Arithmetical Interpretations Löb meets Heyting

Albert Visser

Philosophy, Faculty of Humanities, Utrecht University

Lewis meets Brouwer, ESSLLI Utrecht, July 29, 2021

Universiteit Utrecht

An Ultra-brief History Löb's Logic Interpretability Logi Intuitionistic Provability Logic

An Ultra-brief History

Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

An Ultra-brief History Löb's Logic Interpretability Log Intuitionistic Provability Logic

An Ultra-brief History

Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

Löb's Logic Interpretability Lo Intuitionistic Provability Logic

An Ultra-brief History

Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

An Ultra-brief History Löb's Logic Interpretability Logi Intuitionistic Provability Logic

An Ultra-brief History

Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

An Ultra-brief History Löb's Logic Interpretability Logi

An Ultra-brief History

Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

An Ultra-brief History

Löb's Logic

Interpretability Logic

ntuitionistic Provability Logic

History 1

The idea of interpreting modal logic in arithmetic goes (at least) back to a note of 1933 by Kurt Gödel on interpreting intuitionistic propositional logic in S4. Gödel notes that $\Box(\Box p \rightarrow p)$ does not hold if one interprets \Box as provability in a formal system *U*.

The development received a forceful impetus when Martin Löb in 1955 formulated the purely modal Löb Conditions as a precondition for being a provability predicate. Leon Henkin who was the referee suggested Löb's Principle as a modal principle implicit in what Löb was doing. The resulting logic of Löb's Conditions with Löb's Principle is Löb's Logic GL.

GL has some beautiful properties like uniqueness and explicit definability of modalised points.

An Ultra-brief History

Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

History 2

In 1976, Robert Solovay proves the arithmetical completeness of GL.

Around 1986, Albert Visser formulates axioms for a modal logic of interpretability. In 1988/1990 Volodya Shavrukov and Alessandro Berarducci independently prove the arithmetical completeness of the logic ILM. In 1990, Albert Visser proves the arithmetical completeness of the logic ILP. The dual reading of interpretability gives a Lewis arrow.

From 1980 on Albert Visser starts studying the provability logic of Heyting Arithmetic HA. In the context of this project the role of Σ_1^0 -preservativity emerges: a typical Lewis arrow.

In 2018, Mohammad Ardeshir and Mojtaba Mojtahedi give a characterisation of the provability logic of Σ_1^0 -substitutions. What the precise provability logic of HA is, is still a great open question.

Universiteit Utrecht

An Ultra-brief History

> .öb's Logic nterpretability Logi

An Ultra-brief History

Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

An Ultra-brie History

Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

The Logic

Löb's Logic is given by: GL1. If $\vdash \varphi$, then $\vdash \Box \varphi$. GL2. $\vdash \Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$. GL3. $\vdash \Box \varphi \rightarrow \Box \Box \varphi$. GL4. $\vdash \Box(\Box \varphi \rightarrow \varphi) \rightarrow \Box \varphi$. L1-3 are the Löb Conditions.

Löb's Rule is admissible for GL: LR If $\vdash \Box \varphi \rightarrow \varphi$, then $\vdash \varphi$.

We can alternatively axiomatise GL by L1-3 plus LR or by L1,2,4. This last fact is due to Dick de Jongh.

An Ultra-brie History

Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

Peano Arithmetic 1

Peano Arithmetic PA is given by the following axioms.

PA1.
$$\vdash$$
 Sx = Sy \rightarrow x = y.
PA2. \vdash Sx \neq 0.
PA3. \vdash x + 0 = 0.
PA4. \vdash x + Sy = S(x + y).
PA5. \vdash x \times 0 = 0.
PA6. \vdash x \times Sy = x \times y + x.
PA7. \vdash (A0 $\land \forall x (Ax \rightarrow ASx)) \rightarrow \forall x Ax.$

An Ultra-brie History

Löb's Logic

Interpretability Logic

Peano Arithmetic 1.5

Every purely arithmetical insight that you can think of spontaneously can be proved in PA. One needs deep insight to find principles that are independent of it.

