Succinctness Results for some Extensions of Multimodal Logic over K and S5

Ulrich Dorsch ulrichdorsch@googlemail.com

Friedrich-Alexander-Universität Erlangen-Nürnberg Department Informatik

June 4, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Previous Work

- T. French et al.: On the succinctness of some modal logics (2013)
- S. Figueira, D. Gorín: On the size of shortest modal descriptions (2010)

Comparing Logics

Logic

A logic $L = (\Phi, \vDash, \mathbb{M})$

- Φ : non-empty set of formulae
- ⊨: satisfaction relation
- \mathbb{M} : non-empty class of models

 $\mathcal{M}\vDash \varphi$ for some $\mathcal{M}\in\mathbb{M}, \varphi\in\Phi$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Comparing Logics

Logic

A logic $L = (\Phi, \vDash, \mathbb{M})$

- Φ : non-empty set of formulae
- ⊨: satisfaction relation
- \mathbb{M} : non-empty class of models

Expressivity

$$L_1 = (\Phi_1, \vDash_1, \mathbb{M}), L_2 = (\Phi_2, \vDash_2, \mathbb{M}).$$

L_2 is at least as expressive as L_1 ($L_1 \leq_{\mathbb{M}} L_2$) if

$$\forall \varphi_1 \in \Phi_1 \, \exists \varphi_2 \in \Phi_2 \, \forall \mathcal{M} \in \mathbb{M} \, . \, \mathcal{M} \vDash_1 \varphi_1 \Leftrightarrow \mathcal{M} \vDash_2 \varphi_2$$

 $\varphi_1 \equiv_{\mathbb{M}} \varphi_2$ (equivalence)

Succinctness

Succinctness

Let $L_1 = (\Phi_1, \vDash_1, \mathbb{M}), L_2 = (\Phi_2, \vDash_2, \mathbb{M}), L_1 \leq_{\mathbb{M}} L_2 \text{ and } F$ be a class of functions. L_1 is *F*-succinct in L_2 on \mathbb{M} $(L_1 \leq_{\mathbb{M}}^F L_2)$ iff $\exists f \in F \forall \varphi_1 \in \Phi_1 \exists \varphi_1 \equiv_{\mathbb{M}} \varphi_2 \in \Phi_2 . |\varphi_2| \leq f(|\varphi_1|)$ L_1 is exponentially more succinct than L_2 iff $L_1 \leq_{\mathbb{M}}^F L_2$ and $F \not\subseteq SUBEXP$ $(L_1 \not\leq_{\mathbb{M}}^{SUBEXP} L_2).$

Succinctness

Succinctness

Let $L_1 = (\Phi_1, \vDash_1, \mathbb{M}), L_2 = (\Phi_2, \vDash_2, \mathbb{M}), L_1 \leq_{\mathbb{M}} L_2 \text{ and } F$ be a class of functions. L_1 is *F*-succinct in L_2 on \mathbb{M} $(L_1 \leq_{\mathbb{M}}^F L_2)$ iff $\exists f \in F \forall \varphi_1 \in \Phi_1 \exists \varphi_1 \equiv_{\mathbb{M}} \varphi_2 \in \Phi_2 . |\varphi_2| \leq f(|\varphi_1|)$ L_1 is exponentially more succinct than L_2 iff $L_1 \leq_{\mathbb{M}}^F L_2$ and $F \not\subseteq SUBEXP$ $(L_1 \not\leq_{\mathbb{M}}^{SUBEXP} L_2).$

- $L_1 \leq_{\mathbb{M}}^{F} L_2$ and $L_2 \leq_{\mathbb{M}}^{F} L_1$ (or $L_1 \not\leq_{\mathbb{M}}^{F} L_2$ and $L_2 \not\leq_{\mathbb{M}}^{F} L_1$) can be true at the same time.
- Succinctness is not necessarily transitive.

Syntax of \mathcal{ML}

$$\varphi ::= \top \mid \perp \mid p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \langle r \rangle \varphi \mid [r] \varphi$$

with propositional symbols p and relational symbols $r \in R$.

