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Abstract. Fixed point logics are widely used in computer science, in particular
in artificial intelligence and concurrency. The most expressive logics of this type
are the p-calculus and its relatives. However, popular fixed point logics tend to
trade expressivity for simplicity and readability, and in fact often live within the
single variable fragment of the p-calculus. The family of such flar fixed point
logics includes, e.g., CTL, the x-nesting-free fragment of PDL, and the logic of
common knowledge. Here, we extend this notion to the generic semantic frame-
work of coalgebraic logic, thus covering a wide range of logics beyond the stan-
dard p-calculus including, e.g., flat fragments of the graded p-calculus and the
alternating-time p-calculus (such as ATL), as well as probabilistic and monotone
fixed point logics. Our main results are completeness of the Kozen-Park axiom-
atization and a timed-out tableaux method that matches EXPTIME upper bounds
inherited from the coalgebraic p-calculus but avoids using automata.

1 Introduction

Many of the most well-known logics in program verification, concurrency, and other
areas of computer science and artificial intelligence can be cast as fixed point logics, that
is, embedded into some variant of the p-calculus. Typical examples are PDL [25] where,
say, the formula (a*)p (‘p can be reached by finite iteration of a”) can be expressed as
the least fixed point uX. pV(a) X ; CTL [7], whose formula A F’p (‘p eventually holds on
all paths’) is just the fixed point ¢ X. pVv X ; and the common knowledge operator C' of
epistemic logic [19], where Cp (‘it is common knowledge that p’) can be expressed as
the fixed point vX. A!_, K;(pAX) with n the number of agents and K; read as ‘agent
1 knows that’. A common feature of these examples is that they trade off expressivity
for simplicity of expression in comparison to the full u-calculus.

One of the reasons why the full p-calculus is both hard to read and algorithmically
problematic in practice is that one has to keep track of bound variables. Indeed we note
that the simpler logics listed above (in the case of PDL, the *-nesting-free fragment) live
in the single-variable fragment of the p-calculus (a subfragment of the alternation-free
fragment [10]), which is precisely what enables one to abandon variables altogether in
favour of variable-free fixed point operators such as AF or C'. We refer to logics that
embed into a single-variable u-calculus as flat fixed point logics [27].

Here, we study flat fixed point logics in the more general setting of coalgebraic
logic. Coalgebra has recently emerged as the right framework for a unified treatment of
a wide range of modal logics with seemingly disparate semantics beyond the realm of
pure relational structures. Examples include monotone modal logic, probabilistic modal



logics [17], graded modal logic [11,5], and coalition logic [23]. This level of general-
ity is achieved by parametrizing the semantics over a type functor on the category of
sets, whose coalgebras play the role of frames. Besides standard Kripke frames, the no-
tion of coalgebra encompasses, e.g., Markov chains, weighted automata, multigraphs,
neighbourhood frames, selection function frames, and concurrent game structures. The
theory of coalgebraic modal logic has evolved quite rapidly, and presently includes, e.g.,
generic upper bounds PSPACE for satisfiability in next-step logics [29], and EXPTIME
for satisfiability under global assumptions in hybrid next-step logics [31].

In our flat coalgebraic fixed point logics one can express operators such as ‘the
coalition C' of agents can maintain p forever’, ‘the present state is the root of a binary
tree all whose leaves satisfy p’, or ‘p is commonly believed with reasonable certainty’.
In particular, we cover the single-variable fragments of the graded p-calculus [16] and
the alternating-time p-calculus (AMC) [1], including alternating-time temporal logic
(ATL). Flat coalgebraic fixed point logics are fragments of coalgebraic p-calculi, and as
such known to be decidable in EXPTIME under reasonable assumptions [4]. However,
the decision procedure for the coalgebraic u-calculus is, like the one for the standard
p-calculus [9], based on automata and as such has exponential average-case run time,
while tableaux methods as suggested, e.g., by Emerson and Halpern for CTL [8] and
by Kozen for the aconjunctive fragment of the p-calculus [14] are expected to offer the
possibility of feasible average-case behaviour.

Our main results on flat coalgebraic fixed point logics, parametric both w.r.t. the
coalgebraic branching type and the choice of flat fragment, are

— completeness of the natural axiomatization that makes the fixed point definitions
explicit, generalizing the well-known Kozen-Park axiomatization; and

— a construction of fimed-out tableaux similar in spirit to Kozen’s tableaux for the
aconjunctive p-calculus,

both under mild restrictions on the form of fixed point operators. The completeness
result generalizes results of [27] to the level of coalgebraic logic, and relies on the
notion of O-adjointness [26] to prove that fixed points in the Lindenbaum algebra are
constructive, i.e. approximable in w steps. The crucial ingredient here are the one-step
cutfree complete rule sets of [29,22]. These enable significant generalizations of both
the key rigidity lemma and the O-adjointness theorem of [27], the latter to the effect
that all uniform-depth modal operators are O-adjoint. The novel tableaux construction
is instrumental in the completeness proof, and at the same time confirms the known
EXPTIME upper bound, avoiding however the use of automata and thus raising hopes
for efficient implementation.

