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Gödel-McKinsey-Tarski and Blok-Esakia for

(sharp) Heyting-Lewis Calculus

Tadeusz Litak (FAU Erlangen-Nuremberg)

joint lecture with Albert Visser

course Lewis meets Brouwer:

Constructive strict implication

ESSLLI 2021, part II
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What have we seen last time?
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Axioms and rules of the minimal system HLC[:

Those of IPC plus:

Tra (ϕ J ψ) ∧ (ψ J χ)→ (ϕ J χ)

“syntactic transitivity” of J

Ka (ϕ J ψ) ∧ (ϕ J χ)→ (ϕ J (ψ ∧ χ))

normality=normality in the second coördinate

Na

ϕ→ ψ

ϕ J ψ.

binary generalization of necessitation

not only implies congruentiality, but also anti-monotonicity in the first coördinate

Axioms and rules of the full system HLC]:

All the axioms and rules of IPC and HLC[ and

Di ((ϕ J χ) ∧ (ψ J χ))→ ((ϕ ∨ ψ) J χ).

should implication be anti-multiplicative in the first coördinate?
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Running this axiom system via the AAL machinery yields:

Heyting algebras plus:

CTra (ϕ J ψ) ∧ (ψ J χ) ≤ ϕ J χ

CKa (ϕ J ψ) ∧ (ϕ J χ) = ϕ J (ψ ∧ χ)

CId ϕ J ϕ = >

The class of Heyting-Lewis algebras:

all the equalities above plus

CDi (ϕ J χ) ∧ (ψ J χ) = (ϕ ∨ ψ) J χ.

The J-free reduct: Heyting algebras

The →-free reduct:

weak Heyting algebras of Celani and Jansana

fusion, fibring or dovetailing along the shared bounded lattice reduct
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Kripke semantics of HLC]

Nonempty set of worlds/states X

Two relations:
• Intuitionistic poset relation � ⊆ X ×X, drawn as →;
• Modal relation @ ⊆ X ×X, drawn as  .
• These relations satisfy precomposition/prefixing:

� · @ ⊆ @ ` // m

k

???�
?�

OO −→ intuitionistic �
// modal @

A valuation V sends propositional atoms to �-upward

closed sets up(X,�)
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Semantics of propositional connectives

Semantics for ∧, ∨, > and ⊥: Tarskian/boolean clauses

locally at a given state

Semantics for →:

X,V,w 
 ϕ→ ψ if for any v � w, v 
 ϕ implies v 
 ψ

Semantics for J:

X,V,w 
 ϕ J ψ if for any v A w, v 
 ϕ implies v 
 ψ

Global satisfaction and validity defined as usual

Exercise Show semantics for �:

X,V,w 
 �ϕ if for any v A w, v 
 ϕ

Exercise: show that denotations of all connectives are

upward closed

For J this is equivalent to the prefixing condition from the previous slide!

Exercise: show that all axioms of HLC], in particular Di,

are valid
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Tra (ϕ J ψ) ∧ (ψ J χ)→ (ϕ J χ)

Assume that (a)w 
 ϕ J ψ, (b)w 
 ψ J χ, (c) v A w, and (d) v 
 ϕ. We have that

(a) , (c) and (d) yield (e) v 
 ψ and then (b) , (c) and (e) yield v 
 χ

Ka (ϕ J ψ) ∧ (ϕ J χ)→ (ϕ J (ψ ∧ χ))

Assume that (a)w 
 ϕ J ψ, (b)w 
 ϕ J χ, (c) v A w, and (d) v 
 ϕ. Then (a) ,

(c) and (d) yield (e) v 
 ψ and (b) , (c) and (d) yield (f) v 
 χ. From (e) and (f) , we

infer v 
 ψ ∧ χ

Na

ϕ→ ψ

ϕ J ψ

Assume that (a)ϕ→ ψ is globally forced (b) v A w, and (c) v 
 ϕ. But then just

(a) and (c) yield that v 
 ψ

Di ((ϕ J χ) ∧ (ψ J χ))→ ((ϕ ∨ ψ) J χ).