You are recommended to search on internet for the Hydra Game and for Goodstein sequences.

Excercise:

- 1. Prove the associativity of addition.
- 2. Prove the commutativity of addition.

An Ultra-brief History

Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

Peano Arithmetic 2

- A formula is ∆₀⁰ if it only contains bounded quantifiers, i.e., quantifiers of the form ∀x < t, ∀x ≤ t, ∃x < t, ∃x ≤ t. Here e.g. ∀x < t B is short for: ∀x (x < t → B). The variable x may not occur in t.</p>
- A formula *S* is Σ_1^0 if it of the form $\exists x_0 \dots \exists x_{n-1} S_0$, where S_0 is Δ_0 .
- A formula *P* is Π_1^0 if it of the form $\forall x_0 \dots \forall x_{n-1} P_0$, where P_0 is Δ_0 .

A Σ_1^0 -formula is classically provably equivalent to the negation of Π_1^0 -formula.

An Ultra-brief History

Löb's Logic

nterpretability Logic ntuitionistic

Arithmetisation 1

We can code syntactic objects as numbers. What is more the numerical tracking functions of syntactic operations can be represented in arithmetic and their recursive definitions can be verified.

Suppose we order the binary strings length-first and use the corresponding numbering as Gödel numbering.

0		5	BA	10	ABB	15	AAAA
1	А	6	BB	11	BAA	16	AAAB
2	В	7	AAA	12	BAB	17	AABA
3	AA	8	AAB	13	BBA	18	AABB
4	AB	9	ABA	14	BBB	19	ABAA

Tracking function of concatenation:

Universiteit Utrecht

An Ultra-brie History

Löb's Logic

Interpretability Logic

Arithmetisation 2

We can define a numerical predicate prov that mimicks PA-provability.

We write:

- $\lceil A \rceil$ for the Gödel number of A.
- $\underline{0} := 0, \underline{n+1} := S\underline{n}.$ <u>*n*</u> is the numeral of *n*.

An Ultra-brief History

Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

Arithmetical Interpretation

Suppose *f* maps propositional variables to arithmetical sentences. We define $(\cdot)^{f}$ from the modal to the arithmetical language as follows.

•
$$\rho^{f} := f(\rho),$$

- $(\cdot)^{f}$ commutes with the non-modal connectives.
- $(\Box \varphi)^f := \operatorname{prov}(\underline{\ulcorner \varphi^f \urcorner}).$
- $\Lambda_{\mathsf{PA}} := \{ \varphi \mid \text{for all } f, \text{ we have } \mathsf{PA} \vdash \varphi^f \}.$

We note that we have a case of *transubstantiation* here: a predicate of numbers is transformed into an operator on formulas.

An Ultra-brie History

Löb's Logic

Interpretability Logic

Löb and Solovay

- ▶ Löb 1955: GL ⊆ Λ_{PA}
- Solovay 1976: $\Lambda_{PA} \subseteq GL$.

Löb's result holds for extensions of S_2^1 . Solovay's result for Σ_1^0 -sound extensions of EA. So, the results are remarkably stable.

Excercise: Prove the results of Löb and Solovay for the case where we restrict ourselves to ordinary propositional logic.

Universiteit Utrecht

Löb's Logic

Interpretability Logic

An Ultra-brief History

Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

An Ultra-brie History

Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

Translation 1

We treat only a special case of interpretation that suffices for extensions of PA. We first use the term-elimination algorithm to reduce to relational signature.

- A translation *τ* of signature ⊖ to a signature Ξ is given by the following data:
- ► A \equiv -formula $P_{\tau}(v_0, ..., v_{n-1})$ for each *n*-ary Θ -predicate *P*.
- A domain formula $\delta_{\tau}(v_0)$.

We lift the translation to the full Θ -language as follows.