◆□ ▶ ◆□ ▶ ★ □ ▶ ★ □ ▶ ● ● ● ● ●

Syntax of \mathcal{ML}

$$\varphi ::= \top \mid \perp \mid p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \langle r \rangle \varphi \mid [r] \varphi$$

with propositional symbols p and relational symbols $r \in R$.

Negation normal form ($\overline{\varphi}$ negation for $\varphi \in \mathcal{ML}$):

$$\blacksquare \overline{\top} = \bot$$

$$\overline{p} = \neg p$$

$$\overline{\varphi_1 \land \varphi_2} = \overline{\varphi_1} \lor \overline{\varphi_2}$$
$$\overline{\langle r \rangle \varphi} = [r]\overline{\varphi}$$

. . .

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ●

Syntax of \mathcal{ML} $\varphi ::= \top | \perp | p | \neg p | \varphi \lor \varphi | \varphi \land \varphi | \langle r \rangle \varphi | [r] \varphi$ with propositional symbols p and relational symbols $r \in R$.

Formula size:

$$\begin{array}{l} |\top| = |\bot| = |\rho| = |\neg p| = 1 \\ |\varphi \lor \psi| = |\varphi \land \psi| = 1 + |\varphi| + |\psi| \\ |\langle r \rangle \varphi| = |[r]\varphi| = 1 + |\varphi| \end{array}$$

Syntax of $[\forall_{\Gamma}] \mathcal{ML}$

$$\varphi ::= \top \mid \perp \mid p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \langle r \rangle \varphi \mid [r] \varphi \mid [\forall_{\mathsf{\Gamma}}] \varphi \mid \langle \forall_{\mathsf{\Gamma}} \rangle \varphi$$

with propositional symbols p and relational symbols $r \in R$ and sets of relational symbols $\Gamma \subseteq R$.

 \mathcal{ML} -equivalence:

$$[\forall_{\mathsf{\Gamma}}]\,\psi \equiv \bigwedge_{r\in\mathsf{\Gamma}}[r]\psi$$

Syntax of $[\exists_{\Gamma}] \mathcal{ML}$

$$\varphi ::= \top \mid \perp \mid p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \langle r \rangle \varphi \mid [r] \varphi \mid [\exists_{\Gamma}] \varphi \mid \langle \exists_{\Gamma} \rangle \varphi$$

with propositional symbols p and relational symbols $r \in R$ and sets of relational symbols $\Gamma \subseteq R$.

 \mathcal{ML} -equivalence:

$$[\exists_{\mathsf{\Gamma}}]\psi \equiv \bigvee_{r\in\mathsf{\Gamma}}[r]\psi$$

Syntax of $[\varphi] \mathcal{ML}$

 $\varphi ::= \top \mid \perp \mid p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \langle r \rangle \varphi \mid [r] \varphi \mid [\varphi] \psi \mid \langle \varphi \rangle \psi$

with propositional symbols p and relational symbols $r \in R$.

\mathcal{ML} -equivalence:

$[\varphi]p$	$\equiv arphi o {\it p}$
$[\varphi](\psi_1 \lor \psi_2)$	$\equiv [\varphi]\psi_1 \vee [\varphi]\psi_2$
$[arphi]\overline{\psi}$	$\equiv \varphi \to \overline{[\varphi]\psi}$
$[\varphi][r]\psi$	$\equiv \varphi \rightarrow [r][\varphi]\psi$
$[\varphi_1][\varphi_2]\psi$	$\equiv [\varphi_1 \wedge [\varphi_1]\varphi_2]\psi$

Interpretation of formulae: Kripke Models $\mathcal{M} = (W, R, V)$

- *W*: non-empty carrier set
- R: set of binary relations $(\{r, b, g, \ldots\})$
- V: Valuation

Successors: $succs_r(w) = \{v \mid (w, v) \in r\}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Interpretation of formulae: Kripke Models $\mathcal{M} = (W, R, V)$

- W: non-empty carrier set
- *R*: set of binary relations $(\{r, b, g, ...\})$
- V: Valuation

