Gödel-McKinsey-Tarski and Blok-Esakia for (sharp) Heyting-Lewis Calculus

Tadeusz Litak (FAU Erlangen-Nuremberg) joint lecture with Albert Visser course Lewis meets Brouwer: Constructive strict implication

ESSLLI 2021, part II

What have we seen last time?

Axioms and rules of the minimal system HLC^{\flat} :

Those of IPC plus:
Tra
$$(\varphi \neg \psi) \land (\psi \neg \chi) \rightarrow (\varphi \neg \chi)$$

"syntactic transitivity" of \neg

$$\mathsf{K}_{\mathsf{a}} \quad (\varphi \dashv \psi) \land (\varphi \dashv \chi) \to (\varphi \dashv (\psi \land \chi))$$

normality=normality in the second coördinate

$$N_{a} \frac{\varphi \to \psi}{\varphi \dashv \psi}.$$

binary generalization of necessitation

not only implies congruentiality, but also anti-monotonicity in the first coördinate

Axioms and rules of the full system HLC^{\sharp} :

All the axioms and rules of IPC and HLC^b and Di $((\varphi \neg \chi) \land (\psi \neg \chi)) \rightarrow ((\varphi \lor \psi) \neg \chi).$

should implication be anti-multiplicative in the first coördinate?

Running this axiom system via the AAL machinery yields:

Heyting algebras plus:

$$\begin{array}{ll} \mathsf{CTra} & (\varphi \dashv \psi) \land (\psi \dashv \chi) \leq \varphi \dashv \chi \\ \mathsf{CK}_{\mathsf{a}} & (\varphi \dashv \psi) \land (\varphi \dashv \chi) = \varphi \dashv (\psi \land \chi) \\ & \mathsf{CId} & \varphi \dashv \varphi = \top \end{array}$$

The class of Heyting-Lewis algebras:

 $\begin{array}{ll} \text{all the equalities above plus} \\ \text{CDi} \quad (\varphi \dashv \chi) \land (\psi \dashv \chi) = (\varphi \lor \psi) \dashv \chi. \end{array}$

The \neg -free reduct: Heyting algebras The \rightarrow -free reduct:

weak Heyting algebras of Celani and Jansana

fusion, fibring or dovetailing along the shared bounded lattice reduct

Kripke semantics of HLC^{\sharp}

- Nonempty set of worlds/states X
- Two relations:
 - Intuitionistic poset relation $\leq \subseteq X \times X$, drawn as \rightarrow ;
 - Modal relation $\Box \subseteq X \times X$, drawn as \rightsquigarrow .
 - These relations satisfy precomposition/prefixing:

• A valuation V sends propositional atoms to \preceq -upward closed sets $up(X, \preceq)$

Semantics of propositional connectives

- Semantics for \land , \lor , \top and \bot : Tarskian/boolean clauses locally at a given state
- Semantics for \rightarrow :

 $X, V, w \Vdash \varphi \to \psi$ if for any $v \succeq w, v \Vdash \varphi$ implies $v \Vdash \psi$

• Semantics for \neg :

 $X, V, w \Vdash \varphi \dashv \psi$ if for any $v \sqsupset w, v \Vdash \varphi$ implies $v \Vdash \psi$

- Global satisfaction and validity defined as usual
- Exercise Show semantics for \Box : $X, V, w \Vdash \Box \varphi$ if for any $v \sqsupset w, v \Vdash \varphi$
- Exercise: show that denotations of all connectives are upward closed

For \dashv this is equivalent to the prefixing condition from the previous slide!

• Exercise: show that all axioms of $\mathsf{HLC}^\sharp,$ in particular $\mathsf{Di},$ are valid

$$\mathsf{Tra} \quad (\varphi \dashv \psi) \land (\psi \dashv \chi) \to (\varphi \dashv \chi)$$

Assume that (a) $w \Vdash \varphi \dashv \psi$, (b) $w \Vdash \psi \dashv \chi$, (c) $v \sqsupset w$, and (d) $v \Vdash \varphi$. We have that (a), (c) and (d) yield (e) $v \Vdash \psi$ and then (b), (c) and (e) yield $v \Vdash \chi$

$$\mathsf{K}_{\mathsf{a}} \quad (\varphi \dashv \psi) \land (\varphi \dashv \chi) \to (\varphi \dashv (\psi \land \chi))$$

Assume that (a) $w \Vdash \varphi \dashv \psi$, (b) $w \Vdash \varphi \dashv \chi$, (c) $v \sqsupset w$, and (d) $v \Vdash \varphi$. Then (a),

(c) and (d) yield (e) $v \Vdash \psi$ and (b), (c) and (d) yield (f) $v \Vdash \chi$. From (e) and (f), we infer $v \Vdash \psi \land \chi$

$$N_{a} \; \frac{\varphi \to \psi}{\varphi \dashv \psi}$$

Assume that (a) $\varphi \to \psi$ is globally forced (b) $v \sqsupset w$, and (c) $v \Vdash \varphi$. But then just (a) and (c) yield that $v \Vdash \psi$

$$\mathsf{Di} \quad ((\varphi \neg \chi) \land (\psi \neg \chi)) \to ((\varphi \lor \psi) \neg \chi).$$

Assume that (a) $w \Vdash \varphi \dashv \chi$, (b) $w \Vdash \psi \dashv \chi$, (c) $v \sqsupset w$, and (d) $v \Vdash \varphi \lor \psi$. By the satisfaction clause for \lor , this means that either $v \Vdash \varphi$ or $v \Vdash \psi$. Split cases and use

either (a) or (b).

