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Language and type system

τ ::= α | unit | nat | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | ∀α.τ | ∃α.τ |µα.τ
e ::= x | ε | n | 〈e1, e2〉 |π1e |π2e |

inl e | inr e | case e of [inl x ⇒ e1, inr x ⇒ e2] |
λx .e | e1e2 | Λα.e | e[τ ] |
pack (e, τ1) as∃α. τ | unpack (x , α) = e in e1 |
fold e | unfold e

This language is equipped with standard typing rules and a

call-by-value (cbv) small-step operational semantics.

In the Coq development, De Bruijn indices are used to represent

both term and type level variables. Also, there are no types in the

term language.
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Type safety

A property of many typed λ-calculi is type safety:

∀e. • ` e : τ ⇒ ∀e ′. e 7→∗ e ′ ⇒ value(e ′) ∨ ∃e ′′. e ′ 7→ e ′′

Informally it means that well-typed terms don't get stuck:

computation only stops once a value is reached (or runs forever).

One can try to prove this by induction on the typing derivation, but

this quickly fails. A stronger proof method is needed.

We de�ne a new relation Γ � e : τ (the logical relation) and show

the following two properties, called the Fundamental Property and

Soundness:

Γ ` e : τ ⇒ Γ � e : τ

• � e : τ ⇒ ∀e ′. e 7→∗ e ′ ⇒ value(e ′) ∨ ∃e ′′. e ′ 7→ e ′′
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Natural numbers and products

Before we arrive at the de�nition of Γ � e : τ , we need to make our

way through several layers.

First we need to de�ne the notion of a semantic type, by induction

on the syntax of types.

A �rst idea is to de�ne a semantic type to be the set of (closed)

values of that type. For nat, unit, τL × τR , τL + τR , this works �ne:

VJnatK = {n | n ∈ N}
VJunitK = {ε}

VJτL × τRK = {〈eL, eR〉 | eL ∈ VJτLK, eR ∈ VJτRK}
VJτL + τRK = {inl e | e ∈ VJτLK} ∪ {inr e | e ∈ VJτRK}
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Functions

As we are working with a cbv operational semantics, computation

under λs is suspended. We need a way to say that a closed term e

might itself not be in the value interpretation, but reduces down to

a value v that is:

VJτ1 → τ2K = {λx . e | ∀v ∈ VJτ1K. e[v/x ] ∈ EJτ2K}
EJτK = {e | ∃v . e 7→∗ v , v ∈ VJτK}

EJτK is called the evaluation closure of VJτK.

For now, we ignore the issue of non-terminating programs (which

we also want to have in our evaluation closure). We will have to

tweak this de�nition once we have enough tools at our disposal.
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Universal and existential types

Let T be the set of semantic types:

T = {R | ∀v ∈ R. value(v)}

An environment of semantic types is a �nite map η from type

variables to semantic types.

Now we can give an interpretation for type variables:

VJαKη = η(α)

as well as interpretations for ∀α.τ and ∃α.τ :

VJ∀α.τKη = {Λe | ∀R. e ∈ EJτKη[α 7→ R]}
VJ∃α.τKη = {pack e | ∃R. e ∈ VJτKη[α 7→ R]}

The previous de�nitions are changed to include type environments

η without ever modifying them.
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Recursive types

For recursive types, we would want to de�ne

VJµα.τKη = {fold e | e ∈ VJτ [µα.τ/α]Kη}.

However, the value interpretation VJ·K is de�ned by induction on

types, and the above would make this de�nition not well-founded.

Instead we are going to use the technique of step-indexing: we

index the value interpretation by a natural number k and take

v ∈ VkJτK to mean that v is �good� for k steps: if it is used in any

program context and that program is run for up to k steps, the

computation does not get stuck.

Now, we can give the correct de�nition of VJµα.τK:

VkJµα.τKη = {fold e | e ∈ Vk−1Jτ [µα.τ/α]Kη}.
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Functions, revisited

With step-indexing added to our toolset, the de�nition of

VJτ1 → τ2K now looks like this:

VkJτ1 → τ2Kη = {λx . e | ∀j ≤ k .∀v ∈ VjJτ1K. e[v/x ] ∈ EjJτ2Kη}

The evaluation closure also changes considerably:

EkJτKη = {e | ∀j < k .∀e ′. e 7→j e ′ ∧ irred(e ′)⇒ e ′ ∈ Vk−jJτKη}
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The logical relation

There is one �nal ingredient before we can de�ne the logical

relation itself; a semantic interpretation of typing contexts:

GkJ•Kη = {∅}
GkJΓ, x : τKη = {γ[x 7→ v ] | γ ∈ GkJΓKη ∧ v ∈ VkJτKη}

Finally, the de�nition of the logical relation: the open term e is

semantically of type τ , if at any step level k and for any way to

substitute values for the variables in e, the resulting term is in

EkJτK:

Γ � e : τ ⇔ ∀k ≥ 0.∀η.∀γ ∈ GkJΓKη. γ(e) ∈ EkJτKη
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The Fundamental Property

It remains to establish the Fundamental Property and Soundness of

the logical relation:

Γ ` e : τ ⇒ Γ � e : τ

• � e : τ ⇒ ∀e ′. e 7→∗ e ′ ⇒ value(e ′) ∨ ∃e ′′. e ′ 7→ e ′′

The latter follows in a simple manner from the de�nition of the

logical relation.

The proof of the former works by induction on the typing

derivation. The cases for each of the typing rules are traditionally

called Compatibility lemmas, e.g.:

Γ, x : τ1 � e : τ2 ⇒ Γ � λx . e : τ1 → τ2

Γ � e1 : τ1 → τ2, Γ � e2 : τ1 ⇒ Γ � e1e2 : τ2
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Contextual equivalence

A context C [·] is a term with a hole. It is straightforward to de�ne

substitution of terms into and typing C [·] : (Γ ` τ) (Γ′ ` τ ′) of

contexts by induction.

Let Γ ` e1 : τ, Γ ` e2 : τ . Then we can de�ne the notion of

contextual equivalence:

Γ ` e1 ≈ctx e2 : τ ⇔
(∀Γ′,C [·] : (Γ ` τ) (Γ′ ` unit).C [e1] ⇓⇔ C [e2] ⇓)

As with type safety before, proving contextual equivalence of two

terms directly can be quite hard, so we are looking for a logical

relation that is sound with respect to contextual equivalence:

Γ ` e1 ≈log e2 : τ ⇒ Γ ` e1 ≈ctx e2 : τ
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Contextual approximation

As it turns out, it is often easier to instead build a logical relation

that is sound w.r.t. contextual approximation:

Γ ` e1 �ctx e2 : τ ⇔
(∀Γ′,C [·] : (Γ ` τ) (Γ′ ` unit).C [e1] ⇓ ⇒ C [e2] ⇓)

Contextual equivalence is then shown by showing approximation in

both directions.

As in the unary case, the logical relation will consist of several

layers:

I relations VkJτKη of pairs of closed values

I relations EkJτKη of pairs of closed terms

I relations Γ ` · �log · : τ of pairs of open terms
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Value interpretations

De�ning the VkJτKη is straightforward:

VkJnatKη = {(n, n) | n ∈ N}
VkJunitKη = {(ε, ε)}

VkJτL × τRKη = {(〈eL1 , eR1 〉, 〈eL2 , eR2 〉) |
(eL1 , e

L
2 ) ∈ VkJτLKη, (eR1 , eR2 ) ∈ VkJτRKη}

VkJτL + τRKη = {(inl e1, inl e2) | (e1, e2) ∈ VkJτLKη}
∪ {(inr e1, inr e2) | (e1, e2) ∈ VkJτRKη}

VkJτ1 → τ2Kη = {(λx . e1, λx . e2) | ∀j ≤ k .∀(v1, v2) ∈ VjJτ1Kη.
(e1[v1/x ], e2[v2/x ]) ∈ EjJτ2K}

VkJ∀α.τKη = {(Λe1,Λe2) | ∀R. (e1, e2) ∈ EkJτKη[α 7→ R]}
VkJ∃α.τKη = {(pack e1, pack e2) | ∃R. (e1, e2) ∈ VkJτKη[α 7→ R]}
VkJµα.τKη = {(fold e1, fold e2) | (e1, e2) ∈ Vk−1Jτ [µα.τ/α]Kη}.