Our completeness result follows a long tradition of non-trivial completeness proofs,
e.g. for PDL [15,32], CTL [8], the aconjunctive p-calculus [14], and the full u-
calculus [33]. Note that all these results are independent, as completeness is not in
general inherited by sublogics, and in fact employ quite different methods. Instantiat-
ing our generic results to concrete logics yields new results in nearly all cases that go
beyond the classical relational p-calculus, noting that neither [16] nor [4] cover axiom-
atizations. In particular, we obtain for the first time a completeness result and a tableau
procedure for graded fixed point logics, i.e. fragments of the graded p-calculus, and we
generalize the completeness of ATL [12] to arbitrary flat fragments of AMC.



2 Flat Coalgebraic Fixed Point Logics

We briefly recall the generic framework of coalgebraic modal logic [21,28], and define
its extension with flat fixed point operators, a fragment of the coalgebraic p-calculus [4].

The first parameter of the syntax is a (modal) similarity type A, i.e. a set of modal
operators with associated finite arities. We work with formulas in negation normal form
throughout, and therefore assume that every modal operator © € A comes with a dual

operator O € A of the same arity, where O = Q. This determines the set F(A), or just
F, of modal formulas v, § by the grammar

Y, 0u=L|Tlo[-w|[yAd[vyVI[Q(y,.. ,7m)

where © € Aisn-ary and v € V for a fixed countably infinite set V' of variables. Nega-
tion —, admitted in the above grammar only for variables v, then becomes a derived op-
eration on all formulas in the standard way; e.g., =0 (v1,...,Vn) = Q(=7, ..., "),
and —=—v = v. Further derived operations —, <+ are defined as usual. Moreover, we de-
fine the dual 7 of y as 7y = —yo where the substitution o is given by o(v) = —w for all
v € V. We intend variables as place holders for arguments and parameters of formulas
defining fixed point operators; as such, they serve only technical purposes and will not
form part of the actual fixed point language defined below. Instead, propositional atoms
are incorporated into the modal similarity type /A as nullary operators when needed.
The second syntactic parameter of a flat coalgebraic fixed point logic is a set I’
of modal formulas -, where we distinguish a single fixed argument variable x and re-
gard all other variables py, ..., p, in 7y as parameters; we require that -y is monotone in
all variables, i.e. does not contain —x (an essential condition for the existence of fixed
points) or —p; (a mere technical convenience, and not an actual restriction as one can
always negate the actual parameter instead of the parameter variable). We require more-
over that all v € I" are guarded, i.e. that all occurrences of the argument variable x are
under the scope of at least one modal operator; as shown in [33], this is not an essential
restriction as every u-calculus formula is provably equivalent to a guarded formula. We
denote substituted formulas y[¢1/p1;- .- @n/Pn;¥/x] as Y(@1, ..., ¢n, ). The set
Fi(A, I') or just Fy of (fixed point) formulas ¢, is then defined by the grammar

o u=L|TloAY oV |[Dpr,...,0n) | #y(@1,-- - 0n) | Dy(01,. .., 0n)

where ' € Ais n-ary and v € I". The operator f,, represents the least fixed point

ﬁ’Y(‘pla .. '7‘pn) = /L‘T-V(@la .. '790n7x)7

while b=(@1,...,¢,) represents the greatest fixed point va.¥(¢1,...,¢n, ). The
name flat for the fixed point operators f., b= relates to the fact that we require the
formula ~y to belong to the basic (fixed point free) modal language. Note that nesting
of fixed point operators is unrestricted, e.g. ¢ can be an arbitrary fixed point formula
in #,¢. Syntactically, f, is an atomic operator, and occurrences of variables in v do
not count as occurrences in formulas f-¢. For the sake of readability, we restrict the
further technical development (but not the examples) to unary modalities ¢ and unary
fixed point operators, i.e. we assume that every v € I has only one parameter vari-
able, denoted by p throughout; the extension to higher arities is a mere notational issue.



Negation extends to fixed points by —f.,¢ = bx(—¢) and —bzp = #,(—¢). Note that
unlike in the case of modal formulas, we have not included variables in the definition
of fixed point formulas. A (fixed point) formula with variables is an expression of the
form o, where ~ is a modal formula and ¢ is a substitution of some of the variables
in v with fixed point formulas (i.e. variables never appear under fixed point operators).
In the following, the term formula will refer to fixed point formulas without variables
unless variables are explicitly mentioned. For v € I', we denote the function taking a
formula 1 to (¢, 1) by v(¢), and by v()* its k-fold iteration. We assume a reason-
able size measure on A and hence on formulas and sets of formulas [30], in particular
that numbers (e.g. in graded or probabilistic operators) are coded in binary.