•
$$(P(x_0,...,x_{n-1}))^{\tau} := P_{\tau}(x_0,...,x_{n-1}).$$

• $(\cdot)^{\tau}$ commutes with the propositional connectives.

$$(\forall x A)^{\tau} := \forall x (\delta_{\tau}(x) \to A^{\tau}), (\exists x A)^{\tau} := \exists x (\delta_{\tau}(x) \land A^{\tau}).$$

Universiteit Utrecht

An Ultra-brief History Löb's Logic Interpretability Logic

Translation 2

Term Elimination: $x + (y \times z) = y + 0$ translates to:

 $\exists u \exists v \exists w (\mathsf{M}(y, z, u) \land \mathsf{A}(x, u, v) \land \mathsf{Z}(w) \land \mathsf{A}(y, w, v)).$

An Ultra-brief History

Löb's Logic

Interpretability Logic

Interpretability

We define:

- ► $V \triangleright U$ iff, for some $\tau : \Theta_U \to \Theta_V$, for all A such that $U \vdash A$, we have $V \vdash A^{\tau}$.
- $A \rhd_U B$ iff $(U + A) \rhd (U + B)$.

We zoom in on the case where U := PA.

Theorem

Over PA, interpretability is Π_1^0 -conservativity: $A \triangleright_{PA} B$ iff, for all $P \in \Pi_1^0$, we have, if $PA + B \vdash P$, then $PA + A \vdash P$.

Theorem (Orey)

There is a sentence O, such that $\top \triangleright_{PA} O$ and $\top \triangleright_{PA} \neg O$.

In Ultra-brief

Interpretability Logic

Interpretability Logic 1

The logic ILM is given by GL plus the following axioms:

$$J1 \vdash \Box(\varphi \rightarrow \psi) \rightarrow (\varphi \triangleright \psi)$$

$$J2 \vdash ((\varphi \triangleright \psi) \land (\psi \triangleright \chi)) \rightarrow (\varphi \triangleright \chi)$$

$$J3 \vdash ((\varphi \triangleright \chi) \land (\psi \triangleright \chi)) \rightarrow ((\varphi \lor \psi) \triangleright \chi)$$

$$J4 \vdash (\varphi \triangleright \psi) \rightarrow (\Diamond \varphi \rightarrow \Diamond \psi)$$

$$J5 \vdash \Diamond \varphi \triangleright \varphi$$

$$M \vdash (\varphi \triangleright \psi) \rightarrow ((\varphi \land \Box \chi) \triangleright (\psi \land \Box \chi))$$

We note that if we define $\Box \varphi$ as $\neg \varphi \triangleright \bot$, then we can drop J4.

An Ultra-brief History Löb's Logic

Interpretability Logic

Ytilibaterpretni Logic

If we define $\varphi \neg \psi$ as $\neg \psi \triangleright \neg \varphi$, we find after renaming:

$$J1 \vdash \Box(\varphi \rightarrow \psi) \rightarrow (\varphi \neg \psi)$$

$$J2 \vdash ((\varphi \neg \psi) \land (\psi \neg \chi)) \rightarrow (\varphi \neg \chi)$$

$$J3 \vdash ((\varphi \neg \psi) \land (\varphi \neg \chi)) \rightarrow (\varphi \neg (\psi \land \chi))$$

$$J4 \vdash (\varphi \neg \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$$

$$J5 \vdash \varphi \neg \Box \varphi$$

$$M \vdash (\varphi \neg \psi) \rightarrow ((\Box \chi \rightarrow \varphi) \neg (\Box \chi \rightarrow \psi))$$

We note that $\Box \varphi$ is $\top \neg \neg \varphi$.

Interpretability Logic

Interpretability Logic 2

ILM is arithmetically sound for interpretations which translate \rhd as $\rhd_{\text{PA}}.$

Frank Veltman provided his Veltman semantics for theories of Interpretability Logic amongst which ILM. Dick de Jongh and Frank Veltman (1990) provide completeness proofs for various logics.

Volodya Shavrukov (1988) and, independently, Alessandro Berarducci (1990) prove arithmetical completeness for ILM.