Binary semantic types

The set T of semantic types is now:

T = {(Rn)n∈N | ∀n ∈ N, (v1, v2) ∈ Rn. value(v1) ∧ value(v2)}

Note that it is not required that the terms on the left side have the

same types as the terms on the right side. This allows us to use the

logical relation to prove, for example, that

(pack(〈5, even〉, nat),pack(〈true, not〉, bool))

∈ EkJ∃α.α× (α→ bool)K∅

We will look at a more complex example later.
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Evaluation closure

The evaluation closure changes again quite dramatically:

EkJτKη = {(e1, e2) | (value(e1)⇒ ∃e ′2. e2 7→∗ e ′2 ∧ (e1, e
′
2) ∈ VkJτKη)∧

(∀e1. e1 7→ e ′1 ⇒ (e ′1, e2) ∈ Ek−1JτKη)}



Logical approximation

As before, we need a semantic interpretation of typing contexts:

GkJ•Kη = {∅}
GkJΓ, x : τKη = {(γ1[x 7→ v1], γ2[x 7→ v2]) |

(γ1, γ2) ∈ GkJΓKη ∧ (v1, v2) ∈ VkJτKη}

Finally, here is the de�nition of logical approximation:

Γ ` e1 �log e2 : τ ⇔
∀k ≥ 0.∀η.∀(γ1, γ2) ∈ GkJΓKη. (γ1(e1), γ2(e2)) ∈ EkJτKη
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Fundamental Property & Soundness

The Fundamental Property and Soundness of the logical relation

can now be stated as follows:

Γ ` e : τ ⇒ Γ ` e �log e : τ

Γ ` e1 �log e2 : τ ⇒ Γ ` e1 �ctx e2 : τ

The Fundamental property is again shown by induction on the

typing derivation, with the compatibility lemmas as cases.

The proof of Soundness goes by induction on the typing derivation

of contexts C [·] and uses the Fundamental Property as well as the

compatibility lemmas throughout.
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Queue example

Consider the types

τlist =µβ. unit + nat× β
τqueue =∃α. (unit→ α)× (α× nat→ α)

× (α→ α)× (α→ unit + nat)



Queue example

Consider the types

τlist =µβ. unit + nat× β
τqueue =∃α. (unit→ α)× (α× nat→ α)

× (α→ α)× (α→ unit + nat)

First, there is a simple queue implementation using lists:

new1 =λx . nil

push1 =λq.λn. append q [n]

pop1 =λq. case unfold q of [inl x ⇒ nil, inr x ⇒ π2 x ]

top1 =λq. case unfold q of [inl x ⇒ inlε, inr x ⇒ inr (π1 x)]

queue1 = pack (〈new1, push1, pop1, top1〉, τlist) as τqueue
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Consider the types

τlist =µβ. unit + nat× β
τqueue =∃α. (unit→ α)× (α× nat→ α)

× (α→ α)× (α→ unit + nat)

Then, there is this more e�cient one using pairs of lists:

norm =λq. case unfold (π1 q) of

[inl x ⇒ reverse (π2 q), nil), inr x ⇒ q]

new2 =λx . (nil, nil)

push2 =λq.λn. norm (π1 q, n :: π2 q)

pop2 =λq. case unfold (π1 q) of

[inl x ⇒ (nil, nil), inr x ⇒ norm (π2 x , π2 q)]

top2 =λq. case unfold (π1 q) of [inl x ⇒ inlε, inr x ⇒ inr (π1 x)]

queue2 = pack (〈new2, push2, pop2, top2〉, τlist × τlist) as τqueue



Queue example

push1 has time complexity O(n), while push2 has amortized time

complexity O(1).

We can show the two implementations to be logically (and

therefore contextually) equivalent by providing a suitable

interpretation R for the type variable α.

Rn = {(xs, 〈ys, zs〉) | append ys (reverse zs) 7→∗ xs}
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Complete ordered families of equivalences

De�nition
An ordered family of equivalences (ofe) consists of a set X and

equivalence relations
n
=, n ∈ N, such that ∀x , x ′. x 0

= x ′ and

∀n, x , x ′. x n+1
= x ′ ⇒ x

n
= x ′.

A sequence (xi )i∈N, such that ∀k .∃n. ∀i , j ≥ n. xi
k
= xj is called

Cauchy chain. An element x ∈ X is called limit of (xi )i∈N, if

∀k . ∃n.∀i ≥ n. xi
k
= x .

An ofe (X , (
n
=)n∈N) is complete if all Cauchy chains have a limit.

Remark: a cofe is the same as a complete bisected ultra-metric

space where we set d(x , x ′) = 0.5ˆ(sup{n | x n
= x ′}).



Complete ordered families of equivalences

De�nition
An ordered family of equivalences (ofe) consists of a set X and

equivalence relations
n
=, n ∈ N, such that ∀x , x ′. x 0

= x ′ and

∀n, x , x ′. x n+1
= x ′ ⇒ x

n
= x ′.