• This yields soundness

- This yields soundness
- But how completeness? Can we show that all non-theorems are refuted on some Kripke frame with a suitably chosen valuation?

- This yields soundness
- But how completeness? Can we show that all non-theorems are refuted on some Kripke frame with a suitably chosen valuation?
- If so, can we always make countermodel finite, i.e., do we have the finite model property?

Note that for a finitely axiomatizable logic, the finite model property implies decidability

- This yields soundness
- But how completeness? Can we show that all non-theorems are refuted on some Kripke frame with a suitably chosen valuation?
- If so, can we always make countermodel finite, i.e., do we have the finite model property? Note that for a finitely axiomatizable logic, the finite model property implies

decidability

• And do we have strong completeness, i.e., completeness for theories?

• If we forget about -3 and □, the IPC is complete wrt finite posets: it has the fmp

- If we forget about -3 and □, the IPC is complete wrt finite posets: it has the fmp
- An example: a countermodel for $p \lor \neg p$ and $\neg \neg p \to p$:

$$\ell \Vdash p$$
 \uparrow
 k

- If we forget about -3 and □, the IPC is complete wrt finite posets: it has the fmp
- An example: a countermodel for $p \lor \neg p$ and $\neg \neg p \to p$:

$$\begin{array}{c}\ell \Vdash p \\ \uparrow \\ k \end{array}$$

• A countermodel for $\neg p \lor \neg \neg p$:

$$\begin{array}{c} \ell & m \Vdash p \\ \uparrow & \swarrow \\ k \end{array}$$

 $\bullet\,$ And then how about extensions of HLC^{\sharp} with additional axioms?

- \bullet And then how about extensions of HLC^\sharp with additional axioms?
 - Strength of Hughes arrows, idioms, monads ...

- \bullet And then how about extensions of HLC^\sharp with additional axioms?
 - Strength of Hughes arrows, idioms, monads ...
 - Various arithmetical principles (wait for Albert's lecture)

- \bullet And then how about extensions of HLC^\sharp with additional axioms?
 - Strength of Hughes arrows, idioms, monads ...
 - Various arithmetical principles (wait for Albert's lecture)
 - Additional axioms of IELE...

- \bullet And then how about extensions of HLC^\sharp with additional axioms?
 - Strength of Hughes arrows, idioms, monads ...
 - Various arithmetical principles (wait for Albert's lecture)
 - Additional axioms of IELE...
- What frame conditions do they correspond to?

- \bullet And then how about extensions of HLC^\sharp with additional axioms?
 - Strength of Hughes arrows, idioms, monads ...
 - Various arithmetical principles (wait for Albert's lecture)
 - Additional axioms of IELE...
- What frame conditions do they correspond to?
- Do we have (strong) completeness or finite model property results for such extensions?

- And then how about extensions of HLC^\sharp with additional axioms?
 - Strength of Hughes arrows, idioms, monads ...
 - Various arithmetical principles (wait for Albert's lecture)
 - Additional axioms of IELE...
- What frame conditions do they correspond to?
- Do we have (strong) completeness or finite model property results for such extensions?
- Is there a systematic way of deriving such completeness and correspondence results for suitably large classes of axioms?

• A large class of formulas for which correspondence and strong completeness obtains automatically: Sahlqvist formulas later extended to *inductive* ones

- A large class of formulas for which correspondence and strong completeness obtains automatically: Sahlqvist formulas later extended to *inductive* ones
- An algorithm SQEMA, which computes first-order correspondents and even enjoys an online implementation http://www.geocities.ws/sqema/sqema_gwt_ 20180317_2/K45/SQEMA.html

- A large class of formulas for which correspondence and strong completeness obtains automatically: Sahlqvist formulas later extended to *inductive* ones
- An algorithm SQEMA, which computes first-order correspondents and even enjoys an online implementation http://www.geocities.ws/sqema/sqema_gwt_ 20180317_2/K45/SQEMA.html
- Several important classes of formulas for which the fmp holds (for Sahlqvist, does not hold automatically!)

- A large class of formulas for which correspondence and strong completeness obtains automatically: Sahlqvist formulas later extended to *inductive* ones
- An algorithm SQEMA, which computes first-order correspondents and even enjoys an online implementation http://www.geocities.ws/sqema/sqema_gwt_ 20180317_2/K45/SQEMA.html
- Several important classes of formulas for which the fmp holds (for Sahlqvist, does not hold automatically!)
- One such important syntactic class: uniform formulas (Fine)

every occurrence of every atom within the scope of the same number of boxes

Subframeness for FMP

- An even more important class is defined semantically: transitive subframe logics
- A modal logic Λ is subframe if whenever

•
$$(X, \sqsubset) \Vdash \Lambda$$
 and

•
$$S \subseteq X$$

then $(S, \sqsubset |_{S \times S}) \Vdash \Lambda$

- If the class of frames for Λ is defined by a FO formula φ , its subframeness is equivalent to φ
- Fine: transitive subframe logics have the fmp

An overview of GMT, Blok-Esakia, and Wolter-Zakharyaschev in the unary case

 \bullet ... by reducing to a classical (bi-)modal language

- \bullet ... by reducing to a classical (bi-)modal language
- For $\mathcal{L}_{\Box},$ methodology developed by Wolter & Zakharyashev in the late 1990's

$$\mathcal{L}_{\mathbf{i},\mathbf{m}} \quad \varphi, \psi ::= \top \mid \bot \mid p \mid \varphi \to \psi \mid \varphi \lor \psi \mid \varphi \land \psi \mid \Box_{\mathbf{i}} \varphi \mid \Box_{\mathbf{m}} \varphi$$