Successors: $succs_r(w) = \{v \mid (w, v) \in r\}$

Semantics of \mathcal{ML}

$$\begin{array}{ll} \mathcal{M}, w \vDash \top \\ \mathcal{M}, w \vDash p & \Leftrightarrow w \in V(p) \\ \mathcal{M}, w \vDash \neg p & \Leftrightarrow w \notin V(p) \\ \mathcal{M}, w \vDash \varphi \land \psi & \Leftrightarrow \mathcal{M}, w \vDash \varphi \text{ and } \mathcal{M}, w \vDash \psi \\ \mathcal{M}, w \vDash \varphi \lor \psi & \Leftrightarrow \mathcal{M}, w \vDash \varphi \text{ or } \mathcal{M}, w \vDash \psi \\ \mathcal{M}, w \vDash \varphi \lor \psi & \Leftrightarrow \mathcal{M}, v \vDash \varphi \text{ for some } v \in succs_r(w) \\ \mathcal{M}, w \vDash [r] \varphi & \Leftrightarrow \mathcal{M}, v \vDash \varphi \text{ for every } v \in succs_r(w) \end{array}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Separation and Description Problem

Separation

 $\mathcal{M} = (W, R, V) \text{ model}, S, D \subseteq W \text{ non-empty sets}$ $\varphi \text{ separates } S \text{ and } D \text{ in } \mathcal{M} \text{ iff } \forall s \in S . \mathcal{M}, s \vDash \varphi \text{ and } \forall d \in D . \mathcal{M}, d \nvDash \varphi$

Separation and Description Problem

Separation

 $\mathcal{M} = (W, R, V)$ model, $\mathcal{S}, D \subseteq W$ non-empty sets

 φ separates S and D in \mathcal{M} iff $\forall s \in S \, . \, \mathcal{M}, s \vDash \varphi$ and $\forall d \in D \, . \, \mathcal{M}, d \nvDash \varphi$

Proof strategy for L_1 being exponentially more succinct than L_2 :

- **1** Find a family of formulae $\varphi_n \in L_2$ with size exponential in n
- **2** Find a family of models \mathcal{M}_n , S_n , $D_n \subseteq W_n$ with φ_n being the smallest formulae separating S_n and D_n for all n.
- 3 If $\psi_n \in L_1$, $\psi_n \equiv_{\mathbb{M}} \varphi_n$ for all n, is of size linear in n then $L_1 \not\leq_{\mathbb{M}}^{SUBEXP} L_2$

Bisimulation Games

Model $\mathcal{M} = (W, R, V)$, $w, v \in W$.

Bisimulation Game The game $\mathcal{G}(w, v)$ is played between two players (Spoiler, Duplicator). Rules are: Spoiler picks p with $w \in V(p)$ and $v \notin V(p)$ and wins. (p): (\overline{p}): Spoiler picks p with $w \notin V(p)$ and $v \in V(p)$ and wins. $\langle r, w' \rangle$: Spoiler picks $r \in R$ and one $w' \in succs_r(w)$. Duplicator has to pick one $v' \in succs_r(v)$ or loses. Continuation in game $\mathcal{G}(w', v')$. [r, v']: Spoiler picks $r \in R$ and one $v' \in succs_r(v)$. Duplicator has to pick one $w' \in succs_r(w)$ or loses. Continuation in game $\mathcal{G}(w', v')$.

If Duplicator has a winning strategy in $\mathcal{G}(w, v)$ on the model \mathcal{M} then

$$orall \psi \in \mathcal{ML}$$
 . $\mathcal{M},$ $oldsymbol{w} \vDash \psi \Leftrightarrow \mathcal{M},$ $oldsymbol{v} \vDash \psi$

If Spoiler has a winning strategy in in $\mathcal{G}(w, v)$ then

$$\exists \varphi \in \mathcal{ML} . \mathcal{M}, w \vDash \varphi \text{ and } \mathcal{M}, v \not\vDash \varphi$$

and $\min_{\varphi}(|\varphi|)$ gives a lower bound for the size of formulae describing w. In the game $\mathcal{G}(w, w)$ Spoiler cannot have a winning strategy.

