
Hennessy-Milner Theorems for

Graded Quantitative Semantics

Jonas Forster

November 15, 2022

Oberseminar - Chair for Thoretical Computer Science

1



Motivation



Motivation I - Linear-Time Branching-Time

What does it mean for states to behave the same way?
• Behavioural equivalence / Bisimilarity?

• Trace equivalence?

• Something in between?

Dependent on the observers ability to interact with the system.
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⇒ Linear-Time Branching Time Spectrum
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Motivation II

This spectrum is captured categorically via graded semantics

• Sometimes we care not whether states are equal but about ”how equal”

- probabilities

- delay

- physical distance

• Move to the category Met

• Study expressive quantitative modal logics
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Preliminaries



Graded

Monads

A

graded

monad on a category C consists of:

• a

family of

functor

s

M

n

: C→ C

for n ∈ N

• a natural transformation η : Id → M

0

• a

family of

natural transformations µ

nk

: M

n

M

k

→ M

n+k

such that the following diagrams commute:

M

MM M MM

MηηM
idM

µ µ

MMM MM

MM M

Mµ

µM µ

µ
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Graded Monads

A graded monad on a category C consists of:

• a family of functors Mn : C→ C for n ∈ N
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such that the following diagrams commute:

Mn

M0Mn Mn MnM0

MnηηMn
idMn

µ0n µn0
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Mnµ
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Graded

Algebras

An

graded

M

n

-Algebra (

(

A

k)k≤n

,

(

a

mk)m+k≤n

) consists of

• a

family of

C-object

s

A

i

• a

family of

morphism

s

a

mk

: M

m

A

k

→ A

m+k

such that the following diagrams commute:

A

A MA

idA
ηA

a

MMA MM

MA A

Ma

µ a

a
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Graded Algebras

A

n

graded Mn-Algebra ((Ak)k≤n, (a
mk)m+k≤n) consists of

• a family of C-objects Ai

• a family of morphisms amk : MmAk → Am+k

such that the following diagrams commute:

A

A MA

idA
ηA

a

MMA MM

MA A

Ma

µ a

a
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Graded Algebras

A

n

graded Mn-Algebra ((Ak)k≤n, (a
mk)m+k≤n) consists of

• a family of C-objects Ai

• a family of morphisms amk : MmAk → Am+k

such that the following diagrams commute:

Am

Am M0Am

idAm

ηAm

a0m

MmMrAk MmMr+k

Mm+rAk Am+r+k

Mmark

µmr
Ak am,r+k

am+r,k

6



Canonical M1 Algebras

Let (−)i : Alg1(M)→ Alg0(M), with i ∈ {0, 1} be the functor taking a

M1-algebra ((Ak)k≤1, (a
mk)m+k≤1) to the M0 algebra (Ai , a

0i ).

Canonical Algebra

An M1-algebra A is canonical if it is free over (−)0.

A0 B0

M1A0 M1B0

A1 B1

f0

a10

M1f0

b10

f1
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Canonical M1 Algebras

Alternative Characterisation

An M1-algebra A is canonical iff the following diagram is a coequalizer in CM0

M1M0A0 M1A0 A1
µ10

M1a
00

a10
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Quantitative Equational Reasoning

We use a system of quantitative equational reasoning with equations of the

form s =ε t

Mardare, Panagaden, Plotkin ’16

Ingredients for Quantitative Theories

• Σ algebraic similarity type with a depth for each operation

• V a fixed set of variables

• E set of Axioms of the form Γ ` t =ε s where s and t are Σ-terms of the

same uniform depth over V where Γ prescribes distances of variables

x =ε y with x , y ∈ V

9



Quantitative Equational Reasoning

Rules of equational reasoning:

(refl)
s =0 s

(sym)
t =ε s

s =ε t
(triang)

t =ε s s =ε′ u

t =ε+ε′ u

(wk)
t =ε s

t =ε′ s
(ε′ ≥ ε) (arch)

t =ε′ s | ε′ > ε

t =ε s

(nexp)
t1 =ε s1 . . . tn =ε sn

f (t1, . . . , tn) =ε f (s1, . . . , sn)

(ax)
Γσ

tσ =ε sσ
((Γ ` t =ε s) ∈ E)

(assn)
φ

(φ ∈ Γ0)

Theories induce graded monads and vice versa.
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Depth-1 graded Algebra

A graded M-Algebra in some category C is depth-1 if the following diagram is

an object wise coequalizer diagram in CM0 :

M1M0Mn M1Mn M1+n
µ10Mn

M1µ
0n

µ1n

and all multiplications µij are epi.