The logic is further parametrized semantically over the underlying class of systems
and the interpretation of the modal operators. The former is determined by the choice
of a type functor T' : Set — Set, i.e. an operation 7" that maps sets X to sets 7T'X
and functions f : X — Y to functions T'f : TX — TY, preserving identities and
composition, and the latter by the choice of a predicate lifting [O] for each O € A.
Here, a predicate lifting (for T) is a family of maps A\x : PX — PTX, where X
ranges over all sets, satisfying the naturality condition Ax (f~1[A]) = (Tf) Ay (A)]
forall f : X — Y, A € PY. As we work with fixed points, we insist that all modal
operators are monotone, i.e. [O] : P(X) — P(TX) is monotone w.r.t. set inclusion
for each © € A. Moreover, the assignment of predicate liftings must respect duality of
operators: for O € A, [V y(A) = TX — [V] (X — A). Given these data, the role
of models is played by T-coalgebras, i.e. pairs (X, &) where X is a set of states and
& : X — TX is the transition function; thinking of 7°X informally as a parametrised
datatype over X, we regard £ as associating with each state = a structured collection
&(x) of successor states and observations. E.g. for TX = PX x P(U), given a set U of
propositional atoms, we obtain that T-coalgebras are Kripke models, as they associate
with each state a set of successor states and a set of valid propositional atoms. Our main
interest here is in examples beyond Kripke semantics, see Example 1.

As indicated above, the choice of predicate liftings determine the interpretation of
modal operators. The semantics of a formula ¢ with argument variable x (no other vari-
ables will ever be evaluated in unsubstituted form) is a subset [¢] (X.6) (B) C X, given
a T-coalgebra (X, &) and a set B C X. The semantics of formulas ¢ without variables
(in particular of #- or b-formulas) does not depend on B and hence will be denoted just
by [©]x ¢)- One has obvious clauses for Boolean operators, [z] x ¢ (B) = B, and

[9¢] x.6)(B) = € [V x (€] x.¢)(B))
[“i’YLP]](X7§) = m{B CX| [[’Y(‘P)]](X,g)(B) C B}
Dol xe) = U{B CX|BCelxe(B)}

The clause for f- ¢ just says that [ ¢] (X.6) is the least fixed point of the monotone map
(@) (xe : P(X) = P(X), and similarly [b5¢] y ) is the greatest fixed point of
[[W(gp)]](xﬁ). We fix the data T, A, I etc. throughout.

Example 1. 1. Kripke semantics: Fixed point extensions of the modal logic K have
a single modal operator [], interpreted over the powerset functor P (which takes a set



X to its powerset P (X)) by the predicate lifting [O] x(A) = {B € P(X) | B C A}.
P-coalgebras (X,£ : X — P(X)) are in 1-1 correspondence with Kripke frames,
and [] captures the usual semantics of the box operator. Multi-agent extensions are
interpreted over TX = P(A x X) where A is the set of agents. CTL, *-nesting-free
PDL, and the logic of common knowledge are flat fixed point logics in this setting; e.g,
AU and EU are the t-operators for pe V (p1 AOz) and for pe V (p1 A Qx), respectively.

2. Graded fixed point logics are sublogics of the graded p-calculus [16]. They have
modal operators ¢ ‘in more than k successors’, with duals [, “in all but k successors’,
interpreted over the functor B that takes a set X to the set B(X) = X — w + 1 of
multisets over X by [Or]x(A) = {B € B(X) | >_,c4 B(z) > k}. This captures
the semantics of graded modalities over multigraphs [5], which is equivalent to the
more customary Kripke semantics [11] w.r.t. satisfiability of fixed point formulas. In
description logic, graded operators are called qualified number restrictions [2]. The
example mentioned in [16], a graded fixed point formula expressing that the current
state is the root of a finite binary tree all whose leaves satisfy p, can be expressed by
the f-operator for p V {12. Similarly, the f-operator for p VV Oia expresses that p holds
somewhere on every infinite k£ + 1-ary tree starting at the current state.

3. Probabilistic fixed point logics, i.e. fixed point extensions of probabilistic modal
logic [17], have modal operators L, ‘in the next step, it holds with probability at least
p that’, for p € [0,1] N Q. They are interpreted over the functor D that maps a set
X to the set of discrete probability distributions on X by putting [L,] (4) = {P €
D(X) | PA > p}. Coalgebras for D are Markov chains. We can use the b-operator
AG,, for pA Ly to express formulas like AG,, —fail, stating that the system will, at any
point during its run time, fail with probability at most 1 — p; a sensible specification for
systems that may sometimes fail but should not fail excessively often. In an epistemic
reading of probabilities, flat probabilistic fixed point logics support, e.g., a common
belief operator ‘it is commonly believed with confidence p that’.