Uniform Strategy Trees

Winning strategies for Spoiler in bisimulation games:

Uniform Strategy Trees

- nodes: $\langle r, S' \rangle$, [r, D'], (p), (\overline{p}) , (\lor) , (\land) r relational symbol, $S, S', D, D' \subseteq W$
- essentially a syntax tree for a formula
- a formula separates *S* and *D* if its corresponding uniform strategy tree wins the game *G*(*S*, *D*)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Uniform Strategy Trees

In a uniform strategy tree, winning $\mathcal{G}(S, D)$, with root x the following properties hold:

Winning Uniform Strategy Tree If x = (p) then $S \cap V(p) = S$ and $D \cap V(p) = \emptyset$

 $\varphi = p$ separates S and D

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Uniform Strategy Trees

In a uniform strategy tree, winning $\mathcal{G}(S, D)$, with root x the following properties hold:

Winning Uniform Strategy Tree If $x = (\overline{p})$ then $S \cap V(p) = \emptyset$ and $D \cap V(p) = D$.

Uniform Strategy Trees

In a uniform strategy tree, winning $\mathcal{G}(S, D)$, with root x the following properties hold:

Winning Uniform Strategy Tree

If $x = \langle r, S' \rangle$ then $S' \cap \operatorname{succs}_r(s) \neq \emptyset$ for every $s \in S$ and if $\operatorname{succs}_r(D) \neq \emptyset$ then there is an edge $x \to y$ and y is the root of a uniform strategy tree, winning the game $\mathcal{G}(S', \operatorname{succs}_r(D))$.

Uniform Strategy Trees

In a uniform strategy tree, winning $\mathcal{G}(S, D)$, with root x the following properties hold:

Winning Uniform Strategy Tree

If $x = \langle r, S' \rangle$ then $S' \cap \operatorname{succs}_r(s) \neq \emptyset$ for every $s \in S$ and if $\operatorname{succs}_r(D) \neq \emptyset$ then there is an edge $x \to y$ and y is the root of a uniform strategy tree, winning the game $\mathcal{G}(S', \operatorname{succs}_r(D))$.

Uniform Strategy Trees

In a uniform strategy tree, winning $\mathcal{G}(S, D)$, with root x the following properties hold:

Winning Uniform Strategy Tree

If $x = \langle r, S' \rangle$ then $S' \cap \operatorname{succs}_r(s) \neq \emptyset$ for every $s \in S$ and if $\operatorname{succs}_r(D) \neq \emptyset$ then there is an edge $x \to y$ and y is the root of a uniform strategy tree, winning the game $\mathcal{G}(S', \operatorname{succs}_r(D))$.

Uniform Strategy Trees

In a uniform strategy tree, winning $\mathcal{G}(S, D)$, with root x the following properties hold:

Winning Uniform Strategy Tree

If x = [r, D'] then $D' \cap \operatorname{succs}_r(d) \neq \emptyset$ for every $d \in D$ and if $\operatorname{succs}_r(S) \neq \emptyset$ then there is an edge $x \to y$ and y is the root of a uniform strategy tree, winning the game $\mathcal{G}(\operatorname{succs}_r(S), D')$.

Uniform Strategy Trees

In a uniform strategy tree, winning $\mathcal{G}(S, D)$, with root x the following properties hold:

Winning Uniform Strategy Tree

If x = [r, D'] then $D' \cap \operatorname{succs}_r(d) \neq \emptyset$ for every $d \in D$ and if $\operatorname{succs}_r(S) \neq \emptyset$ then there is an edge $x \to y$ and y is the root of a uniform strategy tree, winning the game $\mathcal{G}(\operatorname{succs}_r(S), D')$.

Uniform Strategy Trees

In a uniform strategy tree, winning $\mathcal{G}(S, D)$, with root x the following properties hold:

Winning Uniform Strategy Tree

If x = [r, D'] then $D' \cap \operatorname{succs}_r(d) \neq \emptyset$ for every $d \in D$ and if $\operatorname{succs}_r(S) \neq \emptyset$ then there is an edge $x \to y$ and y is the root of a uniform strategy tree, winning the game $\mathcal{G}(\operatorname{succs}_r(S), D')$.