- ... by reducing to a classical (bi-)modal language
- For \mathcal{L}_{\Box} , methodology developed by Wolter & Zakharyashev in the late 1990's

$$\mathcal{L}_{\mathbf{i},\mathbf{m}} \quad \varphi,\psi ::= \top \mid \perp \mid p \mid \varphi \rightarrow \psi \mid \varphi \lor \psi \mid \varphi \land \psi \mid \Box_{\mathbf{i}}\varphi \mid \Box_{\mathbf{m}}\varphi$$

• The brutal Gödel-(McKinsey-Tarski) translation for \mathcal{L}_{\Box} :

$$t_{\Box}^{\mathsf{bru}}(\Box\varphi) := \Box_{\mathsf{i}} \Box_{\mathsf{m}}(t_{\Box}^{\mathsf{bru}}\varphi)$$

and \Box_i in front of every other subformula

- ... by reducing to a classical (bi-)modal language
- For \mathcal{L}_{\Box} , methodology developed by Wolter & Zakharyashev in the late 1990's

$$\mathcal{L}_{\mathsf{i},\mathsf{m}} \quad \varphi, \psi ::= \top \mid \bot \mid p \mid \varphi \to \psi \mid \varphi \lor \psi \mid \varphi \land \psi \mid \Box_{\mathsf{i}} \varphi \mid \Box_{\mathsf{m}} \varphi$$

• The brutal Gödel-(McKinsey-Tarski) translation for \mathcal{L}_{\Box} :

$$t_{\Box}^{\mathsf{bru}}(\Box\varphi) := \Box_{\mathsf{i}} \Box_{\mathsf{m}}(t_{\Box}^{\mathsf{bru}}\varphi)$$

and \Box_i in front of every other subformula

 \bullet Base system S4K over $\mathcal{L}_{i,m} \text{:}$ the fusion of

- ... by reducing to a classical (bi-)modal language
- For \mathcal{L}_{\Box} , methodology developed by Wolter & Zakharyashev in the late 1990's

$$\mathcal{L}_{\mathbf{i},\mathbf{m}} \quad \varphi, \psi ::= \top \mid \perp \mid p \mid \varphi \rightarrow \psi \mid \varphi \lor \psi \mid \varphi \land \psi \mid \Box_{\mathbf{i}} \varphi \mid \Box_{\mathbf{m}} \varphi$$

• The brutal Gödel-(McKinsey-Tarski) translation for \mathcal{L}_{\Box} :

$$t_{\Box}^{\mathsf{bru}}(\Box\varphi) := \Box_{\mathsf{i}} \Box_{\mathsf{m}}(t_{\Box}^{\mathsf{bru}}\varphi)$$

and \Box_i in front of every other subformula

- \bullet Base system S4K over $\mathcal{L}_{i,m} \text{:}$ the fusion of
 - S4 for \square_i and

- ... by reducing to a classical (bi-)modal language
- For \mathcal{L}_{\Box} , methodology developed by Wolter & Zakharyashev in the late 1990's

$$\mathcal{L}_{\mathbf{i},\mathbf{m}} \quad \varphi, \psi ::= \top \mid \perp \mid p \mid \varphi \rightarrow \psi \mid \varphi \lor \psi \mid \varphi \land \psi \mid \Box_{\mathbf{i}} \varphi \mid \Box_{\mathbf{m}} \varphi$$

• The brutal Gödel-(McKinsey-Tarski) translation for \mathcal{L}_{\Box} :

$$t_{\Box}^{\mathsf{bru}}(\Box\varphi) := \Box_{\mathsf{i}} \Box_{\mathsf{m}}(t_{\Box}^{\mathsf{bru}}\varphi)$$

and \Box_i in front of every other subformula

- \bullet Base system $\mathsf{S4K}$ over $\mathcal{L}_{i,m} {:}$ the fusion of
 - S4 for \square_i and
 - K for □_m

• t_{\Box}^{bru} embeds faithfully every intuitionistic normal logic over \mathcal{L}_{\Box} into an interval of extensions of S4K

- t_{\Box}^{bru} embeds faithfully every intuitionistic normal logic over \mathcal{L}_{\Box} into an interval of extensions of S4K
- Each such interval has a maximal element, obtained with the help of the Grzegorczyk axiom for □ and

mix $\Box_{\mathbf{m}}\varphi \rightarrow \Box_{\mathbf{i}}\Box_{\mathbf{m}}\Box_{\mathbf{i}}\varphi$

Recall mix/brilliancy :

Denote as $\mathsf{S4Mix}$ the extension of $\mathsf{S4K}$ with mix

- t_{\Box}^{bru} embeds faithfully every intuitionistic normal logic over \mathcal{L}_{\Box} into an interval of extensions of S4K
- Each such interval has a maximal element, obtained with the help of the Grzegorczyk axiom for □ and

mix
$$\Box_{\mathbf{m}}\varphi \rightarrow \Box_{\mathbf{i}}\Box_{\mathbf{m}}\Box_{\mathbf{i}}\varphi$$

Recall mix/brilliancy :

Denote as S4Mix the extension of S4K with mix

• We can now refine the translation:

$$t_{\Box}^{\mathsf{mix}}(\Box\varphi) := \Box_{\mathsf{m}}(t_{\Box}^{\mathsf{mix}}\varphi)$$