4. The alternating-time p-calculus (AMC) [1] has modal operators ({A)( read
‘coalition A has a joint strategy to enforce ... in one step’, where a coalition is a
subset of a fixed set N of agents (in coalition logic [23], these operators are de-
noted [A]). Their semantics is defined over concurrent game structures (or game
frames), and can be captured coalgebraically [29]. One of the flat fragments of AMC is
Alternating-Time Temporal Logic (ATL) [1]. E.g., the ATL-operator ((A))pi1Upa, read
‘coalition A can eventually force po and meanwhile maintain p,’, is the f-operator for
p2 V (p1 A {(A) O z). Flat fixed points in AMC go considerably beyond ATL; e.g. the
b-operator for p A {()) O (()) O « (‘p holds in all even states along any path’) is not even
in ATL* [1,6]. A similar flat operator, the b-operator for {(A) O (p A {B)) O (¢ A z)),
expresses that coalitions A and B can forever play ping-pong between p and q.

5. Monotone fixed point logics have a modal operator [, interpreted over the
monotone neighbourhood functor defined by M(X) = {A € PP(X)) |
2 upwards closed} by means of the predicate lifting [O]  (A) = {A € M(X) | A €
2A}. In multi-modal versions of this, boxes and their semantics are indexed, e.g. over
agents, programs, or games. This is the semantic setting of logics such as concurrent
PDL [24] and Parikh’s game logic [20], the flat fragments of which are the %-nesting-
free fragments. E.g., using (v) to denote the game logic operator ‘Angel has a strategy



to enforce ... in game ’, the operator (y*) for a *-free game ~y, where x denotes de-
monic iteration (Demon chooses the number of rounds), is the b-operator for p A (7).

3 The Generic Axiomatization

The generic semantic and syntactic framework of the previous section comes with a
generic, parametrized deduction system, whose completeness will be one of our main
results. We begin with the fixed part of the deduction system. We include full propo-
sitional reasoning, i.e. introduction of substituted propositional tautologies and modus
ponens. Fixed points are governed by the obvious generalization of the Kozen-Park
axiomatization: we have the unfolding axiom

e < (e, o)

and the fixed-point induction rule

(e, x) = X/ By = X

for all formulas ¢, x. (Here o / 3 denotes the rule ‘from « infer 7).

The variable part is now the axiomatization of the modal operators, which turns out
to be completely orthogonal to the fixed point axiomatization. In fact, we can just re-use
complete rule sets for the purely modal logic as developed in [29]. First some notation.

Definition 2. We denote the set of of positive propositional formulas (formed using
only A and V) over a set Z by Pos(Z), and the set {Qa | © € A,a € Z} by A(Z). We
say that a conjunction (disjunction) is contracted if no conjunct (disjunct, respectively)
occurs twice in it. For o, ¥ € Pos(Z), we say that ¢ propositionally entails 1) and write
¢ Fpr, ¥ if ¢ — 1) is a propositional tautology. Similarly, ® C Pos(Z) propositionally
entails ¢ (@ Fpp 1) if there exist ¢1,...,¢, € @ such that o1 A --- A @, Fpr .
For ¢ € Pos(Z), we denote the evaluation of ¢ in the Boolean algebra P(X) under
a valuation 7 : Z — P(X) by [¢] ., and write X, 7 | ¢ if [¢]y, = X. For
¥ € Pos(A(Z)), the interpretation [¢)]rx,» of 1 in the Boolean algebra P (7' X) under
7 is the inductive extension of the assignment [Q(2)]rx . = [V]x7(z). We write
TX, 7 =yif [Ylrx =TX.

We can now give the formal definition of the modal rule format, where due to mono-
tonicity of the modal operators we can restrict to monotone rules following [4]. To
understand the following, note that every rule of the form ¢/x, which says that if ¢
is provable then y is provable, comes with a dual tableau rule X/ saying that if  is
consistent then ¢ is consistent.

Definition 3. A (monotone one-step) rule R = p/x consists of a premise o € Pos(V)
and a conclusion x which is a disjunction over A(V') (recall that V is the set of vari-
ables), where every variable appears at most once in ¢ and every variable in ¢ ap-
pears also in x. The rule R is one-step sound if whenever X, 7 |= ¢ for a valuation
7:V = P(X), then TX, 7 = x. Given a set R of one-step rules, we say that a con-
junction ¢ over A(V') is one-step cut-free T-consistent for aset X and 7 : V — P(X)



if whenever ¢/x € R and ¢ : V — V is a renaming such that xo is contracted
and ¥ Fpp Yo (note that propositional entailment between conjunctions is just re-
verse containment), then [Go] - # 0. We say that R is one-step cutfree complete if
[W]rx . # O whenever 1 is one-step cut-free T-consistent. A set ¥ C A(V) is one-
step cu’t-free T-consistent if for all ¥, ..., ¢, € ¥, Y1 A --- A\ ¢, is one-step cut-free
T-consistent.