Uniform Strategy Trees

In a uniform strategy tree, winning $\mathcal{G}(S, D)$, with root x the following properties hold:

Winning Uniform Strategy Tree If $x = (\lor)$ then $S = S_1 \cup S_2$ and there are nodes y_1 and y_2 with edges $x \xrightarrow{S_i} y_i$ and y_i is the root of a uniform strategy tree, winning the game $\mathcal{G}(S_i, D), i = 1, 2.$

$$\begin{array}{ccc} S_1 \bigcirc & S_2 \bigcirc & \textcircled{} D_1 \\ \models \psi_1 & \models \psi_2 & \not\models \psi_1, \psi_2 \end{array}$$

Uniform Strategy Trees

In a uniform strategy tree, winning $\mathcal{G}(S, D)$, with root x the following properties hold:

Winning Uniform Strategy Tree If $x = (\lor)$ then $S = S_1 \cup S_2$ and there are nodes y_1 and y_2 with edges $x \xrightarrow{S_i} y_i$ and y_i is the root of a uniform strategy tree, winning the game $\mathcal{G}(S_i, D), i = 1, 2.$

$$S_1 \bigcirc_{\models \psi_1} S_2 \bigcirc_{\models \psi_2} \bigoplus_{\not\models \psi_1, \psi_2} D$$

$$\varphi = \psi_1 \lor \psi_2 \text{ separates } S \text{ and } D.$$

Uniform Strategy Trees

In a uniform strategy tree, winning $\mathcal{G}(S, D)$, with root x the following properties hold:

Winning Uniform Strategy Tree If $x = (\land)$ then $D = D_1 \cup D_2$ and there are nodes y_1 and y_2 with edges $x \xrightarrow{D_i} y_i$ and y_i is the root of a uniform strategy tree, winning the game $\mathcal{G}(S, D_i)$

$$S \bigcirc_{\forall \psi_1, \psi_2} \bigoplus D_1 \bigoplus_{\forall \psi_1} D_2$$

$$\varphi = \psi_1 \land \psi_2 \text{ separates } S \text{ and } D.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof Strategy

Proof strategy for L_1 being exponentially more succinct than $L_2 = \mathcal{ML}$:

- **1** Find a family of formulae $\varphi_n \in L_2$ with size exponential in n.
- 2 Find a family of models (*M_n*, *S_n*, *D_n*) with the uniform strategy tree of minimum size for the game *G*(*S_n*, *D_n*) being the syntax tree for *φ_n*.
- 3 If $\psi_n \in L_1$, $\psi_n \equiv_{\mathbb{M}} \varphi_n$ for all n, is of size linear in n then $L_1 \leq_{\mathbb{M}}^{SUBEXP} L_2$.

Recursively defined models:

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Models

Recursively defined models:

21 / 35

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Recursively defined models:

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ◎ ◆ ● ◆

Recursively defined models:

◆□> ◆□> ◆三> ◆三> ・三 ・ のへぐ
Models

Recursively defined models:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Minimality of Uniform Strategy Trees

Minimality as local property by construction

- Only a single (non-trivial) move is possible for Spoiler in $\mathcal{G}(S, D)$.
- It is easy to show that all alternative moves in G(S, D) are less than optimal in terms of size

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Minimality of Uniform Strategy Trees

Minimality as local property by construction

- Only a single (non-trivial) move is possible for Spoiler in $\mathcal{G}(S, D)$.
- It is easy to show that all alternative moves in G(S, D) are less than optimal in terms of size

Successors in ${\bf K}$

In a game $\mathcal{G}(s, d)$ with $d' \in succs_r(s)$ and $d' \in succs_r(d)$ Spoiler loses with the move $\langle r, d' \rangle$ (Analogously with a [r]-move).

