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Motivation



Motivation | - Linear-Time Branching-Time

What does it mean for states to behave the same way?
e Behavioural equivalence / Bisimilarity?
e Trace equivalence?
e Something in between?

Dependent on the observers ability to interact with the system.
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completed trace semantics,

frace semantics



Motivation |l

This spectrum is captured categorically via

e Sometimes we care not whether states are equal but about "how equal”
- probabilities
- delay
- physical distance

e Move to the category Met

e Study expressive quantitative modal logics



Preliminaries



A on a category C consists of:

2 functor M :C— C
e a natural transformation n : Id — M

®a natural transformations . - M M — M

such that the following diagrams commute:

MMM 2 pm

M
nM . Mn
lldl\N J{,u,M lp,

MM —2s M 2 MM MM —E2 5 m



Graded Monads

A on a category C consists of:

e a family of functors M, : C — C for n € N
e a natural transformation 7 : Id — My

e a family of natural transformations p"™ : MM — M4k

such that the following diagrams commute:

MMM 2 pm

M
nM . Mn
lldl\N J{,u,M lp,

MM —s M 2 MM MM —E2 5 m



Graded Monads

A on a category C consists of:

e a family of functors M, : C — C for n € N
e a natural transformation 7 : Id — My

e a family of natural transformations u"k MMy — Mk

such that the following diagrams commute:

M,,;J

My My M, MaMict-m

nM, Mnpn
/ l \ lﬂnka lun,wm
n+k,m

MoM, —— M, <2— M,Mo MpiicMm — My iiesm



Algebras

An (A , a ) consists of
® a C-object A
® 2 morphism a ‘M A — A

such that the following diagrams commute:

MMA —M2 pm

[ g T

A MA MA—— A



Graded Algebras

A ((Ak)k<n, (3™ )mik<n) consists of

e a family of C-objects A;

e a family of morphisms a™ s My Ax — Amik
such that the following diagrams commute:

MMA —M2 pm

[ g T

Ac—— MA MA—2— A



Graded Algebras

A ((A)k<n, (3™ )m+k<n) consists of

e a family of C-objects A;

e a family of morphisms a™ M Ak = Ak

such that the following diagrams commute:

rk
MM, A 27255 MM,k

Am
NA
idAml \n lux’; lam‘rﬁ»k

am+r,k

Arn W MOAm Mm+rAk E— Am+r+k



Canonical M; Algebras

Let (—)i : Alg; (M) — Algy(M), with i € {0,1} be the functor taking a
Mi-algebra ((Ax)k<1, (@™ )mik<1) to the My algebra (A;, a%).

Canonical Algebra

An Mi-algebra A is if it is free over (—)o.

Ao#B{)

M A, 200 0y By

lalo lblﬂ

Ar By



Canonical M; Algebras

Alternative Characterisation

An M;-algebra A is canonical iff the following diagram is a coequalizer in C"

My a2

10
M My Ao :10; M Ao — Az
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Quantitative Equational Reasoning

We use a system of quantitative equational reasoning with equations of the
form s =t

Mardare, Panagaden, Plotkin '16

Ingredients for Quantitative Theories
e > algebraic similarity type with a depth for each operation
e V a fixed set of variables

e E set of Axioms of the form I' = t =, s where s and t are X-terms of the
same uniform depth over V where " prescribes distances of variables
X =c y with x,y € V



Quantitative Equational Reasoning

Rules of equational reasoning:

(refl) p— (sym) EZZi (triang) £ :; S::E,:;/ :
(wk) (€2 (arch) t=cs|e>e
t=¢s
(nexp) AL e T =S
Pl Ft, . t) = F(s1,. ., 5n)
(ax) — 7 ((FF t = s) € E)
to =. so o

(assn) 5 (¢ €To)

Theories induce graded monads and vice versa.
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Depth-1 graded Algebra

A graded M-Algebra in some category C is if the following diagram is
an object wise coequalizer diagram in CMo:

MMLO" ,LLln
MlMoMn ?; Man g M1+n
w My

and all multiplications 17 are epi.
Dorsch, Milius, Schroder '19

Lemma
This is the case iff all operations and all axioms I' - s = t have uniform
depth at most 1.