(In the terminology of [29], one-step cutfree complete rule sets correspond to one-
step complete rule sets which are closed under contraction and resolution.) As the last
parameter of the framework, we fix from now on a one-step cutfree complete set R
of one-step sound monotone one-step rules, and denote the arising logic by Ly. Rules
/1 € R are applied in substituted form, i.e for every substitution o, we may conclude
1o from po. It is easy to see that the arising parametrized deduction system is sound.
As usual, we write - ¢ if ¢ is provable, and ¢ F ¥ if - ¢ — . We say that @ is
consistent if - is not provable. It has been shown that one-step cutfree complete rule
sets engender complete cut-free sequent systems for the purely modal logic, and suitable
rule systems have been exhibited for all logics of Example 1 and many more [29,22].
E.g., a one-step cutfree complete set of monotone one-step rules for K is

Vieyai Vb

Ve o v =0

As a more complex example, we recall the one-step cutfree complete rule schema for
graded operators [29], reformulated to fit the monotone rule format:

Diey —ri(mai) + 355 s85b; >0
Vi Okai VG Ouby

where n +m > 1 and rq,...,7,,51,...,5n > 0, subject to the side condition
>y rilki +1) > 1+ 3700 s;l;. Here, the premise represents a linear inequality
between the characteristic functions of the a; and the b;, i.e. count s; when b; holds
and —r; when a; does not hold; this is easily seen to be expressible by a positive propo-
sitional formula (cf. [29]).

4 Constructive Fixed Points

Our next aim is to prove that the Lindenbaum algebra of Ly is constructive, i.e. its fixed
points can be iteratively approximated in w steps. In terms of consistency of formulas,
this means that whenever a formula of the form §,¢ A 7 is consistent, then already
¥4 (¢)(L) A1 is consistent for some i < w; this fact plays a pivotal role in our tableau
model construction. We begin by introducing the requisite algebraic tools.

We define a A-modal algebra A as a Boolean algebra extended with a monotone
operation Q4 : A — A for each © € A. In such an algebra, every modal formula
¢(v1,...,vy,) is naturally interpreted as an operation o : A” — A. Now we say that
Avalidates arule R = /v if v (ay,...,a,) = T whenever p*(ay,...,a,) = T.A
f-algebra is a A-algebra A that is endowed with operations ﬁf and bé foreachy € I”



such that for each a € A, ﬁ:;‘(a) is the least fixed point of the map v4(a, —) : A — A
and bjyi‘ (a) is the greatest fixed point of 7 (a, —) (in particular, these fixed points exist
in a f-algebra). An Ly-algebra is a f-algebra A that validates every rule R of our fixed
set R of one-step rules. In the tradition of algebraic logic, the class of these algebras
provides an algebraic encoding of the proof system.

More specifically, we will be interested in the Lindenbaum algebra A(Ly) of our
logic. As usual, this algebra is defined as the quotient of the formula/term algebra (or
absolutely free algebra) under the congruence relation = of provable equivalence (¢ =
1 iff ¢ <> 1) is derivable). Observe that in a natural way, every sentence  is interpreted
as the element A (£) = [] of this algebra; we will mostly write  rather than [¢]. The
Kozen-Park axiomatization ensures that A(Ly) actually is an Ly-algebra, and then of
course, the initial Ly-algebra. In these terms, our target property is phrased as follows.

Definition 4. We say that v € I' is constructive if
e =\ () (L)
i<w
in the Lindenbaum algebra A(Ly), i.e. if f,¢o = 1 whenever v(¢)(L) - 1 for all
i <w.Ifally € I are constructive, then A(L4) is constructive.
We explicitly state the dual formulation of this property:

Lemma 5. Let y be constructive. If §,¢ A 1 is consistent, then v(¢)*(L) A ¢ is con-
sistent for some i < w.

The central tool for proving constructivity, introduced in [26] and featuring prominently
in [27], is the notion of a finitary O-adjoint:

Definition 6. We say that y is an O-adjoint if for all ¢, € Fy, there exists a finite set
G () (1) of formulas such that for all p € Fy,

(e, p) 4 iff p = x for some x € G, (¥),

ie. (g, p) < in A(Ly) iff p < x for some x € G, (1)). Moreover, v is a finitary
O-adjoint if G,y can be chosen such that for every 1, the closure of ¢ under G,
i.e. the smallest set A with ¢y € Aand x € A= G, (x) C A, is finite.

Lemma 7. [26] Every finitary O-adjoint is constructive.

The first step in the proof of (O-adjointness for a large class of operators is a generaliza-
tion of the rigidity lemma of [26]:

Lemma 8 (Rigidity). Ler ¢ be a disjunction over A(A(Ly)). Then 1 is provable iff
there exists a one-step rule ¢/x and a substitution o such that po is provable, xo is
contracted, and xo Fpr, .

The proof relies on the one-point extension of an algebra (so called because it mim-
ics the addition of a new root point in a coalgebraic model on the algebraic side), in
generalization of a similar construction in [27]:



Let A be a countable Ly-algebra, let S(A) be the set of ultrafilters of A, fix a sur-
jective map o : V' — A, and let a conjunction p over A(V') be one-step §-consistent
forf : V. — P(S(A)) given by 6(v) = {u € S(4) | o(v) € u}. We construct the
one-point extension A”, an Ly-algebra emulating the addition of a new point whose
successor structure is described by p, as follows. To begin, we can find a maximally
one-step #-consistent set @ C A(V) such that @ -py, p. As we emulate adding a single
point, the carrier of A” is A x 2. We make A” into a A-modal algebra by putting

@AP (a" d) = (Q?A(a)’ Qp(a))7

where O” : A — 2 is defined by ©?(a) = T iff Qa € do. (Thus, V4" (a, d) is inde-
pendent of d, in agreement with the intuition that the interpretation of modal operators
depends only on the successor structure of the current state, not on the state itself.) In
particular, this implies that po > | in A”.