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ●

$\left[\forall_{\Gamma} \right] \mathcal{ML}$ over $\boldsymbol{\mathsf{K}}$

$\left[\forall_{\{r,b\}}\right]\psi\equiv_{\mathsf{K}}[r]\psi\wedge[b]\psi$

$\left[\forall_{\Gamma} \right] \mathcal{ML}$ over K

Succinctness of Modal Logics | Results

$\left[\forall_{\Gamma} \right] \mathcal{ML}$ over K

$\left[\forall_{\Gamma} \right] \mathcal{ML}$ over K

$\left[\forall_{\Gamma}\right]\mathcal{ML} \text{ over } \boldsymbol{\mathsf{K}}$

$\left[\forall_{\Gamma} \right] \mathcal{ML}$ over K

$\left[\forall_{\Gamma} \right] \mathcal{ML}$ over K

Results for ${\bf K}$

Previous Results

- French, T. et al.: Proof that [∀_Γ] *ML* and [∃_Γ] *ML* are exponentially more succinct than *ML* over K based on models with 2 relational symbols and 1 propositional symbol.
- Lutz, C.: Proof that [φ] *ML* is exponentially more succinct than *ML* over K based on models with 2 relational symbols

My Results

 $[\forall_{\Gamma}] \mathcal{ML}, [\exists_{\Gamma}] \mathcal{ML} \text{ and } [\varphi] \mathcal{ML} \text{ are exponentially more succinct than } \mathcal{ML} \text{ over } \mathbf{K} \text{ based on models with only 2 relational symbols}$

Cliques

Let $s \in S$, $d \in D$ in some game $\mathcal{G}(S, D)$ over some **S5**-model. If s and d are members of the same r-clique for some relational symbol r then there is no winning strategy for Spoiler beginning with a $\langle r \rangle$ - or [r]-move.

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ●

Cliques

Let $s \in S$, $d \in D$ in some game $\mathcal{G}(S, D)$ over some **S5**-model. If s and d are members of the same r-clique for some relational symbol r then there is no winning strategy for Spoiler beginning with a $\langle r \rangle$ - or [r]-move.

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ●

Subgames

Let t be the uniform strategy tree of minimum size for $\mathcal{G}(S, D)$ over some model and t' the uniform strategy tree of minimum size for $\mathcal{G}(S \cup S', D \cup D')$. Assuming the games can be won by Spoiler then $|t| \leq |t'|$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Subgames

Let t be the uniform strategy tree of minimum size for $\mathcal{G}(S, D)$ over some model and t' the uniform strategy tree of minimum size for $\mathcal{G}(S \cup S', D \cup D')$. Assuming the games can be won by Spoiler then $|t| \leq |t'|$.

$$\langle r, s \rangle$$
 $s \bigcirc d$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Subgames

Let t be the uniform strategy tree of minimum size for $\mathcal{G}(S, D)$ over some model and t' the uniform strategy tree of minimum size for $\mathcal{G}(S \cup S', D \cup D')$. Assuming the games can be won by Spoiler then $|t| \leq |t'|$.

$$\langle r, s \rangle$$
 $s \bigcirc d$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

r-equivalent Games

Let $\mathcal{G}(s, d)$ and $\mathcal{G}(s', d')$ be games over some **S5**-model and $s' \in succs_r(s)$, $d' \in succs_r(d)$. Then every $\langle r \rangle$ - or [r]-move applied to both games will result in the same game. We call two such games r-equivalent and any strategy starting with a $\langle r \rangle$ - or [r]-move is applicable to both games.

25 / 35

S5

Handling Reflexivity, Symmetry, Transitivity

Strategies on *r*-equivalent Games

Let $\mathcal{G}(s, d)$ be a game over some **S5**-model, t a uniform strategy tree for this game, $\mathcal{G}(S, D)$ the game after one or more moves in t and $\mathcal{G}(s', d')$ a subgame of $\mathcal{G}(S, D)$. If the uniform strategy tree of minimum size for $\mathcal{G}(s', d')$ begins with a $\langle r \rangle$ - or [r]-move and $\mathcal{G}(s', d')$ and $\mathcal{G}(s, d)$ are r-equivalent then t is not a uniform strategy tree of minimum size for $\mathcal{G}(s, d)$.