Assume that (a)w 
 ϕ J χ, (b)w 
 ψ J χ, (c) v A w, and (d) v 
 ϕ ∨ ψ. By the

satisfaction clause for ∨, this means that either v 
 ϕ or v 
 ψ. Split cases and use

either (a) or (b) .
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This yields soundness

But how completeness? Can we show that all non-theorems

are refuted on some Kripke frame with a suitably chosen

valuation?

If so, can we always make countermodel finite, i.e., do we

have the finite model property?

Note that for a finitely axiomatizable logic, the finite model property implies

decidability

And do we have strong completeness, i.e., completeness for

theories?
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If we forget about J and @, the IPC is complete wrt finite

posets: it has the fmp

An example: a countermodel for p ∨ ¬p and ¬¬p→ p:

` 
 p

k

OO

A countermodel for ¬p ∨ ¬¬p:

` m 
 p

k

;;OO
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And then how about extensions of HLC] with additional
axioms?

• Strength of Hughes arrows, idioms, monads . . .
• Various arithmetical principles (wait for Albert’s lecture)
• Additional axioms of IELE. . .

What frame conditions do they correspond to?

Do we have (strong) completeness or finite model property

results for such extensions?

Is there a systematic way of deriving such completeness and

correspondence results for suitably large classes of axioms?
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Ordinary modal logics over CPC

A large class of formulas for which correspondence and

strong completeness obtains automatically: Sahlqvist

formulas later extended to inductive ones

An algorithm SQEMA, which computes first-order

correspondents and even enjoys an online implementation

http://www.geocities.ws/sqema/sqema_gwt_
20180317_2/K45/SQEMA.html

Several important classes of formulas for which the fmp

holds (for Sahlqvist, does not hold automatically!)

One such important syntactic class: uniform formulas

(Fine)

every occurrence of every atom within the scope of the same number of boxes

http://www.geocities.ws/sqema/sqema_gwt_20180317_2/K45/SQEMA.html
http://www.geocities.ws/sqema/sqema_gwt_20180317_2/K45/SQEMA.html
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Subframeness for FMP

An even more important class is defined semantically:

transitive subframe logics

A modal logic Λ is subframe if whenever
• (X,@) 
 Λ and
• S ⊆ X

then (S,@ |S×S) 
 Λ

If the class of frames for Λ is defined by a FO formula ϕ,

its subframeness is equivalent to ϕ

Fine: transitive subframe logics have the fmp
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An overview of GMT, Blok-Esakia, and

Wolter-Zakharyaschev in the unary case
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Systematic completeness/correspondence results . . .

. . . by reducing to a classical (bi-)modal language

For L�, methodology developed by Wolter & Zakharyashev

in the late 1990’s

Li,m ϕ,ψ ::= > | ⊥ | p | ϕ→ ψ | ϕ∨ψ | ϕ∧ψ | �iϕ | �mϕ

The brutal Gödel-(McKinsey-Tarski) translation for L�:

tbru� (�ϕ) := �i�m(tbru� ϕ)

and �i in front of every other subformula

Base system S4K over Li,m: the fusion of

• S4 for �i and
• K for �m
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tbru� embeds faithfully every intuitionistic normal logic over

L� into an interval of extensions of S4K

Each such interval has a maximal element, obtained with

the help of the Grzegorczyk axiom for � and

mix �mϕ→ �i�m�iϕ

Recall mix/brilliancy :

`

��

n

k

555u
5u

5u
5u

5u

AA

m

??