Lemma 9. The algebra A is an Ly-algebra.
In consequence of the fact that A(Ly) is the initial Ly-algebra, we thus have

Lemma 10. Let o : V' — A(Ly) be surjective. If a conjunction p over A(Fy) is one-
step G-consistent for (v) = {u € S(A(Ly)) | o(v) € u}, then p is consistent, i.e.
p>_Lin A(,Cﬁ).

From Lemma 10, one easily proves Lemma 8 using the fact that every consistent for-
mula is contained in some ultrafilter of A(Ly).

In a nutshell, rigidity enables us to prove O-adjointness of all (monotone) modal
operators, and even more generally all modal formulas where the argument variable x
occurs at uniform depth (such as OOz A OUz). Formally:

Definition 11. A formula ¢ with variables is uniform of depth k if every occurrence
of the fixed argument variable = in ¢ is in the scope of exactly & modal operators
(including the case that z does not occur in ¢; recall moreover that variables never
occur under fixed point operators). Moreover, ¢ is uniform if ¢ is uniform of depth &
for some k; the minimal such k is the depth of uniformity of .

Finitaryness of O-adjoints will use the standard Fischer-Ladner closure:

Definition 12. A set X of formulas is Fischer-Ladner closed if X' is closed under sub-
formulas and negation, and whenever x,¢ € X, then v(p,%yp) € X for x € {f,b}.
We denote the Fischer-Ladner closure of a formula ¢ by FL(y).

Lemma 13. [14] The set FL(yp) is finite and of polynomial size in .

The further development revolves largely around admissible rules, i.e. rules ¢/ where
¢ and ¢ are formulas with variables vy, ..., v, such that A(Ly) validates /1), i.e.
whenever - ©(p1, . . ., pp) for formulas p1, ..., p, then - ¥ (p1, ..., ppn).

Lemma 14. Let v be uniform, and put

G = {¢ € Pos(FL(v)) | v/v admissible, p uniform of depth 0}.

Then we have that for all p, 1 (p) is provable iff ©(p) is provable for some ¢ € G.



Proof (sketch). Induction over the depth of uniformity, with trivial base case, using
rigidity (Lemma 8) in the inductive step. a

Theorem 15 (Finitary O-adjointness). If the formula v with argument variable x is
monotone and uniform in x, then the operation (%+) : A(Ly) — A(Ly) induced by
W is a finitary O-adjoint.

Proof (sketch). For ¢ € Fy, we have to construct a set Gy, () of formulas such that for
all p € Fy, ¥(p) - @ iff p F x for some x € Gy(p). Now ¢ := 1) — ¢ is uniform.
Let G C Pos(FL(%)’)) be as in Lemma 14, applied to ¢/, and let G be a finite set of
representatives of G modulo propositional equivalence. Then we can put

Gy(e) ={x(T) | x € Go,F- x(T) V x(L)}. =

Using uniform formulas as a base, we can now exploit some known closure properties
of finitary O-adjoints [26].

Definition 16. The set of admissible modal formulas is the closure of the set of mono-
tone uniform modal formulas in x under disjunction, conjunction with modal formulas
not containing x, and substitution for the argument variable, the latter in the sense that
if v and § are admissible, then () is admissible.

Corollary 17. If v € I is admissible, then y is a finitary O-adjoint, and hence con-
structive.

From now on, we require that every v € I is admissible, and hence A(Ly) is construc-
tive. All fixpoint operators mentioned in Example 1 are based on admissible formulas
(in fact, on uniform ones).

5 The Tableau Construction

We proceed to describe a construction of timed-out tableaux for consistent formulas,
which we shall then use as carrier sets for coalgebraic models. (Note that in coalgebraic
logics, tableaux, being only relational structures, cannot directly serve as models.) Our
time-outs are related to Kozen’s p-counters [14] but are integrated into the formulas
appearing in the tableau (rather than maintained independently in the construction of
the tableau), and in particular govern the way modal successor nodes are generated. The
use of time-outs is justified by constructivity of fixed point operators as proved in the
previous section. In the following, we fix a finite Fischer-Ladner closed set Y.

Definition 18. The set of timed-out formulas @, 1) is generated by the grammar
e =L Tlony eV | Qo (p)" [b5(p) (kew+1peLly)

where v € I, O € A, subject to the restriction that ¢ is a timed-out formula only in
case ¢ has at most one subformula of the form f,(x)" with & < w (which however
may occur any number of times), and for this - (x)", (i) f(x)* is not a subformula
of ¢; and (ii) whenever #5(p)* is a subformula of ¢, then fs(p) is a subformula of .