S5

Handling Reflexivity, Symmetry, Transitivity

Reflexivity and propositional Symbols

Let $\langle r, S' \rangle$ (or $[r, D^*]$) be the first move in the minimum uniform strategy tree for the game $\mathcal{G}(S, D)$ in the **S5**-model (\mathcal{M}, S, D) , and let $\mathcal{G}(S', D \cup D')$ (or $\mathcal{G}(S \cup S^*, D^*)$) be the game we would have to play after this move $(S \subseteq succs_r(S), D \subseteq succs_r(D),$ reflexivity of **S5**). If $S' \models p$ and $D \models \overline{p}$ (or $D^* \models p$ and $S \models \overline{p}$) then we can use the strategies shown below where t is the minimum uniform strategy tree for the game $\mathcal{G}(S', D')$ (or $\mathcal{G}(S^*, D^*)$).

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

S5

Handling Reflexivity, Symmetry, Transitivity

Reflexivity and propositional Symbols

Let $\langle r, S' \rangle$ (or $[r, D^*]$) be the first move in the minimum uniform strategy tree for the game $\mathcal{G}(S, D)$ in the **S5**-model (\mathcal{M}, S, D) , and let $\mathcal{G}(S', D \cup D')$ (or $\mathcal{G}(S \cup S^*, D^*)$) be the game we would have to play after this move $(S \subseteq succs_r(S), D \subseteq succs_r(D), \text{ reflexivity of } S5)$. If $S' \models p$ and $D \models \overline{p}$ (or $D^* \models p$ and $S \models \overline{p}$) then we can use the strategies shown below where t is the minimum uniform strategy tree for the game $\mathcal{G}(S', D')$ (or $\mathcal{G}(S^*, D^*)$).

25 / 35

S5

Handling Reflexivity, Symmetry, Transitivity

Reflexivity and propositional Symbols

Let $\langle r, S' \rangle$ (or $[r, D^*]$) be the first move in the minimum uniform strategy tree for the game $\mathcal{G}(S, D)$ in the **S5**-model (\mathcal{M}, S, D) , and let $\mathcal{G}(S', D \cup D')$ (or $\mathcal{G}(S \cup S^*, D^*)$) be the game we would have to play after this move $(S \subseteq succs_r(S), D \subseteq succs_r(D),$ reflexivity of **S5**). If $S' \models p$ and $D \models \overline{p}$ (or $D^* \models p$ and $S \models \overline{p}$) then we can use the strategies shown below where t is the minimum uniform strategy tree for the game $\mathcal{G}(S', D')$ (or $\mathcal{G}(S^*, D^*)$).

Reflexivity and propositional Symbols

Let $\langle r, S' \rangle$ (or $[r, D^*]$) be the first move in the minimum uniform strategy tree for the game $\mathcal{G}(S, D)$ in the **S5**-model (\mathcal{M}, S, D) , and let $\mathcal{G}(S', D \cup D')$ (or $\mathcal{G}(S \cup S^*, D^*)$) be the game we would have to play after this move $(S \subseteq succs_r(S), D \subseteq succs_r(D),$ reflexivity of **S5**). If $S' \vDash p$ and $D \vDash \overline{p}$ (or $D^* \vDash p$ and $S \vDash \overline{p}$) then we can use the strategies shown below where t is the minimum uniform strategy tree for the game $\mathcal{G}(S', D')$ (or $\mathcal{G}(S^*, D^*)$).

Size

Any uniform strategy tree of this kind is at most three time larger than the uniform strategy tree of minimum size.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Recursive **S5**-Model

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 めんぐ

◆□ ▶ ◆□ ▶ ★ □ ▶ ★ □ ▶ ● ● ● ● ●

Results for ${\bf S5}$

Succinctness Results for $[\forall_{\Gamma}] \mathcal{ML}$, $[\exists_{\Gamma}] \mathcal{ML}$, $[\varphi] \mathcal{ML}$

In **S5**, the Logics $[\forall_{\Gamma}] \mathcal{ML}$, $[\exists_{\Gamma}] \mathcal{ML}$ and $[\varphi] \mathcal{ML}$, with at least three relational symbols and one propositional symbol, are exponentially more succinct than \mathcal{ML} .