Denote as S4Mix the extension of S4K with mix

We can now refine the translation:

tmix
� (�ϕ) := �m(tmix

� ϕ)

We can also optimize modulo S4:

dropping �i in front of ∧, ∨, > and ⊥.
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The Grzegorczyk axiom

Grz �(�(p→ �p)→ p)→ p

Now, some people would put � in front of the consequent

And the original Grzegorczyk axiom looked quite

differently anyway

If I recall, one-variable form due to Sobociński

This version implies reflexivity and transitivity, i.e., S4

But it also implies (weak) Noetherianity: the lack of

(strictly) infinite ascending chains and proper clusters
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The translation reflects decidability, completeness, fmp.

Above mix, it also reflects canonicity

enough to find one S4Mix-counterpart with the desired property!

To establish such results for extensions of S4Mix, one can

use classical modal metatheory

e.g., the Sahlqvist/SQEMA algorithm for canonicity and completeness

W & Z showed this using a suitable notion of “descriptive

frames” (equivalent to an Esakia-style duality)

As a by-product, they obtained a variant of the

Blok-Esakia theorem:

the lattice of those extensions of S4Mix

that include the Grzegorczyk axiom

is isomorphic to

the lattice of all intuitionistic unimodal logics with a normal box
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Our job today

Extending the Gödel-(McKinsey-Tarski) translation to LJ

tbruJ (ϕ J ψ) := �i�m(tbruJ ϕ→ tbruJ ψ)

Obviously, one needs to replace mix with

HL �mϕ→ �i�mϕ

Apart from this, everything works, yielding even a suitable

variant of the Blok-Esakia Theorem

Particularly nice in the presence of

P (ϕ J ψ)→ �(ϕ J ψ)

ensuring transitivity of the modal relation @ ( )

Still better in the presence of strength



18/30

Our job today
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tbruJ embeds faithfully every extension of HLC[ into an

interval of extensions of S4K

Each such interval has a maximal element, obtained with

the help of the Grzegorczyk axiom for �i and

HL �mϕ→ �i�mϕ

Recall prefixing (persistence for J):

` // m

k

???�
?�

OO

Denote as S4HL the extension of S4K with mix

We can now refine the translation:

tHLJ (�ϕ) := �m(tHLJ ϕ)

We can also optimize modulo S4:

dropping �i in front of ∧, ∨, > and ⊥.
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Three maps between classes of logics

For every S4K-logic M, define

ρM := {ϕ ∈ LJ | tbruJ (ϕ) ∈ M}

For every J-logic L = HLC] ⊕ Γ, define

τL := (S4⊗ K)⊕ tbruJ (Γ)⊕ HL

σL := (Grzi ⊗ K)⊕ tHL
J (Γ)⊕ HL

Each J-logic is embeddable by t in any logic M in the

interval

[(S4⊗ K)⊕ tbruJ (Γ), σL].

The map ρ preserves decidability, Kripke completeness and

the finite model property.

The map ρ preserves canonicity of S4HL-logics.

The map τ preserves canonicity.

The map σ preserves the finite model property.
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Transfer of the fmp
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In order to use such transfer results not just for

completeness and canonicity, but also for the fmp, we need

such criteria for Li,m-logics

W & Z provide some results based on the notion of

(cofinal) subframe logic when Rm is transitive

In the absence of Ri-clusters, this is ensured by

P (ϕ J ψ)→ �(ϕ J ψ)
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Theorem

Suppose M is a canonical extension of S4⊗ K4 containing HL

that is closed under forming (Rm-cofinal) subframes. Then:

1. M has the finite model property.

2. If moreover M contains the classical strength axiom

Sc �ip→ �mp.

then for any (Rm-cofinal) subframe logic Γ ⊆ Lm, the logic

M⊕ Γ has the finite model property.
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Corollary

Let L be a J-logic extending P.

1. If its S4HL-counterparts include a canonical logic preserved

by forming (cofinal) subframes, L has the fmp.

2. Furthermore, if L extends Sa and its S4HL-counterparts

include a logic obtained by extending a canonical (cofinal)

subframe logic with a collection of Lm-axioms preserved by

Rm-subframes, L has the fmp.

In either case, L is decidable whenever finitely axiomatizable.