10



In this case, we define the time-out 7(p) of ¢ to be k, and 7(¢) = w otherwise (i.e.
if ¢ does not contain any subformula of the form £ (x)" with x < w). The time-out
gives the number of steps left until satisfaction of the eventuality . (x), with time-out
w signifying an unspecified number of steps (note that time-outs are never associated
with b-formulas).

We define two translations s and ¢ of timed-out formulas into L, given by commu-
tation with Boolean and modal operators, (b5(p))* = (b5(p))" = b=(p), and

B () =1(0)  (B()) =7(p)'(L) (i<w)  (H(0)") =t (p).

Thus, s unfolds fixed points as prescribed by their time-outs, and ¢ just removes time-
outs. Both translations extend to sets of formulas. For timed-out formulas ¢, 1, we put
@ = iff b = 4t and T(p) < 7(2p). That is, ¢ =< o iff o is the same as ) up to
possible decrease of the time-out. Given a set 3 of formulas, a timed-out formula ¢ is
a timed-out X -formula if o' € X.

The point of the definition of timed-out formulas is that every standard formula ¢ has
at most one candidate subformula at which one can insert a time-out, namely the great-
est element under the subformula ordering among the subformulas of ¢ which are -
formulas, if such a greatest element exists and is not under the scope of a b-operator.
This enables the simple definition of <, which trivially has the following property.

Lemma 19. For every formula o, the preimage of © under the translation t is linearly
ordered by <.

At the same time, timed-out formulas are stable under unfolding:
Lemma 20. If t,©" is a timed-out formula, then so is (i, i¢").

States of the tableau will be labelled by sets of formulas satisfying a timed-out version
of the usual expandedness requirement.

Definition 21. A timed-out X-atom is a maximal set A of timed-out X'-formulas such
that (i) the translation ¢ is injective on A, and (ii) A is consistent. Here, maximality is
w.r.t. C where A C B iff for all ¢ € A, there exists a (necessarily unique) ¢’ € B such
that ¢’ =< ¢; intuitively: B contains A up to possible decrease of time-outs. We write A
for the closure of A under < (i.e.if ¢ € Aand ¢ < ¢’ then ¢’ € A).

The following lemma uses the fact that finite product orderings (w -+ 1)* are well-quasi-
orders, and in particular have only finite anti-chains [18].

Lemma 22. The set of timed-out X-atoms is finite.

Lemma 23 (Timed-out Lindenbaum lemma). For every set Ay of timed-out X-
formulas such that Aj is consistent and t is injective on Ao, there exists a timed-out
XY-atom A such that Ag C A.

The proof of the truth lemma crucially depends on a set of Hintikka-like properties:

Lemma 24. [f A is a timed-out X.-atom, then
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ifo N € Athen o € Aandp € A;
ifoVi € Athenp € Aorv € A;
1¢A;

iff, 0" € A, then k < w;

ot € Aiff (e, 9" 1) € A;
by € Aiffv(,0y¢) € A.

We proceed to define the actual tableaux, which relate timed-out atoms in a way that
reflects application of dual rules Y/ of modal rules ¢/x € R, while fixed points are
in a sense taken care of by the timed-out atoms themselves.

AN W~

Definition 25. A demand of a X-atom A is a formula p = @o, where ¢/x € Risarule
with dual rule x/® and o is a substitution such that yo is contracted and A +py, Xo.
A timed-out X-tableau (T, R,1) consists of a finite graph (7, R) and a labelling ! of
the nodes n € 7 with timed-out X-atoms [(n) such that for every demand p of I(n),
there exists nRm such that [(m) Fpy, p. The tableau (7, R, 1) is a timed-out X -tableau
for o € X if (@)t = ¢ for some ¢’ € I(n),n € T. A coalgebra structure £ on 7T is
coherent if for every n and every Q¢ € X,

£(n) € [Vln(p) iff Op € I(n),
where n(p) = {m € T | nRm, ¢ € l(m)}.

The link between timed-out tableaux and coalgebraic models is provided by the follow-
ing lemma, whose proof relies on one-step cutfree completeness of the rule set.

Lemma 26 (Model existence lemma). For every timed-out X-tableau (T, R, 1), there
exists a coherent coalgebra structure on T .

Lemma 27 (Truth lemma). If (T, R, 1) is a timed-out X-tableau and & is a coherent
coalgebra structure on T, then n € [[(,0]](7-’5) whenever ¢ € l(n).

Proof (sketch). Induction over timed-out X'-formulas ¢ using the lexicographic product
of the subterm ordering on ¢! and < as the induction measure, and with the inductive
hypothesis strengthened to apply also to ¢ € I(n). Boolean cases are by Lemma 24; the
step for modal operators is by coherence. The case for b-operators is by coinduction. For
¢ = #,(¥)", we have £ < w and v(¢), £ (¢)" 1) € I(n) by Lemma 24. Then prove by

a further induction over subformulas ¢ of v that n |=(7¢) (6(¢, 8 (¢)"~1))® whenever

§(¢, 8, (1)"~1) € I(n). Here, the case for the parameter variable x is discharged by the
inductive hypothesis applied to i, (¢)" 1. O

The previous two lemmas imply that every formula that has a timed-out tableau is sat-
isfiable. The following lemma provides the link to consistency.

