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Flat Heyting-Lewis Calculus and Algebraic

Countermodels

Tadeusz Litak (FAU Erlangen-Nuremberg)

joint lecture with Albert Visser

course Lewis meets Brouwer:

Constructive strict implication

ESSLLI 2021, day IV
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What have we seen Mon and Tue?



3/26

Axioms and rules of the minimal system HLC[:

Those of IPC plus:

Tra (ϕ J ψ) ∧ (ψ J χ)→ (ϕ J χ)

“syntactic transitivity” of J

Ka (ϕ J ψ) ∧ (ϕ J χ)→ (ϕ J (ψ ∧ χ))

normality=normality in the second coördinate

Na

ϕ→ ψ

ϕ J ψ.

binary generalization of necessitation

not only implies congruentiality, but also anti-monotonicity in the first coördinate

Axioms and rules of the full system HLC]:

All the axioms and rules of IPC and HLC[ and

Di ((ϕ J χ) ∧ (ψ J χ))→ ((ϕ ∨ ψ) J χ).

should implication be anti-multiplicative in the first coördinate?
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Running this axiom system via the AAL machinery yields:

The class of flat Heyting-Lewis algebras:

Heyting algebras plus:

CTra (ϕ J ψ) ∧ (ψ J χ) ≤ ϕ J χ

CKa (ϕ J ψ) ∧ (ϕ J χ) = ϕ J (ψ ∧ χ)

CId ϕ J ϕ = >

The class of sharp Heyting-Lewis algebras:

all the equalities above plus

CDi (ϕ J χ) ∧ (ψ J χ) = (ϕ ∨ ψ) J χ.

In fact, we haven’t discussed algebras properly.

We will do so today.
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We haven’t seen any examples of sharp Lewis applications

of SQEMA via GMT either

Will be fixed later today

But even having a complete Kripke semantics for the sharp

variant of a given logic does clarify which derivations

essentially require sharpness (i.e., Di)

Or, indeed, if Di itself is derivable. It is forced in each and

every Kripke structure

Here are some examples of such questions
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Example 1: Collapse to �?

In the first lecture, we have shown that over HLC], i.e., in

the presence of Di

ϕ J ψ

is equivalent to

(ϕ ∨ ¬ϕ) J (ϕ→ ψ).

How can we show this equivalent does not hold over Di?

Albert: via arithmetical interpretations, of course

Otherwise, the study of classical interpretability logics

would collapse to the study of their provability fragments

But what if you want to have a simple finite countermodel?
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Example 2a: Outrageous Arrows, No Choice

Consider the axioms of (the Curry-Howard) logic of

Haskell/Hughes arrows S[:

• the baseline flat calculus HLC[

• the strength axiom

ϕ→ �ϕ or (ϕ→ ψ)→ (ϕ J ψ)

Is there a finite countermodel showing that Choice (i.e., Di)

isn’t derivable?
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Haskell arrows as proposed by John Hughes

class Arrow a where
arr :: (b -> c) -> a b c
(>>>) :: a b c -> a c d -> a b d
first :: a b c -> a (b, d) (c, d)

Sa (β → γ)→ (β J γ)

Tra (β J γ) ∧ (γ J δ)→ (β J δ)

K′a (β J γ)→ ((β ∧ δ) J (γ ∧ δ))
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Example 2b: Monads Are Promiscuous with Choice

For contrast, extend S[ with your preferred axioms for

monads

�ϕ J �ϕ or ((β J γ)∧β) J γ or (ϕ→ �ψ)→ (ϕ J ψ)

All equivalent above S[

Di is derivable now, as ϕ J ψ is decomposable as (ϕ→ �ψ)
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Monads

(recall they allow decomposing β J γ as β → �γ)

class Arrow => ArrowApply a where
app :: a (a b c, b) c

Appa ((β J γ) ∧ β) J γ

Recall it’s precisely Lewis’s B7!

The only S2 axiom underivable in HLC]. . .

. . . actually, can you see what is its corresponding semantic

condition?
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Example 3a: Strange Siblings of Transitivity

Recall the transitivity axiom for @

P (ϕ J ψ)→ �(ϕ J ψ)

It plays a rôle in arithmetical interpretations. It also has

some weird siblings:

4� �ϕ→ ��ϕ
4a ϕ J �ϕ

4◦a (ϕ J ψ)→ (ϕ J (ϕ J ψ))

44◦a (ϕ J (ψ J χ))→ (ϕ J (ψ J (ϕ J (ψ J χ)))).

Incidentally, note that the S axiom implies all of them!

Even on Kripke frames, what do they all mean?
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Example 3b: Unrelated Transitive Siblings?