ILM has explicit unique modalised fixed points.

The existence of Orey sentences illustrates the invalidity of:

- $\blacktriangleright \vdash ((\varphi \rhd \psi) \land (\varphi \rhd \chi)) \to (\varphi \rhd (\psi \land \chi))$
- $\blacktriangleright \vdash ((\varphi \dashv \chi) \land (\psi \dashv \chi)) \rightarrow ((\varphi \lor \psi) \dashv \chi)$

Universiteit Utrecht

An Ultra-brie History

Löb's Logic

Interpretability Logic

De Jongh, Veltman, Shavrukov, Berarducci

An Ultra-brief History Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

An Ultra-brief History

Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

Universiteit Utrecht

An Ultra-brie History

Löb's Logio

Interpretability Logic

Brouwer and Heyting

An Ultra-brief History Löb's Logic Interpretability Log

Intuitionistic Provability Logic

Heyting Arithmetic 1

Heyting arithmetic is the same theory as Peano Arithmetic just with the logic changed to intuitionistic logic.

Caveat: Classically we can equivalently axiomatise Peano Arithmetic replacing Induction by the Minimum Principle or by Collection. Constructively, the minimum principle implies Excluded Third and Collection is much weaker than Induction.

To prove Excluded Third from the Minimum Principle consider the minimal element of $(x = 0 \land A) \lor x = 1$.

Collection: $\vdash \forall x < a \exists y Axy \rightarrow \exists b \forall x < a \exists y < b Axy.$ Compare with set theory: $\vdash \forall x \in a \exists y Axy \rightarrow \exists b \forall x \in a \exists y \in b Axy.$ An Ultra-brief History Löb's Logic Interpretability Logi Intuitionistic Provability Logic

SAY NO TO NEGATIVITY!

Do not say: If a theory is consistent then it does not prove its own consistency.

Do say: If a theory is proves its own consistency, then it is inconsistent.

The right formulation immediately makes clear that we can transform a consistency-proof in a proof of falsum. Inspection shows that this transformation is p-time. An Ultra-brief History Löb's Logic Interpretability Log

Intuitionistic Provability Logic

Heyting Arithmetic 2

- For any Δ_0^0 -formula *D*, we have HA $\vdash D \lor \neg D$.
- For any Π_1^0 -formula *P*, there is a Σ_1^0 -formula *S*, such that $HA \vdash P \leftrightarrow \neg S$.

We have $HA \vdash \neg \neg P \rightarrow P$.

Consider e.g. the Σ⁰₁-sentence □_{HA}⊥. There is no sentence A such that HA ⊢ □_{HA}⊥ ↔ ¬A.

If we had that, then $HA \vdash \neg \neg \Box_{HA} \bot \rightarrow \Box_{HA} \bot$. *Quod non*.

All known natural sentences independent of PA are connected to strength. We have many principles, like the logical form of Church's Thesis that are independent but are not connected to strength. Compare this to ZF and the Continuum Hypothesis. An Ultra-brief History Lōb's Logic Interpretability Logic Intuitionistic Provability Logic

The Disjunction Property 1

Constructive theories like HA (often) have the Disjunction Property DP:

• If $HA \vdash A \lor B$, then $HA \vdash A$ or $HA \vdash B$.

Harvey Friedman shows that over HA the Disjunction Property plus Consistency is equivalent to Σ_1^0 -reflection. Moreover, the Disjunction Property implies the numerical Existence Property.

▶ If $HA \vdash \exists x Ax$, then, for some *n*, we have $HA \vdash A\underline{n}$.

