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ABSTRACT. This is an appendix that provides additional results and proof details that we omitted
from our paper due to space constraints.

APPENDIX A. RESULTS FOR POINTED FUNCTORS

We mentioned in Remark 3.7 that Theorems 3.5 and 3.6 hold more generally for pointed endo-
functors M in lieu of a free monad M = K̂. However, in this case we need our base category to be
cocomplete. In this appendix we provide the details.

Assumption A.1. We assume that A is a cocomplete category, that H : A → A is a functor and
that (M,η) is a pointed functor on A, i. e., M : A → A is a functor and η : Id → M is a natural
transformation. As before c : C → HC is a terminal coalgebra for H .

Definition A.2. (1) An algebra for (M,η) is a pair (A, a) whereA is an object ofA and a :MA→
A is a morphism satisfying the unit law a · ηA = idA.

(2) A distributive law of M over H is a natural transformation λ : MH → HM such that the
diagram

H
ηH

||

Hη

""
MH

λ //HM

(A.1)

commutes.
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(3) Let (D, ε) be a copointed endofunctor on A. A distributive law of (M,η) over (D, ε) is a
distributive law λ :MD → DM of (M,η) over the functor D that makes, in addition to (A.1) with
H replaced by D, the diagram

MD
λ //

Mε ""

DM

εM||
M

commute.

Remark A.3. (1) Every distributive law λ : MH → HM gives a distributive law of the cofree
copointed functor H × Id via

MH
λ // HM

M(H × Id) //

Mπ0

OO

Mπ1
''

(H × Id)M

π0

OO

π1
��

M

(A.2)

but not conversely.

(2) Analogously to Theorem 2.7, we have for any distributive law λ of M over the cofree copointed
functor H × Id a unique λ-interpretation, i. e., a unique morphism b : MC → C such that the
diagram below commutes

MC
M〈c,idC〉

//

b
��

M(HC × C) λC // HMC ×MC
π0 // HMC

Hb
��

C
c // HC

and (C, b) is an algebra for the pointed functor M , see [1]. Notice that b here corresponds to
b̂ : K̂C → C in Theorem 2.7. If we have a distributive law λ : MH → HM , then we obtain
one of M over the copointed functor H × Id as in (A.2). We again call the resulting morphism
b :MC → C the λ-interpretation in C. In this case, the diagram above simplifies to

MC
Mc //

b
��

MHC
λC // HMC

Hb
��

C
c // HC .

(A.3)

Next we shall need a version of Theorem 2.12 for a given distributive law λ of M over H (or
over the cofree copointed functor H × Id). This is a variation of Theorem 4.2.2 of Bartels [1] (see
also Lemma 4.3.2 in loc. cit.) using the cocompleteness of A. Since one part (the uniqueness part)
of the proof in [1] is only presented for Set we give a full proof here for the convenience of the
reader.

Theorem A.4. Let λ : MH → HM be a distributive law of the pointed functor M over the
functor H . Then for every λ-equation e : X → HMX there exists a unique solution, i. e., a unique
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morphism e† : X → C such that the diagram below commutes:

X
e //

e†

��

HMX

HMe†

��

C
c // HC HMC

Hboo

(A.4)

Before we proceed to the proof of the statement we need some auxiliary constructions and
lemmas. We begin by defining an endofunctor S on our cocomplete category A as a colimit. We
denote by Mn, n ∈ N, the n-fold composition of M with itself. Now we consider the diagram D
in the category of endofunctors on A given by the natural transformations in the picture below:

Id
η

//M
ηM

++

Mη

33MM

ηMM

  MηM
//

MMη

==· · ·

More formally, the diagram D is formed by all natural transformations

M i+j M iηMj

//M i+1+j i, j ∈ N .

Let S be a colimit of this diagram D:

S = colimD with injections inji :M i → S.

Then S is a pointed endofunctor with the point inj0 : Id =M0 → S.
Recall that colimits in the category of endofunctors of A are formed objectwise. So for any

object X , SX is a colimit of the diagram D at that objectX with colimit injections injnX :MnX →
SX , n ∈ N. This implies that for any endofunctor F ofA the functor SF is a colimit with injections
injnF :MnF → SF .

The above definition of S appears in Bartels [1]. Next we define additional data using the
universal property of the colimits SM and SH:

(1) a natural transformation χ : SM → S uniquely determined by the commutativity of the
triangles below:

Mn+1

injnM
��

injn+1

""
SM χ

// S

for all n ∈ N.

(2) a natural transformation ε : SM → MS uniquely determined by the commutativity of the
triangles below:

Mn+1

injnM
��

M injn

$$

SM ε
// MS

for all n ∈ N.

(3) a natural transformation λ∗ : SH → HS; indeed, define first λn : MnH → HMn

recursively as follows:

λ0 = idH : H → H;

λn+1 = Mn+1H =MMnH
Mλn //MHMn λMn

//HMMn = HMn+1 .
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Then λ∗ is uniquely determined by the commutativity of the squares below:

MnH

injnH
��

λn // HMn

H injn

��

SH
λ∗

// HS

for all n ∈ N.