In our paper with Albert underlying his next lecture

Lewisian Fixed Points I: Two Incomparable Constructions

https://arxiv.org/abs/1905.09450
we showed (Theorem 32) that

4◦a `] 44◦a

i.e.,

(ϕ J ψ)→ (ϕ J (ϕ J ψ)) `]

(ϕ J (ψ J χ))→ (ϕ J (ψ J (ϕ J (ψ J χ)))

But we care mostly for the flat base because arithmetic

How do we show that 4◦a 0[ 44◦a ?

https://arxiv.org/abs/1905.09450
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Flat semantic worlds

First of all, HLC[ is an extension of Weiss’ recent ICK

Basic intuitionistic conditional logic, JPL 2019

This allows intutionistic variants of Chellas’ semantics

Weiss himself, other developed by my coauthor Sedlár

But we can also generalize Routley-Meyer semantics of

relevance logics

instead of ternary relation on states, multi-sorted, with neighbourhoods on

one coördinate

We can also generalize Veltman semantics that Albert was

talking about

with Igor Sedlár, we show that this generalized Veltman semantics is a

functional variant of generalized RM

Starting from IPC, we have semantics discussed by G.

Bezhanishvili and W.H. Holliday

Beth frames, FM frames, Dragalin frames, nuclear frames . . .
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one coördinate

We can also generalize Veltman semantics that Albert was

talking about

with Igor Sedlár, we show that this generalized Veltman semantics is a

functional variant of generalized RM

Starting from IPC, we have semantics discussed by G.

Bezhanishvili and W.H. Holliday

Beth frames, FM frames, Dragalin frames, nuclear frames . . .



13/26

Flat semantic worlds

First of all, HLC[ is an extension of Weiss’ recent ICK

Basic intuitionistic conditional logic, JPL 2019

This allows intutionistic variants of Chellas’ semantics

Weiss himself, other developed by my coauthor Sedlár

But we can also generalize Routley-Meyer semantics of

relevance logics

instead of ternary relation on states, multi-sorted, with neighbourhoods on

one coördinate
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But we can do with just algebra only

Some people are still mislead by Johan van Benthem’s

provocative “syntax in disguise” quote

He delegates the blame to some other unspecified people (Grayson?) and

claims duality changes the picture

My take: syntax always comes with a notion of identity

decidable in polynomial time

It is computationally trivial to compare two strings

The Lindenbaum-Tarski equivalence relation of meaningful

logics almost never satisfies this criterion

Bezhanishvili & Holliday offer another take
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This is a legitimate objection if all one means by “giving

algebraic semantics” is to translate the axioms of IPC into

equations defining a class of algebras and then observe that IPC

is sound and complete with respect to such algebras. In this

case, soundness and completeness is hardly illuminating. By

contrast, it is quite illuminating to know that IPC is sound and

complete with respect to Heyting algebras defined

order-theoretically

G. Bezhanishvili & W.H. Holliday, A Semantic Hierarchy for Intuitionistic Logic
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Heyting-Lewis algebras, once again

Structures of the form A = (A,J,→,∧,∨,>,⊥)

The J-free reduct (A,→,∧,∨,>,⊥) is a Heyting algebra

Bounded distributive lattice with → adjoint to/residual of ∧

The laws for J (flat and sharp) already discussed on three

different occasions

A Heyting-Lewis-Kripke frame can be always turned into a

Heyting-Lewis algebra

F = (X,�,@), F+ has up(X,�) as its carrier

The lattice part is interpreted set-theoretically

The two implications: by algebraizing the forcing relation

a→ b = {x ∈ X | if x � y and y ∈ a then y ∈ b}

a J b = {x ∈ X | if x @ y and y ∈ a then y ∈ b}
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Mace4 for counterexamples

Developed by William Walker McCune (December 17, 1953

– May 2, 2011)

Wikipedia: an American computer scientist and logician

working in the fields of automated reasoning, algebra, logic,

and formal methods. He was best known for the

development of the Otter, Prover9, and Mace4 automated

reasoning systems, and the automated proof of the Robbins

conjecture using the EQP theorem prover

MACE stands for Models And Counter-Examples

Available online (together with Prover9) and still perfectly

usable

https://www.cs.unm.edu/˜mccune/mace4/
See also https://github.com/theoremprover-museum

Let’s unrelate siblings of transitivity with Mace4: 4◦a 0[ 44◦a

https://www.cs.unm.edu/~mccune/mace4/
https://github.com/theoremprover-museum
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Mace4 input

formulas(assumptions).
x ˆ (y ˆ z) = (x ˆ y) ˆ z.
x ˆ x = x.
x ˆ y = y ˆ x.
x ˆ 1 = x.
x ˆ 0 = 0.
x * x = 1.
x ˆ (x * y) = x ˆ y.
y ˆ (x * y) = y.
x * (y ˆ z) = (x * y) ˆ (x * z).
(x + y) ˆ (x + z) = x + (y ˆ z).
((x + y) ˆ (y + z)) ˆ (x + z) = (x + y) ˆ (y + z).
x + x = 1.
(x + y) ˆ (x + (x + y)) = x + y.
end_of_list.