We can also optimize modulo S4: dropping \Box_i in front of \land , \lor , \top and \bot .
۲

 $\mathsf{Grz} \qquad \Box(\Box(p\to\Box p)\to p)\to p$

۲

$\mathsf{Grz} \qquad \Box(\Box(p\to\Box p)\to p)\to p$

• Now, some people would put \Box in front of the consequent

۲

$\mathsf{Grz} \qquad \Box(\Box(p\to\Box p)\to p)\to p$

- Now, some people would put \Box in front of the consequent
- And the original Grzegorczyk axiom looked quite differently anyway

If I recall, one-variable form due to Sobociński

۲

$\mathsf{Grz} \qquad \Box(\Box(p\to\Box p)\to p)\to p$

- Now, some people would put \Box in front of the consequent
- And the original Grzegorczyk axiom looked quite differently anyway If I recall, one-variable form due to Sobociński
- This version implies reflexivity and transitivity, i.e., S4

۲

$\mathsf{Grz} \qquad \Box(\Box(p\to\Box p)\to p)\to p$

- Now, some people would put \Box in front of the consequent
- And the original Grzegorczyk axiom looked quite differently anyway If I recall, one-variable form due to Sobociński
- This version implies reflexivity and transitivity, i.e., S4
- But it also implies (weak) Noetherianity: the lack of (strictly) infinite ascending chains and proper clusters

- The translation reflects decidability, completeness, fmp. Above mix, it also reflects canonicity enough to find one S4Mix-counterpart with the desired property!
- $\bullet\,$ To establish such results for extensions of S4Mix, one can use classical modal metatheory

e.g., the Sahlqvist/SQEMA algorithm for canonicity and completeness

- W & Z showed this using a suitable notion of "descriptive frames" (equivalent to an Esakia-style duality)
- As a by-product, they obtained a variant of the Blok-Esakia theorem:

the lattice of those extensions of S4Mix that include the Grzegorczyk axiom is isomorphic to the lattice of all intuitionistic unimodal logics with a normal box

 \bullet Extending the Gödel-(McKinsey-Tarski) translation to \mathcal{L}_{\dashv}

$$t^{\mathsf{bru}}_{\dashv}(\varphi \dashv \psi) := \Box_{\mathsf{i}} \Box_{\mathsf{m}}(t^{\mathsf{bru}}_{\dashv}\varphi \to t^{\mathsf{bru}}_{\dashv}\psi)$$

• Extending the Gödel-(McKinsey-Tarski) translation to \mathcal{L}_{\dashv}

$$t^{\mathsf{bru}}_{\dashv}(\varphi \dashv \psi) := \Box_{\mathsf{i}} \Box_{\mathsf{m}}(t^{\mathsf{bru}}_{\dashv}\varphi \to t^{\mathsf{bru}}_{\dashv}\psi)$$

• Obviously, one needs to replace mix with $\mathsf{HL} \quad \Box_{\mathsf{m}}\varphi \to \Box_{\mathsf{i}}\Box_{\mathsf{m}}\varphi$

• Extending the Gödel-(McKinsey-Tarski) translation to \mathcal{L}_{\dashv}

$$t^{\mathsf{bru}}_{\dashv}(\varphi \dashv \psi) := \Box_{\mathsf{i}} \Box_{\mathsf{m}}(t^{\mathsf{bru}}_{\dashv}\varphi \to t^{\mathsf{bru}}_{\dashv}\psi)$$

• Obviously, one needs to replace mix with

$$\mathsf{HL} \quad \Box_{\mathsf{m}}\varphi \to \Box_{\mathsf{i}}\Box_{\mathsf{m}}\varphi$$

• Apart from this, everything works, yielding even a suitable variant of the Blok-Esakia Theorem

• Extending the Gödel-(McKinsey-Tarski) translation to $\mathcal{L}_{\neg 3}$

$$t^{\mathsf{bru}}_{\dashv}(\varphi \dashv \psi) := \Box_{\mathsf{i}} \Box_{\mathsf{m}}(t^{\mathsf{bru}}_{\dashv}\varphi \to t^{\mathsf{bru}}_{\dashv}\psi)$$

• Obviously, one needs to replace mix with

$$\mathsf{HL} \quad \Box_{\mathsf{m}}\varphi \to \Box_{\mathsf{i}}\Box_{\mathsf{m}}\varphi$$

- Apart from this, everything works, yielding even a suitable variant of the Blok-Esakia Theorem
- Particularly nice in the presence of

$$\mathsf{P} \qquad (\varphi \dashv \psi) \to \Box (\varphi \dashv \psi)$$

ensuring transitivity of the modal relation $\sqsubset (\rightsquigarrow)$

• Extending the Gödel-(McKinsey-Tarski) translation to $\mathcal{L}_{\neg 3}$

$$t^{\mathsf{bru}}_{\dashv}(\varphi \dashv \psi) := \Box_{\mathsf{i}} \Box_{\mathsf{m}}(t^{\mathsf{bru}}_{\dashv}\varphi \to t^{\mathsf{bru}}_{\dashv}\psi)$$

• Obviously, one needs to replace mix with

$$\mathsf{HL} \quad \Box_{\mathsf{m}}\varphi \to \Box_{\mathsf{i}}\Box_{\mathsf{m}}\varphi$$