Dorsch, Milius, Schröder ’19

Lemma

This is the case iff all operations and all axioms Γ ` s =ε t have uniform

depth at most 1.

Free Algebras are Canonical

M1-Algebras of the form (MnX ,Mn+1X , µ
0n,, µ0n+1, µ1n) are canonical.
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Graded Semantics



Graded Semantics

Ingredients of Graded Semantics

• Coalgebra functor G : Met→Met

• Graded monad M

• Natural transformation α : G → M1

Depth n observable behaviour of a G coalgebra (X , γ):

γ(0) : (X
η−→ M0X

M0!−−→ M01)

γ(n+1) : X
α◦γ−−→ M1X

M1γ
(n)

−−−−→ M1Mn1
µ1n

−−→ Mn+11
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Graded Logics - Syntax

Syntax of Graded Logics

• Truth constants Θ

• Propositional operators O

• Modal operators Λ

Formulae of uniform depth 0 are given by the grammar

φ ::= p(φ1, . . . , φk) | c (p/k ∈ O, c ∈ Θ)

and formulae of uniform depth n + 1 by the grammar

φ ::= p(φ1, . . . , φk) | L(ψ1, . . . , ψj) (p/k ∈ O, L/j ∈ Λ)

where all φi are of depth n + 1 and all ψi are of depth n
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Graded Logics - Semantics I

Semantics of formulae over:

For an M0-algebra of truth values (Ω, o)

• For c ∈ Θ we have ĉ : 1→ Ω

• For p ∈ O n-ary we have an M0 algebra homomorphism JpK : Ωn → Ω

• For L ∈ Λ n-ary we have an M1-algebra ((Ωn,Ω), (on, o, JLK))

We generally use Ω = [0, 1]
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Graded Logics - Semantics II

For a G -coalgebra (X , γ) we get a morphism evaluating states by

X
γn−→ Mn1

JφK−−→ Ω

• for c ∈ Θ we have ĉ : 1→ Ω, then

JcK = M01
M0 ĉ−−→ M0Ω

o−→ Ω

• for p ∈ O k-ary we have

Jp(φ1, . . . , φk)K = JpK ◦ 〈Jφ1K, . . . , JφkK〉

• for L ∈ Λ k-ary we have

JL(φ1, . . . , φk)K = JLK(〈Jφ1K, . . . , JφkK〉)

where JLK(f ) for f : Mn1→ Ωn is the unique morphism Mn+11→ Ω
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Behavioural and Logical Distance

The depth-n behavioural distance is defined as

dα,n(x , y) = dMn1(γn(x), γn(y))

The depth-n logical distance of x and y for a logic L is given by

dL,n(x , y) = sup{dΩ(JφK(γn(x)), JφK(γn(y))) | φ ∈ Ln}

.

We call L expressive for α if dα,n = dL,n for all n ∈ N
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Labeled Transition Systems

P̄ω : Met→Met finite powerset functor with Hausdorff distance for finite

A,B ⊆ X defined as

dP̄ωX (A,B) = max{sup
a∈A

inf
b∈B

dX (a, b), sup
b∈B

inf
a∈A

dX (a, b)}

Quantitative Trace semantics

• G : Met→Met defined as G = P̄ω(S ×−).

• Mn = P̄ω(Sn ×−).

• α is the obvious natural transformation.

Equivalent to semantics in the literature

Fahrenberg, Legay, Thrane ’11
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Mn Algebraically

Signature Σ = {0/0,+/2}︸ ︷︷ ︸
Depth 0

∪{s/1 | s ∈ S}︸ ︷︷ ︸
depth 1

Axioms:

` x + 0 =0 x ` x + x =0 x

` x + y =0 y + x

` (x + y) + z =0 x + (y + z)

` s(0) =0 0 ` s(x + y) =0 s(x) + s(y)

x =ε y ` s(x) =max{ε,dS (s,t)} t(y)
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Characteristic Trace Logic

Syntax of LTrace :

Θ = {>}, O = ∅ Λ = {s/1 | s ∈ S}

Semantics of LTrace over the Truth object ([0, 1],max):

• >̂ defined as ∗ 7→ 1

• J〈s〉K(x) = sup(t,v)∈x min{1− d(s, t), v}
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Separation via Eilenberg-Moore Algebras



Modalities as morphisms in Eilenberg-Moore

• Canonical Algebras are unique up to isomorphism

• Taking M0-algebras to their canonical M1-algebra defines a functor E

• We define a functor M1

M1 = (Alg0(M)
E−→ Alg1(M)

(−)1−−−→ Alg0(M))

This implies that

M1(MnX , µ
0n) = (Mn+1X , µ

0n+1)

and in particular that

UM1F = M1

Lemma

Modal operators are Alg0(M) morphisms M1Ωn → Ω
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Probabilistic Trace logic

• D : Met→Met finite distributions with Kantorvich distance.