A sequence (xi )i∈N, such that ∀k .∃n. ∀i , j ≥ n. xi
k
= xj is called

Cauchy chain. An element x ∈ X is called limit of (xi )i∈N, if

∀k . ∃n.∀i ≥ n. xi
k
= x .

An ofe (X , (
n
=)n∈N) is complete if all Cauchy chains have a limit.

Remark: a cofe is the same as a complete bisected ultra-metric

space where we set d(x , x ′) = 0.5ˆ(sup{n | x n
= x ′}).



Complete ordered families of equivalences

De�nition
An ordered family of equivalences (ofe) consists of a set X and

equivalence relations
n
=, n ∈ N, such that ∀x , x ′. x 0

= x ′ and

∀n, x , x ′. x n+1
= x ′ ⇒ x

n
= x ′.

A sequence (xi )i∈N, such that ∀k .∃n. ∀i , j ≥ n. xi
k
= xj is called

Cauchy chain. An element x ∈ X is called limit of (xi )i∈N, if

∀k . ∃n.∀i ≥ n. xi
k
= x .

An ofe (X , (
n
=)n∈N) is complete if all Cauchy chains have a limit.

Remark: a cofe is the same as a complete bisected ultra-metric

space where we set d(x , x ′) = 0.5ˆ(sup{n | x n
= x ′}).



Complete ordered families of equivalences

De�nition
An ordered family of equivalences (ofe) consists of a set X and

equivalence relations
n
=, n ∈ N, such that ∀x , x ′. x 0

= x ′ and

∀n, x , x ′. x n+1
= x ′ ⇒ x

n
= x ′.

A sequence (xi )i∈N, such that ∀k .∃n. ∀i , j ≥ n. xi
k
= xj is called

Cauchy chain. An element x ∈ X is called limit of (xi )i∈N, if

∀k . ∃n.∀i ≥ n. xi
k
= x .

An ofe (X , (
n
=)n∈N) is complete if all Cauchy chains have a limit.

Remark: a cofe is the same as a complete bisected ultra-metric

space where we set d(x , x ′) = 0.5ˆ(sup{n | x n
= x ′}).



Contractive maps

De�nition
A function f : X → Y between cofes is

non-expansive, if ∀n, x , x ′. x n
= x ′ ⇒ f (x)

n
= f (x ′) and

contractive, if ∀n, x , x ′. x n
= x ′ ⇒ f (x)

n+1
= f (x ′).

Theorem (Banach)

Let f : X → X be a contractive map on X . Then f has a unique

�xed point µf .



Uniform predicates as cofe

De�nition
A uniform predicate on a set X is a set P ⊆ N× X , such that

∀(k , x) ∈ P, j ≤ k . (j , x) ∈ P.
For k ∈ N, de�ne bPck = {(j , x) ∈ P | j < k}.
Also de�ne .P = {(j , x) | j = 0 ∨ (j − 1, x) ∈ P}, (�later� P).

Lemma
The set UPred(X ) of uniform predicates on X becomes a cofe by

de�ning P
n
= P ′ ⇔ bPcn = bP ′cn.

The sets of semantic types for our logical relations turn out to be

UPred(Exp) and UPred(Exp× Exp), respectively.

The de�nition of VJµα.τK can now be restated as applying the

Banach �xed point operator to the contractive map:

R 7→ {fold e | e ∈ .(VJτKη[α 7→ R])}.
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The category U and ModuRes

Lemma
Cofes and non-expanding maps form a cartesian closed category U .

ModuRes is a project aimed at developing mathematical models for

reasoning about programming languages with features such as

higher-order functions, mutable references and concurrency.

Its Coq development formalizes the theory of the category U via

Coq typeclasses and comes together with a tutorial that (among

other things) presents the construction of a unary logical relation

for a smaller language that does not contain unit, sum and

existential types.
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My work in the project
I extended the unary model to include these type constructors and

then built the binary model for contextual approximation, including

proofs of the Fundamental Properties and Soundness.

Then I used the binary logical relation to formalize some examples

in Coq, but...

The current logical relations do not mention any syntactic types.

Therefore it is not possible to show that terms that are in the

logical relation at a certain type are also syntactically of that type.

I intend to add syntactic types into the logical relation to broaden

the range of equivalences that can be shown using the logical

relation. This requires changing the set of semantic types to be

T = {(τ1, τ2,R) |R ∈ UPred(Exp× Exp),

R contains only closed values of the correct closed type}
This can be shown to be a cofe by using the fact that U is a ccc.
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