formulas(goals).
(x + (y + z)) ˆ (x + (y + (x + (y + z)))) = x + (y + z).
end_of_list.
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Mace4 output 1

formulas(mace4_clauses).
x ˆ (y ˆ z) = (x ˆ y) ˆ z.
x ˆ x = x.
x ˆ y = y ˆ x.
x ˆ 1 = x.
x ˆ 0 = 0.
x * x = 1.
x ˆ (x * y) = x ˆ y.
x ˆ (y * x) = x.
x * (y ˆ z) = (x * y) ˆ (x * z).
(x + y) ˆ (x + z) = x + (y ˆ z).
((x + y) ˆ (y + z)) ˆ (x + z) = (x + y) ˆ (y + z).
x + x = 1.
(x + y) ˆ (x + (x + y)) = x + y.
(c1 + (c2 + c3)) ˆ (c1 + (c2 + (c1 + (c2 + c3)))) != c1 + (c2 + c3).
end_of_list.
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Mace4 output 2

interpretation( 6, [number=1, seconds=8], [

function(c1, [ 2 ]),

function(c2, [ 4 ]),

function(c3, [ 3 ]),

function(*(_,_), [
1, 1, 1, 1, 1, 1,
0, 1, 2, 3, 4, 5,
3, 1, 1, 3, 4, 4,
2, 1, 2, 1, 1, 2,
0, 1, 2, 3, 1, 2,
3, 1, 1, 3, 1, 1 ]),
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Mace4 output 3

function(+(_,_), [
1, 1, 1, 1, 1, 1,
0, 1, 0, 0, 0, 0,
5, 1, 1, 5, 2, 2,
0, 1, 0, 1, 1, 0,
0, 1, 0, 4, 1, 0,
4, 1, 1, 4, 1, 1 ]),

function(ˆ(_,_), [
0, 0, 0, 0, 0, 0,
0, 1, 2, 3, 4, 5,
0, 2, 2, 0, 5, 5,
0, 3, 0, 3, 3, 0,
0, 4, 5, 3, 4, 5,
0, 5, 5, 0, 5, 5 ])

]).
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a1 = >

ϕ = a2 a4 = ψ

a5 a3 = χ

a0 = ⊥

J ⊥ > a2 a3 a4 a5

⊥ > > > > > >
> ⊥ > ⊥ ⊥ ⊥ ⊥
a2 a5 > > a5 a2 a2

a3 ⊥ > ⊥ > > ⊥
a4 ⊥ > ⊥ a4 > ⊥
a5 a4 > > a4 > >
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Advanced Exercise: Use Mace4 to find counterexamples for

other derivations that fail in the flat setting!

Do get in touch with me if you’re interested, but not sure if you’re doing it right

Still More Advanced: Use a more recent tool of your choice

Do tell me how it went
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The use of SQEMA via GMT
Here is the (refined, not brutal) GMT translation of P

�m(�ip→ �iq)→ �m�m(�ip→ �iq).

Try to run it through SQEMA:

http://dimiter.slavi.biz/sqema/

It does yield a FO counterpart, but not equivalent to

transitivity over arbitrary (quasi-ordered) frames for S4HL

One needs to transform manually the FO formula in

question using the assumption of antisymmetry

Alternatively, over partial orders, the following rule is

admissible:

from ϕ(�ip→ �iq), derive ϕ(r),

where p and q are fresh for ϕ(r)

This yiels

�mr → �m�mr

Just transitivity of Rm!

http://dimiter.slavi.biz/sqema/
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Some FO counterparts

4
ϕ→ ϕ

semi-transitivity
k @ ` @ m ⇒
∃x.k @ x � m

x // m

k

OO
O�

O�
// `

OO

4a
ϕ J ϕ
gathering

k @ ` @ m ⇒ ` � m k // ` 66
((
m

4◦a
(ϕ J ψ)→ (ϕ J (ϕ J ψ))
gather-transitivity

x @ y @ z ⇒
x @ z or y � z

S
ϕ→ ϕ
strength

k @ ` ⇒ k � ` k 77
''
`

Exercise: Compute them using the online implementation +

transformations from the previous slide!

Exercise: Try a chosen axioms for monads (arrows with apply)

Advanced Exercise: Do these computations fully manually, if

you know Sahlqvist/SQEMA
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Coda: a few words about extension stability

You learned from Albert yesterday that

provability/interpretability/preservativity principles are

not stable under expansions with additional axioms

Those that are, are called extension stable

Interestingly, fixpoint principles discussed tomorrow do have this property

An algebraic perspective shows that extension stability is a

variant of subframe property which we needed on day 2

Thus, Di (Kripkeanity) is not subframe!

We need one of alternative state-based semantics to get a

deeper insight into this claim . . .
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