- Apart from this, everything works, yielding even a suitable variant of the Blok-Esakia Theorem
- Particularly nice in the presence of

$$\mathsf{P} \qquad (\varphi \dashv \psi) \to \Box (\varphi \dashv \psi)$$

ensuring transitivity of the modal relation $\sqsubset (\rightsquigarrow)$

• Still better in the presence of strength

- t_{\exists}^{bru} embeds faithfully every extension of HLC^{\flat} into an interval of extensions of S4K
- Each such interval has a maximal element, obtained with the help of the Grzegorczyk axiom for \Box_i and

 $\mathsf{HL} \quad \Box_{\mathsf{m}} \varphi \to \Box_{\mathsf{i}} \Box_{\mathsf{m}} \varphi$

Recall prefixing (persistence for \neg):

Denote as S4HL the extension of S4K with mix

• We can now refine the translation:

$$t_{\dashv}^{\mathsf{HL}}(\Box\varphi):=\Box_{\mathsf{m}}(t_{\dashv}^{\mathsf{HL}}\varphi)$$

We can also optimize modulo S4: dropping \Box_i in front of \land , \lor , \top and \bot .

 $\bullet\,$ For every S4K-logic M, define

$$\rho\mathsf{M}:=\{\varphi\in\mathcal{L}_{\dashv}\mid t^{\mathsf{bru}}_{\dashv}(\varphi)\in\mathsf{M}\}$$

 $\bullet\,$ For every $S4K\text{-logic}\,\,M,\,\mathrm{define}\,$

$$\rho\mathsf{M} := \{\varphi \in \mathcal{L}_{\exists} \mid t^{\mathsf{bru}}_{\exists}(\varphi) \in \mathsf{M}\}$$

• For every \neg -logic $L = HLC^{\sharp} \oplus \Gamma$, define

$$\tau \mathsf{L} := (\mathsf{S4} \otimes \mathsf{K}) \oplus t_{\exists}^{\mathsf{bru}}(\Gamma) \oplus \mathsf{HL}$$
$$\sigma \mathsf{L} := (\mathsf{Grz}_{\mathsf{i}} \otimes \mathsf{K}) \oplus t_{\exists}^{\mathsf{HL}}(\Gamma) \oplus \mathsf{HL}$$

 \bullet For every S4K-logic M, define

$$\rho\mathsf{M} := \{\varphi \in \mathcal{L}_{\dashv} \mid t_{\dashv}^{\mathsf{bru}}(\varphi) \in \mathsf{M}\}$$

• For every \neg -logic $\mathsf{L} = \mathsf{HLC}^{\sharp} \oplus \Gamma$, define

$$\begin{split} \tau\mathsf{L} &:= (\mathsf{S4}\otimes\mathsf{K}) \oplus t^{\mathsf{bru}}_{\exists}(\Gamma) \oplus \mathsf{HL} \\ \sigma\mathsf{L} &:= (\mathsf{Grz}_{\mathsf{i}}\otimes\mathsf{K}) \oplus t^{\mathsf{HL}}_{\exists}(\Gamma) \oplus \mathsf{HL} \end{split}$$

• Each -3-logic is embeddable by t in any logic M in the interval

 $[(\mathsf{S4}\otimes\mathsf{K})\oplus t^{\mathsf{bru}}_{\neg \exists}(\Gamma),\sigma\mathsf{L}].$

 \bullet For every S4K-logic M, define

$$\rho\mathsf{M} := \{\varphi \in \mathcal{L}_{\exists} \mid t^{\mathsf{bru}}_{\exists}(\varphi) \in \mathsf{M}\}$$

• For every \neg -logic $\mathsf{L} = \mathsf{HLC}^{\sharp} \oplus \Gamma$, define

$$\begin{aligned} \tau \mathsf{L} &:= (\mathsf{S4} \otimes \mathsf{K}) \oplus t^{\mathsf{bru}}_{\exists}(\Gamma) \oplus \mathsf{HL} \\ \sigma \mathsf{L} &:= (\mathsf{Grz}_{\mathsf{i}} \otimes \mathsf{K}) \oplus t^{\mathsf{HL}}_{\exists}(\Gamma) \oplus \mathsf{HL} \end{aligned}$$

• Each -3-logic is embeddable by t in any logic M in the interval

 $[(\mathsf{S4}\otimes\mathsf{K})\oplus t^{\mathsf{bru}}_{\neg \exists}(\Gamma),\sigma\mathsf{L}].$

• The map ρ preserves decidability, Kripke completeness and the finite model property.

 \bullet For every S4K-logic M, define

$$\rho\mathsf{M} := \{\varphi \in \mathcal{L}_{\exists} \mid t^{\mathsf{bru}}_{\exists}(\varphi) \in \mathsf{M}\}$$

• For every \neg -logic $\mathsf{L} = \mathsf{HLC}^{\sharp} \oplus \Gamma$, define

$$\begin{aligned} \tau \mathsf{L} &:= (\mathsf{S4} \otimes \mathsf{K}) \oplus t^{\mathsf{bru}}_{\exists}(\Gamma) \oplus \mathsf{HL} \\ \sigma \mathsf{L} &:= (\mathsf{Grz}_{\mathsf{i}} \otimes \mathsf{K}) \oplus t^{\mathsf{HL}}_{\exists}(\Gamma) \oplus \mathsf{HL} \end{aligned}$$

• Each -3-logic is embeddable by t in any logic M in the interval

$$[(\mathsf{S4} \otimes \mathsf{K}) \oplus t^{\mathsf{bru}}_{\exists}(\Gamma), \sigma \mathsf{L}].$$

- The map ρ preserves decidability, Kripke completeness and the finite model property.
- The map ρ preserves canonicity of S4HL-logics.