Free Algebras are Canonical
M;-Algebras of the form (M, X, M1 X, ™, u®***, 1*") are canonical.
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Graded Semantics




Graded Semantics

Ingredients of Graded Semantics
e Coalgebra functor G : Met — Met
e Graded monad M

e Natural transformation o : G — M

Depth n observable behaviour of a G coalgebra (X, ):

O (X L MoX 22 Mp1)

N ANy YR L L AN YN Y R RN YT |

12



Graded Logics - Syntax

Syntax of Graded Logics
e Truth constants ©
e Propositional operators O

e Modal operators A

Formulae of uniform depth O are given by the grammar

¢:::p(¢17"'a¢k)|c (p/keo7cee)

and formulae of uniform depth n+ 1 by the grammar

¢ = p(o1,...,01) | L(¢1,..., ) (p€O,L)€N)
where all ¢; are of depth n+ 1 and all ¢; are of depth n
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Graded Logics - Semantics |

Semantics of formulae over:

For an Mp-algebra of truth values (£, o)

e Forcc © we have ¢:1 — Q
e For p € O n-ary we have an My algebra homomorphism [p] : Q" — Q
e For L € A n-ary we have an Mj-algebra ((2",), (0", o, [L]))

We generally use Q = [0, 1]
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Graded Logics - Semantics Il

For a G-coalgebra (X, ) we get a morphism evaluating states by

x 2 om1 L g

e for c € © we have ¢: 1 — €, then
[c] = Mol 225 Mo & Q
e for p € O k-ary we have
[p(1, ..., 66)] = TPl o ([¢nl, - -, [#x])
e for L € A k-ary we have

[L(1, .-, 8)] = [LIK[gals - - -, [94]))

where [L](f) for f : M,1 — Q" is the unique morphism M,111 — Q
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Behavioural and Logical Distance

The is defined as

d*"(x, y) = dm,a(7"(x), 7" (¥))
The of x and y for a logic L is given by

d“"(x,y) = sup{da([¢)(+"(x)), [6)(+"(»))) | & € La}

We call £ for a if " = d“" for all n € N
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Labeled Transition Systems

P., : Met — Met finite powerset functor with Hausdorff distance for finite
A, B C X defined as

dp_x(A, B) = max{sup inf dx(a, b),supinf dx(a,b)}
acA beB beB acA

Quantitative Trace semantics

e G : Met — Met defined as G = P,,(S x —).
o M, =7P,(5" x ).

e « is the obvious natural transformation.
Equivalent to semantics in the literature

Fahrenberg, Legay, Thrane '11
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M, Algebraically

Signature ¥ = {0/, + 2} U{s;1 | s € S}
—_—

Depth 0 depth 1
Axioms:

Fx+0=0x Fx+4+x=0x
Fx+y=oy+x

Fx+y)tz=ox+(y+2)

Fs(0) =00 Fs(x +y) =0 s(x) + s(y)

X =cy = S(X) —max{e,ds(s,t)} t(y)
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Characteristic Trace Logic

Syntax of £77°;

©={T}, O0=10 AN={s;|seS}

Semantics of £ over the Truth object ([0, 1], max):

o T defined as x +— 1
o [(s)](x) = sup,yyex min{l — d(s, t), v}
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Separation via Eilenberg-Moore Algebras




Modalities as morphisms in Eilenberg-Moore

e Canonical Algebras are unique up to isomorphism
e Taking Mp-algebras to their canonical M;-algebra defines a functor E

e We define a functor M,
WM = (Algo(M) > Alg, (M) 2 Algy (1))
This implies that
My(MoX, 1) = (Maia X, 1)

and in particular that
UM F = M,

Lemma

Modal operators are Algy(M) morphisms M1Q" — Q
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Probabilistic Trace logic

e D: Met — Met finite distributions with Kantorvich distance.

e G=D(Ax —)
e M,=D(A" x —)
e (Q,0)=([0,1],E)