We have $HA \nvDash \Box_{HA}(A \lor B) \rightarrow (\Box_{HA} A \lor \Box_{HA} B)$. The best approximation to the disjunction property is Leivant's Principle:

 $\blacktriangleright \mathsf{HA} \vdash \Box_{\mathsf{HA}}(A \lor B) \to \Box_{\mathsf{HA}}(A \lor \Box_{\mathsf{HA}} B)$

An Ultra-brief History Löb's Logic Interpretability Logi Intuitionistic Provability Logic

The Disjunction Property 2

Note that:

$$\begin{array}{rcl} \mathsf{HA}\vdash_{\Box_{\mathsf{HA}}}(\Box_{\mathsf{HA}}\perp\vee\neg\Box_{\mathsf{HA}}\perp) & \rightarrow & \Box_{\mathsf{HA}}(\Box_{\mathsf{HA}}\perp\vee\Box_{\mathsf{HA}}\neg\Box_{\mathsf{HA}}\perp) \\ & \rightarrow & \Box_{\mathsf{HA}}(\Box_{\mathsf{HA}}\perp\vee\Box_{\mathsf{HA}}\perp) \\ & \rightarrow & \Box_{\mathsf{HA}}\Box_{\mathsf{HA}}\perp \end{array}$$

So HA does not prove Excluded Third for $\Box_{HA} \perp$. Also we see that the provability logic of a theory cannot be monotonic in the theory.

An Ultra-brief History Löb's Logic Interpretability Logi

lemhoff, Ardeshir, Mojtahedi, Zoethout

An Ultra-brief History Löb's Logic Interpretability Log

Intuitionistic Provability Logic

Intuitionistic Provability Logic 1

Classical provability logic is remarkably stable. We have the same logic, to wit GL for all theories T extending Elementary Arithmetic that are Σ_1^0 -sound.

The intuitionistic case stands in stark contrast to that. We *do* have iGL, the intuitionistic version of GL. However, we have a wild array of possible further principles, e.g., we have in Λ_{HA} :

- $\blacktriangleright \vdash \Box(\varphi \lor \psi) \to \Box(\varphi \lor \Box \psi)$
- $\blacktriangleright \vdash \Box \neg \neg \Box \varphi \rightarrow \Box \Box \varphi$
- $\blacktriangleright \vdash \Box (\neg \neg \Box \varphi \rightarrow \Box \varphi) \rightarrow \Box \Box \varphi$

We note that Λ_{HA} trivialises if we add classical logic in the sense that it proves $\Box\Box \bot$.

Universiteit Utrecht

An Ultra-brief History Löb's Logic Interpretability Log

Intuitionistic Provability Logic 1.5

What happens when we restrict ourselves to the non-modal language?

De Jongh's theorem tells us that we get precisely IPC. This result is not at all trivial.

There is a salient extension of HA, to wit HA + MP + ECT₀ of which the propositional logic is unknown. It could even turn out to be complete Π_2^0 .

An Ultra-brief History Löb's Logic

nterpretability Logic

Intuitionistic Provability Logic

Markov

We define $(\cdot)^A$ as follows:

- $B^A := (B \lor A)$ of *B* is atomic.
- $(\cdot)^A$ commutes with all connectives except the 0-ary ones.

We have:

- ▶ If $HA \vdash B$, then $HA \vdash B^A$.
- HA $\vdash S^A \leftrightarrow (S \lor A)$, for $S \in \Sigma_1^0$.

Suppose HA $\vdash \neg \neg S$. Then, PA $\vdash S$. So, S is true and, hence, by Σ_1^0 -completeness, HA $\vdash S$.

Better: Suppose $HA \vdash \neg \neg S$. Then $HA \vdash (\neg \neg S)^S$. So, $HA \vdash ((S \lor S) \to S) \to S$. Ergo, $HA \vdash S$. This gives a p-time proof transformation.

We find: $HA \vdash \Box_{HA} \neg \neg S \rightarrow \Box_{HA} S$.

Universiteit Utrecht

An Ultra-brief History Löb's Logic

Interpretability Logic

Anti-Markov

Suppose $\mathsf{HA} \vdash \neg \neg S \rightarrow S$. Then, $\mathsf{HA} \vdash (\neg \neg S \rightarrow S)^{\neg S}$. So,

$$\mathsf{HA} \vdash (((S \lor \neg S) \to \neg S) \to \neg S) \to (S \lor \neg S).$$

Ergo, $HA \vdash S \lor \neg S$. Again a p-time proof transformation.