 \bullet For every S4K-logic M, define

$$\rho\mathsf{M} := \{\varphi \in \mathcal{L}_{\exists} \mid t^{\mathsf{bru}}_{\exists}(\varphi) \in \mathsf{M}\}$$

• For every \neg -logic $\mathsf{L} = \mathsf{HLC}^{\sharp} \oplus \Gamma$, define

$$\begin{aligned} \tau \mathsf{L} &:= (\mathsf{S4} \otimes \mathsf{K}) \oplus t^{\mathsf{bru}}_{\exists}(\Gamma) \oplus \mathsf{HL} \\ \sigma \mathsf{L} &:= (\mathsf{Grz}_{\mathsf{i}} \otimes \mathsf{K}) \oplus t^{\mathsf{HL}}_{\exists}(\Gamma) \oplus \mathsf{HL} \end{aligned}$$

• Each -3-logic is embeddable by t in any logic M in the interval

$$[(\mathsf{S4} \otimes \mathsf{K}) \oplus t^{\mathsf{bru}}_{\exists}(\Gamma), \sigma \mathsf{L}].$$

- The map ρ preserves decidability, Kripke completeness and the finite model property.
- The map ρ preserves canonicity of S4HL-logics.
- The map τ preserves canonicity.

 \bullet For every S4K-logic M, define

$$\rho\mathsf{M}:=\{\varphi\in\mathcal{L}_{\dashv}\mid t^{\mathsf{bru}}_{\dashv}(\varphi)\in\mathsf{M}\}$$

• For every \neg -logic $\mathsf{L} = \mathsf{HLC}^{\sharp} \oplus \Gamma$, define

$$\begin{aligned} \tau \mathsf{L} &:= (\mathsf{S4} \otimes \mathsf{K}) \oplus t^{\mathsf{bru}}_{\exists}(\Gamma) \oplus \mathsf{HL} \\ \sigma \mathsf{L} &:= (\mathsf{Grz}_{\mathsf{i}} \otimes \mathsf{K}) \oplus t^{\mathsf{HL}}_{\exists}(\Gamma) \oplus \mathsf{HL} \end{aligned}$$

• Each -3-logic is embeddable by t in any logic M in the interval

 $[(\mathsf{S4} \otimes \mathsf{K}) \oplus t^{\mathsf{bru}}_{\neg}(\Gamma), \sigma \mathsf{L}].$

- The map ρ preserves decidability, Kripke completeness and the finite model property.
- The map ρ preserves canonicity of S4HL-logics.
- The map τ preserves canonicity.
- The map σ preserves the finite model property.

Transfer of the fmp

 In order to use such transfer results not just for completeness and canonicity, but also for the fmp, we need such criteria for L_{i,m}-logics

- In order to use such transfer results not just for completeness and canonicity, but also for the fmp, we need such criteria for $\mathcal{L}_{i,m}$ -logics
- W & Z provide some results based on the notion of (cofinal) subframe logic when $R_{\rm m}$ is transitive

- In order to use such transfer results not just for completeness and canonicity, but also for the fmp, we need such criteria for L_{i,m}-logics
- W & Z provide some results based on the notion of (cofinal) subframe logic when $R_{\rm m}$ is transitive
- In the absence of $R_{\rm i}$ -clusters, this is ensured by

$$\mathsf{P} \qquad (\varphi \dashv \psi) \to \Box (\varphi \dashv \psi)$$

Theorem

Suppose M is a canonical extension of $S4 \otimes K4$ containing HL that is closed under forming (R_m -cofinal) subframes. Then:

- 1. M has the finite model property.
- 2. If moreover M contains the classical strength axiom

$$S_{c} \qquad \Box_{i}p \to \Box_{m}p.$$

then for any $(R_{\mathsf{m}}\text{-cofinal})$ subframe logic $\Gamma \subseteq \mathcal{L}_{\mathsf{m}}$, the logic $\mathsf{M} \oplus \Gamma$ has the finite model property.

Corollary

Let L be a \exists -logic extending P .

- 1. If its S4HL-counterparts include a canonical logic preserved by forming (cofinal) subframes, L has the fmp.
- Furthermore, if L extends S_a and its S4HL-counterparts include a logic obtained by extending a canonical (cofinal) subframe logic with a collection of L_m-axioms preserved by R_m-subframes, L has the fmp.

In either case, L is decidable whenever finitely axiomatizable.

This covers the P axiom itself, the strength axiom, a strong variant of the Löb axiom, the axiom of monads $App_a\ldots$

However, some creativity is needed ...

Descriptive frames or Esakia/Priestley dualities

Begin with frames w/o topology/no admissible sets

- For the Heyting reduct, proceed as usual
- For $\mathfrak{F} = (X, \preceq, \sqsubset), \mathfrak{F}^+$ has $up(X, \preceq)$ as its carrier

 $a \underline{\dashv} b = \{ x \in X \mid \text{if } x \sqsubset y \text{ and } y \in a \text{ then } y \in b \}$

• The carrier of \mathcal{A}_+ is just $pf\mathcal{A}$: its prime filters

 $\mathfrak{p} \sqsubset \mathfrak{q} \quad \text{iff} \quad \forall a, b \in A(a \dashv b \in \mathfrak{p} \text{ and } a \in \mathfrak{q} \text{ implies } b \in \mathfrak{q}).$

 Showing that ((·)₊)⁺ is a HL-embedding yields Kripke completeness

For the base system, and a few other ones, has been proved previously in a finitary manner (Iemhoff).