This covers the P axiom itself, the strength axiom, a strong

variant of the Löb axiom, the axiom of monads Appa . . .

However, some creativity is needed . . .
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Descriptive frames or Esakia/Priestley

dualities
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Begin with frames w/o topology/no admissible sets

HL algebras

(·)+

&&

HL (Kripke) frames

(·)+

ee

For the Heyting reduct, proceed as usual

For F = (X,�,@), F+ has up(X,�) as its carrier

a J b = {x ∈ X | if x @ y and y ∈ a then y ∈ b}

The carrier of A+ is just pf A: its prime filters

p @ q iff ∀a, b ∈ A(a J b ∈ p and a ∈ q implies b ∈ q).

Showing that ((·)+)+ is a HL-embedding

yields Kripke completeness

For the base system, and a few other ones, has been proved previously in a

finitary manner (Iemhoff).
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Sketch of the J-clause

Suppose a J b /∈ p.

We need to construct q ∈ pfA s.t.

• a ∈ q, b 6∈ q and
• p @ q, i.e., ∀a′, b′ ∈ A(a′ J b′ ∈ p and a′ ∈ q implies b′ ∈ q).

Let [a) = {c ∈ A | a ≤ c} and I := {d ∈ A | d J b ∈ p}.
I is an ideal (thanks to CDi!) s.t.

• [a) ∩ I = ∅ and
• b ∈ I (thanks to CId).

The Prime Filter Lemma yields a suitable q:

• One needs to use the fact that q is a maximal element . . .
• . . . and then one also needs to use all non-CDi axioms.
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Upgrading to dual equivalence (descriptive-style)

HL algebras

(·)∗
&&

HL (descriptive) frames

(·)∗
ff

Limit valuations to admissible upsets: a general frame is

(X,�,@, P ) with P ⊆ up(X,�) closed under ∩,∪,→, J.

It is called descriptive if additionally it is
• compact: For every A ⊆ P and B ⊆ {X \ a | a ∈ P}, if

A ∪B has the f.i.p. then
⋂

(A ∪B) 6= ∅;
• �-refined: For all x, y ∈ X, if x 6� y then there exists a ∈ P

such that x ∈ a and y /∈ a;
• J-refined: For all x, y ∈ X, if x 6@ y then there exist

a, b ∈ P such that x ∈ a J b and y ∈ a and y /∈ b.
Morphisms: bounded wrt @ and � + inverse images of admissibles

admissible
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Upgrading to dual equivalence (Esakia- or

Priestley-style)

A strict implication space is a tuple (X,�,@, τ) s.t.
• (X,�, τ) is an Esakia space;
• x � y @ z implies x @ z for all x, y, z ∈ X;
• ↓@a = {x ∈ X | x @ y for some y ∈ a} is clopen for every

clopen a ⊆ X;
• ↑@x = {y ∈ X | x @ y} is closed in (X, τ) for all x ∈ X.

Morphisms are continuous functions bounded wrt @ and �.

Extending the Heyting case: SIS is an isomorphic category

to descriptive J-frames.

But also limiting Celani and Jansana:

“Bounded distributive lattices with strict implication”, Mathematical Logic

Quarterly, vol. 51, pp. 219–246, 2005.

SIS are (isomorphic to) a subcategory of their WH-spaces

Priestley-style rather than Esakia-style
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Whence that Grzegorczyk axiom for �i?

When turning a general/descriptive J-frame into one for

S4K (in fact, S4HL) the natural solution is to close the

admissibles under booleans

This produces a general S4HL-frame satisfying Grzi

Furthermore, preserves descriptiveness

Conversely, when one starts with a descriptive frame for

S4HL⊕ Grzi, takes its upsets (+glues its clusters), one

obtains a descriptive J-frame

If the underlying �i-relation is a partial order, validity of

Li,m-formulas is unaffected after going there and back again

And every extension of S4K is complete wrt such frames

More demanding proofs than in the unimodal case
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