Lemma 28. For any consistent ¢ € X there is a finite timed-out X '-tableau.
In summary, we have proved completeness of the Kozen-Park axiomatization:

Theorem 29 (Completeness). If I' is admissible and R is one-step cutfree complete,
then the Ly is complete over finite models.

This result applies to all flat fixed point logics of Example 1, including all admissible
flat fragments of AMC and the graded p-calculus.
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6 Complexity

Next we analyse the algorithmic aspects of satisfiability checking. This analysis is inde-
pendent of the completeness result from Section 5 (except that completeness tells us that
satisfiability checking is equivalent to consistency checking) but uses the same model
construction. The complexity of the satisfiability problem as such is known: under ad-
ditional conditions that we shall use below as well, it has been shown that satisfiability
in the coalgebraic p-calculus is in EXPTIME [4] (and therefore typically EXPTIME-
complete, with hardness inherited from the standard p-calculus). However, like known
decision procedures for the standard p-calculus, the algorithm in [4] uses automata-
based methods and as such will exhibit exponential average-case behaviour, while a
simple tableau method such as the one developed in Section 5 offers the possibility of
feasible average-case behaviour using bottom-up construction of tableaux.

What is missing technically from the tableau construction of Section 5 with a view
to complexity bounds is a bound on the time-outs. While we are confident that this can
be proved directly using the O-adjointness method (e.g. it is easy to show in this way
that in Lemma 5, ¢ can be exponentially bounded in (£-) A1), this is not actually nec-
essary given that it has already been proved in [4] that the coalgebraic p-calculus has the
exponential model property. This implies immediately that time-outs can be exponen-
tially bounded, so that tableaux are at most exponentially large. The key contribution
of our tableaux construction here is to make this straightforward idea (which is similar
in spirit to, e.g., Kozen’s tableaux for the aconjunctive fragment of the p-calculus [14])
work in a way that handles time-outs economically and consistently.

The size bound on tableaux alone does not yet imply an EXPTIME bound; how-
ever, we can obtain such a bound by using the coalgebraic generalization of the global
caching method in exactly the same way as done in [13] for coalgebraic modal logic
with global assumptions. To this end, we need to assume, as in [13,31], that our set R
of one-step rules is EXPTIME-tractable, i.e. that there exists a coding of the rules such
that, up to propositional equivalence, all demands of a conjunction over A(F) can be
generated by rules with codes of polynomially bounded size, and such that validity of
codes, matching of rule codes for ¢ /x € R to conjunctions ) over A(Fy) (in the sense
of finding o such that o is contracted and v - p;, X0o), and membership of disjunctions
in a CNF of a rule premise are all decidable in EXPTIME. Summing up,

if R is EXPTIME-tractable, then global caching decides existence of tableaux
for Ly in EXPTIME.

Global caching will typically avoid full expansion of tableaux, and provides a handle to
achieve feasible average-case performance using suitable heuristics.

7 Conclusions

We have raised the theory of flat modal fixed point logics [27] to the level of generality
of coalgebraic logic. Specifically, we have given a Kozen-Park style axiomatization for
fixed point operators, and we have shown this axiomatization to be sound and complete
under the conditions that (i) the defining formulas of the fixed point operators satisfy a
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mild syntactic criterion, and (ii) the coalgebraic base logic is axiomatized by a one-step
cutfree complete rule set. This result is a wide generalization with respect to the case
of relational semantics, and covers, e.g., natural fixed point extensions of probabilistic
modal logic and monotone modal logic. Most notably, we prove completeness of flat
fragments of the graded p-calculus [16], to our knowledge the first completeness result
for any graded fixed point logic, and we generalize completeness of alternating-time
temporal logic [12] to flat fragments of the alternating-time j-calculus [1].

A core technical point in the proof was to show that essentially all monotone modal
operators (including nested ones like U], as long as the nesting depth is uniform) are
finitary O-adjoints in the sense of [26], and hence induce constructive fixed point oper-
ators that can be approximated in w steps. This has enabled a model construction using
tableaux with explicit time-outs for least fixed point formulas in the spirit of [14], which
relies on a judicious definition of timed-out formula. As a byproduct of this construc-
tion, we obtain an optimal (i.e. EXPTIME) tableau calculus which paves the way for
efficient implementations of coalgebraic flat fixed point logics, e.g. in the framework of
the Coalgebraic Logic Satisfiability Solver CoLoSS [3].

Remaining open problems include the extension of the completeness result to larger
fragments of the coalgebraic p-calculus beyond the single variable fragment covered
here, first and foremost the alternation-free fragment, and eventually the full coalgebraic
p-calculus. Similarly, there is the perspective to extend our tableau construction to at
least the alternation-free fragment. A further direction for future research includes the
development of generic coalgebraic model checking techniques.
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