We find:
$$\mathsf{HA} \vdash \Box_{\mathsf{HA}}(\neg \neg S \rightarrow S) \rightarrow \Box_{\mathsf{HA}}(S \lor \neg S).$$

$$\begin{array}{rcl} \mathsf{HA}\vdash_{\Box_{\mathsf{HA}}}(\neg\neg_{\Box_{\mathsf{HA}}}A\rightarrow_{\Box_{\mathsf{HA}}}A) & \rightarrow & \Box_{\mathsf{HA}}(\Box_{\mathsf{HA}}A\vee_{\neg}\Box_{\mathsf{HA}}A) \\ & \rightarrow & \Box_{\mathsf{HA}}(\Box_{\mathsf{HA}}A\vee_{\Box_{\mathsf{HA}}}\neg_{\Box_{\mathsf{HA}}}A) \\ & \rightarrow & \Box_{\mathsf{HA}}(\Box_{\mathsf{HA}}A\vee_{\Box_{\mathsf{HA}}}\bot) \\ & \rightarrow & \Box_{\mathsf{HA}}\Box_{\mathsf{HA}}A \end{array}$$

An Ultra-brief History Lōb's Logic Interpretability Logi Intuitionistic Provability Logic

Intuitionistic Provability Logic 2

- Let CP be the principle φ → □φ. CP does not trivialise over iGL. We know an extension, say U, of HA such that Λ_U = iGL + CP. (Jetze Zoethout en Albert Visser)
- ► We know the closed fragments of Λ_{HA} , Λ_{HA+MP} , $\Lambda_{HA+CP_{HA}}$. The closed fragment of Λ_{HA+ECT_0} is *terra incognita*.
- Mohammad Ardeshir and Mojtaba Mojtahedi recently characterised the provability logic of Σ⁰₁-substitutions of HA. Next stage: boolean combinations of Σ⁰₁-sentences.
- The (verifiably) admissible rules of HA are the admissible rules of IPC (Albert Visser for the non-verifiable case and Rosalie lemhoff for the verifiable case).
- We have a current conjecture of what Λ_{HA} could be, but it could even turn out to be Π⁰₂-complete.

An Ultra-brief History

Löb's Logic

Interpretability Logic

Intuitionistic Provability Logic

Σ_1^0 -preservativity 1

We define:

 $\blacktriangleright \ A \mathbin{\dashv}_{\mathsf{HA}} B :\leftrightarrow \forall S \in \Sigma^0_1 \, (\Box_{\mathsf{HA}}(S \rightarrow A) \rightarrow \Box_{\mathsf{HA}}(S \rightarrow B)).$

Classically, Σ_1^0 -preservativity can be transformed into Π_1^0 -conservativity, but, constructively, it cannot.

 Σ_1^0 -preservativity turned out to be a useful notion to study the provability logic of HA. Also, perhaps, in the richer language the axiomatisation could be easier.

The most amazing thing of Preservativity Logic is that it satisfies full LHC^{\sharp} .

An Ultra-brief History Löb's Logic Interpretability Log

Σ_1^0 -preservativity 2

We have an analogue of the Orey sentence. We have:

$$O \rightarrow_{HA} \perp$$
 and $\neg O \rightarrow_{HA} \perp$.

As a consequence, by Di, we have:

$$(O \lor \neg O) \dashv \bot$$
.

So while $\vdash (O \lor \neg O) \rightarrow \bot$ is impossible on pain of inconsistency, we do have $\vdash (O \lor \neg O) \dashv \bot$. Thus, this interpretation of the Lewis Arrow can illustrate the invalidity of ET in the most direct way.

An Ultra-brief History Löb's Logic Interpretability Log

Thank You

An Ultra-brief History Löb's Logic Interpretability Log Intuitionistic Provability Logic