• Suppose $a \dashv b \notin \mathfrak{p}$.

- Suppose $a \rightarrow b \notin \mathfrak{p}$.
- We need to construct $q \in pfA$ s.t.

- Suppose $a \rightarrow b \notin \mathfrak{p}$.
- We need to construct $q \in pfA$ s.t.
 - $a \in \mathfrak{q}, b \notin \mathfrak{q}$ and

- Suppose $a \dashv b \notin \mathfrak{p}$.
- We need to construct $q \in pfA$ s.t.
 - $a \in \mathfrak{q}, b \notin \mathfrak{q}$ and
 - $\mathfrak{p} \sqsubset \mathfrak{q}$, i.e., $\forall a', b' \in A(a' \dashv b' \in \mathfrak{p} \text{ and } a' \in \mathfrak{q} \text{ implies } b' \in \mathfrak{q})$.

- Suppose $a \dashv b \notin \mathfrak{p}$.
- We need to construct $q \in pfA$ s.t.
 - $a \in \mathfrak{q}, b \notin \mathfrak{q}$ and
 - $\mathfrak{p} \sqsubset \mathfrak{q}$, i.e., $\forall a', b' \in A(a' \dashv b' \in \mathfrak{p} \text{ and } a' \in \mathfrak{q} \text{ implies } b' \in \mathfrak{q})$.
- Let $[a) = \{c \in A \mid a \leq c\}$ and $I := \{d \in A \mid d \dashv b \in \mathfrak{p}\}.$

- Suppose $a \dashv b \notin \mathfrak{p}$.
- We need to construct $q \in pfA$ s.t.
 - $a \in \mathfrak{q}, b \notin \mathfrak{q}$ and
 - $\mathfrak{p} \sqsubset \mathfrak{q}$, i.e., $\forall a', b' \in A(a' \dashv b' \in \mathfrak{p} \text{ and } a' \in \mathfrak{q} \text{ implies } b' \in \mathfrak{q}).$
- Let $[a) = \{c \in A \mid a \leq c\}$ and $I := \{d \in A \mid d \dashv b \in \mathfrak{p}\}.$
- I is an ideal (thanks to CDi!) s.t.

- Suppose $a \dashv b \notin \mathfrak{p}$.
- We need to construct $q \in pfA$ s.t.
 - $a \in \mathfrak{q}, b \notin \mathfrak{q}$ and
 - $\mathfrak{p} \sqsubset \mathfrak{q}$, i.e., $\forall a', b' \in A(a' \dashv b' \in \mathfrak{p} \text{ and } a' \in \mathfrak{q} \text{ implies } b' \in \mathfrak{q}).$
- Let $[a) = \{c \in A \mid a \leq c\}$ and $I := \{d \in A \mid d \dashv b \in \mathfrak{p}\}.$
- I is an ideal (thanks to CDi!) s.t.
 - $[a) \cap I = \emptyset$ and

- Suppose $a \dashv b \notin \mathfrak{p}$.
- We need to construct $q \in pfA$ s.t.
 - $a \in \mathfrak{q}, b \notin \mathfrak{q}$ and
 - $\mathfrak{p} \sqsubset \mathfrak{q}$, i.e., $\forall a', b' \in A(a' \dashv b' \in \mathfrak{p} \text{ and } a' \in \mathfrak{q} \text{ implies } b' \in \mathfrak{q})$.
- Let $[a) = \{c \in A \mid a \leq c\}$ and $I := \{d \in A \mid d \dashv b \in \mathfrak{p}\}.$
- I is an ideal (thanks to CDi!) s.t.
 - $[a) \cap I = \emptyset$ and
 - $b \in I$ (thanks to Cld).

- Suppose $a \dashv b \notin \mathfrak{p}$.
- We need to construct $q \in pfA$ s.t.
 - $a \in \mathfrak{q}, b \notin \mathfrak{q}$ and
 - $\mathfrak{p} \sqsubset \mathfrak{q}$, i.e., $\forall a', b' \in A(a' \dashv b' \in \mathfrak{p} \text{ and } a' \in \mathfrak{q} \text{ implies } b' \in \mathfrak{q}).$
- Let $[a) = \{c \in A \mid a \leq c\}$ and $I := \{d \in A \mid d \dashv b \in \mathfrak{p}\}.$
- I is an ideal (thanks to CDi!) s.t.
 - $[a) \cap I = \emptyset$ and
 - $b \in I$ (thanks to Cld).
- $\bullet\,$ The Prime Filter Lemma yields a suitable $\mathfrak{q}\colon$
Sketch of the \neg -clause

- Suppose $a \dashv b \notin \mathfrak{p}$.
- We need to construct $q \in pfA$ s.t.
 - $a \in \mathfrak{q}, b \notin \mathfrak{q}$ and
 - $\mathfrak{p} \sqsubset \mathfrak{q}$, i.e., $\forall a', b' \in A(a' \dashv b' \in \mathfrak{p} \text{ and } a' \in \mathfrak{q} \text{ implies } b' \in \mathfrak{q}).$
- Let $[a) = \{c \in A \mid a \leq c\}$ and $I := \{d \in A \mid d \dashv b \in \mathfrak{p}\}.$
- I is an ideal (thanks to CDi!) s.t.
 - $[a) \cap I = \emptyset$ and
 - $b \in I$ (thanks to Cld).
- The Prime Filter Lemma yields a suitable q:
 - $\bullet\,$ One needs to use the fact that \mathfrak{q} is a maximal element \ldots

