_{\alpha} \mid v \in \overline{\mathbb{A}}^{+}, w \in \overline{\mathbb{A}}^{\omega}, \exists q^{\prime} \in Q_{2} \cdot q \stackrel{v}{\Rightarrow}{ }^{*} q^{\prime} \wedge[w]_{\alpha} \in U_{2}(q\right.$
We then claim that $I_{2}^{(2)}(q)=L_{\alpha, \omega}^{2}(q)$. Here, $L_{\alpha, \omega}^{2}$ is the restriction of the language mapping $L_{\alpha, \omega}$ to Q_{2}. Since $L_{\alpha, \omega}^{2}$ is obviously a fixed

Coalgebraic Semantics

point of f_{2}, we have $L_{\alpha, \omega}^{2}(q) \subseteq I_{2}^{(2)}(q)$. It remains to prove $I_{2}^{(2)}(q) \subseteq L_{\alpha, \omega}^{2}(q)$. Let $[w]_{\alpha} \in I_{2}^{(2)}(q)=f_{2}\left(I_{2}^{(2)}\right)(q)$ and $w \in \overline{\mathbb{A}}^{\omega}$ be a representant of $[w]_{\alpha}$. We shall construct infinite sequences of states $q_{0}, q_{1}, \cdots \in Q_{2}$ and non-empty words $v_{1}, v_{2}, \cdots \in \overline{\mathbb{A}}^{+}$, such that
(i) $q=q_{0}$ and $q_{i} \xrightarrow{v_{i+1}}{ }^{*} q_{i+1}$ holds for all $i \in \omega$;
(ii) for each $k \in \omega$ the word $v_{1} \cdots v_{k}$ is a prefix of w, i.e. $w=v_{1} \cdots v_{k} w^{\prime}$ for some $w^{\prime} \in \overline{\mathbb{A}}^{\omega}$ and the equivalence class $\left[w^{\prime}\right]_{\alpha}$ of the suffix w^{\prime} lies in $I_{2}^{(2)}\left(q_{k}\right)$.
Given this, (ii) implies that $w=v_{1} v_{2} \cdots$, while (i) implies that w has an accepting run from q. Therefore, we can conclude that $[w]_{\alpha} \in L_{\alpha, \omega}^{2}(q)$.
We construct this sequence recursively. Obviously, we fix $q_{0}=q$. Moreover, fix $k \in \omega$ and suppose that we already defined $q 0, \ldots, q_{k}$ and v_{1}, \ldots, v_{k}, such that
$\left(i^{\prime}\right) q=q_{0} \xrightarrow{v_{1}} * q_{1} \xrightarrow{v_{2}} * \ldots \xrightarrow{v_{k}} q_{k}$;

Coalgebraic Semantics

(ii') the word $v_{1} \cdots v_{k}$ is a prefix of w, i.e. $w=v_{1} \cdots v_{k} w^{\prime}$ for some $w^{\prime} \in \mathbb{A}^{\omega}$ and the equivalence class $\left[w^{\prime}\right]_{\alpha}$ of the suffix w^{\prime} lies in $I_{2}^{(2)}\left(q_{k}\right)$.
Because of (iii'), we have that $w^{\prime} \in I_{\underline{2}}^{(2)}\left(q_{k}\right)=f_{2}\left(l_{2}^{(2)}\right)\left(q_{k}\right)$. Therefore, there are $v^{\prime} \in \overline{\mathbb{A}}^{+}, w^{\prime \prime} \in \overline{\mathbb{A}}^{\omega}$, and $q^{\prime} \in Q_{2}$, such that $w^{\prime} \equiv{ }_{\alpha} v^{\prime} w^{\prime \prime}, q_{k} \xrightarrow{v^{\prime}} * q^{\prime}$ and $\left[w^{\prime \prime}\right]_{\alpha} \in I_{2}^{(2)}\left(q^{\prime}\right)$. Thus, $v_{k+1}=v^{\prime}$ and $q_{k+1}=q^{\prime}$ fulfill all desired properties.
Step 3 Lastly, we calculate the trace mappings. Obviously, $\operatorname{trace}_{2}^{\mathrm{b}}(\mathcal{A}):$ Acc $\rightarrow\left(\overline{\mathbb{A}}^{\omega} / \equiv_{\alpha}\right)_{\mathrm{fs}}, q \mapsto L_{\alpha, \omega}(q)$ holds, since $\operatorname{trace}_{2}^{\mathrm{b}}(\mathcal{A})=I_{2}^{(2)}$. Moreover, we get the trace map for Q_{1} by $l_{1}^{(1)}\left(l_{2}^{(2)}\right)$. Thus, for any $q \in Q_{1}$, we have $l_{1}^{(1)}\left(L_{\alpha, \omega}^{2}\right)(q)=\left\{[v w]_{\alpha} \mid v \in \overline{\mathbb{A}}^{+}, w \in \overline{\mathbb{A}}^{\omega}\right.$, there is a $q^{\prime} \in \mathbb{Q}_{2}$, s.t. $q \xlongequal{v}{ }^{v} q^{\prime}$, and $\left.[w]_{\alpha} \in L_{\alpha, \omega}^{2}\left(q^{\prime}\right)\right\}$.

This is clearly equal to $L_{\alpha, \omega}^{1}$, the restriction of $L_{\alpha, \omega}$ to Q_{1}.

Coalgebraic Semantics
 Proof of Coincidence Result

This concludes the proof that the trace mappings are given by the language mappings. It is obvious, that the composite $\left[\operatorname{trace}_{1}^{\mathrm{b}}(\mathcal{A}), \operatorname{trace}_{2}^{\mathrm{b}}(\mathcal{A})\right] \odot s$ maps the singular element $* \in \mathbb{1}$ to the accepted bar ω-language by the Büchi RNNA A.

Friedrich-Alexander-Universität
Technische Fakultät
T.CS

Thank you for your attention!