Results for **S5**

Succinctness Results for $[\forall_{\Gamma}] \mathcal{ML}$, $[\exists_{\Gamma}] \mathcal{ML}$, $[\varphi] \mathcal{ML}$

In **S5**, the Logics $[\forall_{\Gamma}] \mathcal{ML}$, $[\exists_{\Gamma}] \mathcal{ML}$ and $[\varphi] \mathcal{ML}$, with at least three relational symbols and one propositional symbol, are exponentially more succinct than \mathcal{ML} .

Family of formulae for \mathcal{ML} :

$$\varphi_{0} = \langle g \rangle \overline{p}$$

$$\varphi_{n} = \langle g \rangle \left(\overline{p} \land \left([b] \left(\overline{p} \lor \varphi_{n-1} \right) \land [r] \left(\overline{p} \lor \varphi_{n-1} \right) \right) \right)$$

and $[\forall_{\Gamma}] \mathcal{ML}$:

$$\begin{split} \psi_0 &= \varphi_0 \\ \psi_n &= \langle g \rangle \left(\overline{p} \land \left(\left[\forall_{\{b,r\}} \right] \left(\overline{p} \lor \psi_{n-1} \right) \right) \right) \equiv \varphi_n \end{split}$$

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ●

Results for **S5**

Succinctness Results for $[\forall_{\Gamma}] \mathcal{ML}, \ [\exists_{\Gamma}] \mathcal{ML}, \ [\varphi] \mathcal{ML}$

In **S5**, the Logics $[\forall_{\Gamma}] \mathcal{ML}$, $[\exists_{\Gamma}] \mathcal{ML}$ and $[\varphi] \mathcal{ML}$, with at least three relational symbols and one propositional symbol, are exponentially more succinct than \mathcal{ML} .

Family of formulae for \mathcal{ML} :

$$\begin{aligned} \varphi'_0 &= [g]p\\ \varphi'_n &= [g] \left(p \lor \left([b] \left(\overline{p} \lor \varphi'_{n-1} \right) \lor [r] \left(\overline{p} \lor \varphi'_{n-1} \right) \right) \right) \end{aligned}$$

and $[\exists_{\Gamma}] \mathcal{ML}$:

$$\begin{split} \psi'_{0} &= \varphi'_{0} \\ \psi'_{n} &= [g] \left(p \lor \left(\left[\exists_{\{b,r\}} \right] \left(\overline{p} \lor \psi'_{n-1} \right) \right) \right) \equiv \varphi'_{n} \end{split}$$

Results for **S5**

Succinctness Results for $[\forall_{\Gamma}] \mathcal{ML}$, $[\exists_{\Gamma}] \mathcal{ML}$, $[\varphi] \mathcal{ML}$

In **S5**, the Logics $[\forall_{\Gamma}] \mathcal{ML}$, $[\exists_{\Gamma}] \mathcal{ML}$ and $[\varphi] \mathcal{ML}$, with at least three relational symbols and one propositional symbol, are exponentially more succinct than \mathcal{ML} .

Family of formulae for \mathcal{ML} :

$$\begin{split} \varphi_{0}^{*} &= \langle g \rangle \overline{p} \\ \varphi_{n}^{*} &= \langle g \rangle \left(\overline{p} \wedge \phi_{n-1} \wedge \langle b \rangle \left(p \wedge \phi_{n-1} \right) \wedge \langle r \rangle \left(p \wedge \phi_{n-1} \wedge \langle b \rangle \left(p \wedge \phi_{n-1} \right) \right) \\ \text{with } \phi_{n-1} &= \langle b \rangle \left(p \wedge \varphi_{n-1}^{*} \right) \end{split}$$

and $[\varphi] \mathcal{ML}$:

$$\begin{split} \psi_0^* &= \varphi_0^* \\ \psi_n^* &= \langle g \rangle \left(\overline{p} \land \langle \langle b \rangle \left(p \land \psi_{n-1}^* \right) \rangle \langle b \rangle p \rangle \langle r \rangle p \right) \end{split}$$