Sketch of the \neg -clause

- Suppose $a \dashv b \notin \mathfrak{p}$.
- We need to construct $q \in pfA$ s.t.
 - $a \in \mathfrak{q}, b \notin \mathfrak{q}$ and
 - $\mathfrak{p} \sqsubset \mathfrak{q}$, i.e., $\forall a', b' \in A(a' \dashv b' \in \mathfrak{p} \text{ and } a' \in \mathfrak{q} \text{ implies } b' \in \mathfrak{q}).$
- Let $[a) = \{c \in A \mid a \leq c\}$ and $I := \{d \in A \mid d \neg b \in \mathfrak{p}\}.$
- I is an ideal (thanks to CDi!) s.t.
 - $[a) \cap I = \emptyset$ and
 - $b \in I$ (thanks to Cld).
- The Prime Filter Lemma yields a suitable q:
 - One needs to use the fact that \mathfrak{q} is a maximal element \ldots
 - ... and then one also needs to use all non-CDi axioms.

Upgrading to dual equivalence (descriptive-style)

- Limit valuations to admissible upsets: a general frame is $(X, \preceq, \sqsubset, P)$ with $P \subseteq up(X, \preceq)$ closed under $\cap, \cup, \Rightarrow, \exists$.
- It is called **descriptive** if additionally it is
 - compact: For every $A \subseteq P$ and $B \subseteq \{X \setminus a \mid a \in P\}$, if $A \cup B$ has the f.i.p. then $\bigcap (A \cup B) \neq \emptyset$;
 - \leq -refined: For all $x, y \in X$, if $x \not\preceq y$ then there exists $a \in P$ such that $x \in a$ and $y \notin a$;
 - -3-refined: For all $x, y \in X$, if $x \not\sqsubset y$ then there exist $a, b \in P$ such that $x \in a \preceq b$ and $y \in a$ and $y \notin b$. Morphisms: bounded wrt \sqsubset and $\preceq +$ inverse images of admissibles admissible

Upgrading to dual equivalence (Esakia- or Priestley-style)

- A strict implication space is a tuple $(X, \leq, \sqsubset, \tau)$ s.t.
 - (X, \preceq, τ) is an Esakia space;
 - $x \leq y \sqsubset z$ implies $x \sqsubset z$ for all $x, y, z \in X$;
 - $\downarrow_{\sqsubset} a = \{x \in X \mid x \sqsubset y \text{ for some } y \in a\}$ is clopen for every clopen $a \subseteq X$;
 - $\uparrow_{\sqsubset} x = \{y \in X \mid x \sqsubset y\}$ is closed in (X, τ) for all $x \in X$.
- Morphisms are continuous functions bounded wrt \sqsubset and \preceq .
- Extending the Heyting case: SIS is an isomorphic category to descriptive -3-frames.
- But also limiting Celani and Jansana:
 "Bounded distributive lattices with strict implication", Mathematical Logic Quarterly, vol. 51, pp. 219–246, 2005.
- SIS are (isomorphic to) a subcategory of their WH-spaces
- Priestley-style rather than Esakia-style

• When turning a general/descriptive -3-frame into one for S4K (in fact, S4HL) the natural solution is to close the admissibles under booleans

- When turning a general/descriptive \neg -frame into one for S4K (in fact, S4HL) the natural solution is to close the admissibles under booleans
- $\bullet\,$ This produces a general S4HL-frame satisfying Grz_i

- When turning a general/descriptive \neg -frame into one for S4K (in fact, S4HL) the natural solution is to close the admissibles under booleans
- $\bullet\,$ This produces a general $S4HL\mbox{-}\mathrm{frame}\,$ satisfying Grz_i
- Furthermore, preserves descriptiveness

- When turning a general/descriptive -3-frame into one for S4K (in fact, S4HL) the natural solution is to close the admissibles under booleans
- $\bullet\,$ This produces a general $S4HL\mbox{-}\mathrm{frame}\,$ satisfying Grz_i
- Furthermore, preserves descriptiveness
- Conversely, when one starts with a descriptive frame for $S4HL \oplus Grz_i$, takes its upsets (+glues its clusters), one obtains a descriptive \neg -frame

- When turning a general/descriptive -3-frame into one for S4K (in fact, S4HL) the natural solution is to close the admissibles under booleans
- $\bullet\,$ This produces a general $S4HL\mbox{-}\mathrm{frame}\,$ satisfying Grz_i
- Furthermore, preserves descriptiveness
- Conversely, when one starts with a descriptive frame for $S4HL \oplus Grz_i$, takes its upsets (+glues its clusters), one obtains a descriptive \neg -frame
- If the underlying \Box_i -relation is a partial order, validity of $\mathcal{L}_{i,m}$ -formulas is unaffected after going there and back again

- When turning a general/descriptive -3-frame into one for S4K (in fact, S4HL) the natural solution is to close the admissibles under booleans
- $\bullet\,$ This produces a general $S4HL\mbox{-}\mathrm{frame}\,$ satisfying Grz_i
- Furthermore, preserves descriptiveness
- Conversely, when one starts with a descriptive frame for $S4HL \oplus Grz_i$, takes its upsets (+glues its clusters), one obtains a descriptive \neg -frame
- If the underlying \Box_i -relation is a partial order, validity of $\mathcal{L}_{i,m}$ -formulas is unaffected after going there and back again
- And every extension of S4K is complete wrt such frames More demanding proofs than in the unimodal case