• G = D(A×−)

• Mn = D(An ×−)

• (Ω, o) = ([0, 1],E)

Since ([0, 1],E) = (M02, µ00), unary modalities correspond precisely to

nonexpansive convex maps f : D(A× {0, 1})→ [0, 1]

The corresponding modal operator JLK : D(A× [0, 1])→ [0, 1] is given by

JLK(π) =
∑

a∈A,v∈[0,1]

(vπ(a, v)h(a, 1)) + ((1− v)π(a, v)h(a, 0))

Proposition

There is no expressive unary modal logic for probabilistic trace semantics.
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Criteria for Expressivity



Φ-Type Separation

Initial cones

A cone F of morphisms fi : A→ Bi is initial if for all x , y ∈ A

dA(x , y) = sup
fi∈F

dBi (fi (x), fi (y))

Φ-Type Separation

L is Φ-type depth-0 separating if the family of maps JcK : M01→ Ω for c ∈ Θ

has property Φ.

L is Φ-type depth-1 separating if, whenever A is an M1-algebra of the form

(MnX ,Mn+1X , µ
0n, µ0n+1, µ1n) and A cone of M0-homomorphisms MnX → Ω

with property Φ, closed under propositional operators in O, then the set

Λ(A) := {JLK(〈f1, . . . , fn〉) : Mn+1X → Ω | L/n ∈ Λ, fi ∈ A}

has property Φ.
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(MnX ,Mn+1X , µ
0n, µ0n+1, µ1n) and A cone of M0-homomorphisms MnX → Ω

with property Φ, closed under propositional operators in O, then the set
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Expressivity

Theorem

If a graded logic L is Φ-type depth-0 separating, Φ-type depth-1 separating

and any cone with property Φ is initial, then L is expressive.
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Failure of Weak-Type Separation

Functor F : Met→Met defined as FX = S × X

Syntax of LStream:

• Θ = {>}
• O = ∅
• Λ = {〈s〉/1 | s ∈ S}.

Monad MnX = Sn × X with α : F → M1 the obvious natural

tranformation.

>̂ : 1→ Ω is ∗ 7→ 1.

J〈s〉K((t, v)) = min{1− dS(s, t), v} for all s ∈ S and (t, v) ∈ M1Ω.
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Strong-Type Separation

Normed Isometry

We call a set F of morphisms X → [0, 1] normed isometric if for all x , y ∈ X

and ε > 0 there is a f ∈ F such that f (x) > 1− ε and f (y) < 1− dX (x , y) + ε

LStream is normed isometric-type depth-1 separating but not

initial-type depth-1 separating.

⇒ LStream is expressive

Similarly LTrace is expressive.

The proof Separates the elements of M1A0
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Stronger Notions of Expressivity



Strong Expressivity

We require formulae to witness distances.

Stronger: Formulae can describe all properties of the semantics.

More in line with previous works

Fits naturally with the classical definition of separation

Definition

L is strongly expressive if JLnK is dense in Alg0(M)(Mn1,Ω)

Under which conditions can we get strong expressivity from initiality?

⇒ Stone-Weierstrass Theorems
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Stone-Weierstrass for different

Stone-Weierstrass Property in Eilenberg-Moore

We say that a monad M on C has the O-SW property with respect to a class

C of of algebras, if for all M-algebras (A, a) ∈ C and all

A ⊆ CM((A, a), (Ω, o)) such that A is initial as a set of C-morphisms, the

closure of A under O is dense in CM((A, a), (Ω, o)).

L is strongly expressive if it is expressive, (Mn1, µ0n) ∈ C and M0 has the

O-SW property.

M C C SW?

Id Set Finite Yes

Id Met Totally bounded Yes

Pω Set Finite Yes

Pω Met Finite No
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Future Work

• Characterize the poset of graded semantics (algebraically)

• Find more examples

• Study applications

• compute behavioural distances in a system

• minimization up to ε

• Genaralised (quantale valued?) metrics
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