Since ([0,1],E) = (M2, 1), unary modalities correspond precisely to
nonexpansive convex maps f: D(A x {0,1}) — [0, 1]

The corresponding modal operator [L]: D(A x [0,1]) — [0, 1] is given by

[L(x) = > (va(a,v)h(a,1)) + ((1 - v)m(a,v)h(a, 0))

a€A,ve(0,1]

Proposition
There is no expressive unary modal logic for probabilistic trace semantics.
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Criteria for Expressivity




®-Type Separation

Initial cones
A cone F of morphisms f; : A — B is if for all x,y € A

da(x,y) = sup dg, (fi(x), fi(y))

$-Type Separation

Lis if the family of maps [c] : Mol — Q for c € ©
has property .

L is if, whenever A is an M;-algebra of the form
(Mo X, M1 X, 1, 12t 42") and 24 cone of Mo-homomorphisms M, X — Q
with property ®, closed under propositional operators in O, then the set

AR = {[LI({Fir -, ) MasaX — Q| Ly € A, € U}

has property ¢.
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®-Type Separation

Initial cones
A cone F of morphisms f; : A — B is if for all x,y € A

da(x,y) = sup dg, (fi(x), fi(y))

$-Type Separation

L is ®-type depth-0 separating if the family of maps [c] : Mol — Q for c € ©

has property .

L is ®-type depth-1 separating if, whenever A is an M;-algebra of the form
and 2( cone of My-homomorphisms M, X —

with , closed under propositional operators in O, then the set

AR = {[LI({Fir -, ) MasaX — Q| Ly € A, € U}

has property ¢.
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Theorem
If a graded logic L is ®-type depth-0 separating, ®-type depth-1 separating
and any cone with property @ is initial, then £ is expressive.
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Failure of Weak-Type Separation

Functor F : Met — Met defined as FX =S x X

Syntax of £°™;
e ©={T}
e O=10
e A={(s)1|s€SH

Monad M,X = S" x X with a: F — M the obvious natural
tranformation.

TiloQis*xm 1
[(s)]((t,v)) = min{1 — ds(s, t), v} for all s € S and (t,v) € M Q.
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Strong-Type Separation

Normed Isometry
We call a set F of morphisms X — [0, 1] if for all x,y € X
and € > 0 there is a f € F such that f(x) > 1—eand f(y) <1—dx(x,y)+e
L% is normed isometric-type depth-1 separating but not
initial-type depth-1 separating.
= [S5tream js expressive
Similarly £72 is expressive.
The proof Separates the elements of M1 Ag

25



Stronger Notions of Expressivity




Strong Expressivity

We require formulae to witness distances.
Stronger: Formulae can describe all properties of the semantics.

More in line with previous works
Fits naturally with the classical definition of separation

Definition
L is if [£n] is dense in Algy(M)(M,1,Q)

Under which conditions can we get strong expressivity from initiality?

26



Strong Expressivity

We require formulae to witness distances.
Stronger: Formulae can describe all properties of the semantics.

More in line with previous works
Fits naturally with the classical definition of separation

Definition
L is if [£n] is dense in Algy(M)(M,1,Q)

Under which conditions can we get strong expressivity from initiality?

= Stone-Weierstrass Theorems
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Stone-Weierstrass for different

Stone-Weierstrass Property in Eilenberg-Moore

We say that a monad M on C has the with respect to a class
C of of algebras, if for all M-algebras (A, a) € C and all

A C CM((A, a), (2, 0)) such that 2 is initial as a set of C-morphisms, the
closure of 2 under @ is dense in C"((A, a), (2, 0)).

L is strongly expressive if it is expressive, (M,1,1°") € C and Mo has the
O-SW property.

M | C C SW?
Id Set Finite Yes
Id Met Totally bounded  Yes
P. | Set Finite Yes

Po | Met Finite No
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e Characterize the poset of graded semantics (algebraically)

e Find more examples

Study applications

e compute behavioural distances in a system
e minimization up to €

e Genaralised (quantale valued?) metrics
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