Observe that λ∗ is a distributive law of the pointed endofunctor S over H; the unit law is
the above square for the case n = 0.

We now need to verify that the three natural transformations above are well-defined. More
precisely, we need to prove that those natural transformations are induced by appropriate cocones.
For χ : SM → S and λ∗ : SH → HS, this follows from Lemma 4.3.2 in Bartels’ thesis [1].
Hence, we make the explicit verification only for ε and leave the details for the other two natural
transformations for the reader. To verify that the natural transformations M injn : Mn+1 → MS
form a cocone for the appropriate diagram with colimit SM consider the triangles below:

M1+i+j

M injn $$

MM iηMj

// M1+i+1+j

M injn+1
yy

MS

for all n ∈ N, n = i+ j.

These triangles commute since injn :Mn → S form a cocone.
Next, notice that in the definition of λ∗ above there are two possible canonical choices for λn+1.

We now show that these two choices are equal:

Lemma A.5. For all natural numbers n we have the commutative square below:

Mn+1H
Mnλ //

Mλn

��

MnHM

λnM
��

MHMn

λMn
// HMn+1 .

Proof. We prove the result by induction on n. The base case n = 0 is clear: both composites in
the desired square are simply λ : MH → HM . For the induction step we need to verify that the
diagram below commutes:

Mn+1MH

MMλn

��

Mn+1λ=MMnλ// Mn+1HM

MλnM
��

MMHMn MλMn
//

MλMn

��

MHMnM

λMnM
��

MHMn+1

λMn+1
////

Mλn+1

HMn+1M oo

λn+1M

The left-hand and right-hand parts both commute due to the definition of λn+1. The lower square
obviously commutes, and for the commutativity of the upper one apply the functor M to the induc-
tion hypothesis. Thus the desired outside square commutes.
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Next we need to establish a couple of properties connecting the three natural transformations
χ, ε and λ∗.

Lemma A.6. The following diagram of natural transformations commutes:

SMM
χM

//

εM
��

SM

ε
��

MSM
Mχ
// MS .

Proof. To verify that the square in the statement commutes we extend that square by precomposing
with the injections into the colimit SMM . This yields the following diagram:

MnMM
injnMM

&&

Mn+1M

injn+1Myy

SMM
χM
//

εM
��

SM

ε
��

MSM
Mχ
// MS

MMnM

M injnM
88

MMn+1

M injn+1
ee

The left-hand and right-hand inner squares commute by the definition of ε, and the upper and lower
inner square commute by the definition of χ. Since the outside commutes obviously, so does the
desired middle square when precomposed by any injection injnMM of the colimit SMM . Thus,
the desired middle square commutes.

Lemma A.7. The following square of natural transformations commutes:

SMH
Sλ //

χH
��

SHM
λ∗M // HSM

Hχ
��

SH
λ∗

// HS .

Proof. It suffices to verify that the desired square commutes when we extend it by precomposition
with an arbitrary colimit injection injnMH of SMH . To this end we consider the diagram below:

MnMH
injnMH

&&

Mnλ // MnHM

injnHM
��

λnM // HMnM
H injnM

xx

SMH
Sλ //

χH
��

SHM
λ∗M // HSM

Hχ
��

SH
λ∗

// HS

Mn+1H

injn+1H
99

λn+1
// HMn+1

H injn+1
ee
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The left-hand and right-hand parts commute by the definition of χ, and the lower and the upper right-
hand parts commute by the definition of λ∗. The upper left-hand part commutes by the naturality of
injn. Finally, the outside commutes by the definition of λn+1 together with Lemma A.5. Thus, the
desired middle square commutes when extended by any colimit injection injnMH of the colimit
SMH .

Lemma A.8. The following diagram of natural transformations commutes:

SMH
Sλ //

εH
��

SHM
λ∗M // HSM

Hε
��

MSH
Mλ∗

// MHS
λS
// HMS

Proof. Once more it is sufficient to verify that the desired square commutes when extended by any
injection of the colimit SMH . So consider the diagram below:

MnMH
injnMH

&&

Mnλ // MnHM

injnHM
��

λnM // HMnM
H injnM

xx

SMH
Sλ //

εH
��

SHM
λ∗M // HSM

Hε
��

MSH
Mλ∗

// MHS
λS
// HMS

MMnH

M injnH
88

Mλn
// MHMn

MH injn

OO

λMn
// HMMn

HM injn
ff

The left-hand and right-hand parts commute by the definition of ε, and the lower left-hand and upper
right-hand parts commute by the definition of λ∗. The upper left-hand and the lower right-hand parts
both commute due to the naturality of injn and λ, respectively. Finally, the outside commutes by
Lemma A.5. Thus, the desired inner square commutes when extended by any colimit injection
injnMH :MnMH → SMH .

We are now prepared to prove the statement of Theorem A.4.

Proof of Theorem A.4. Let e : X → HMX be any λ-equation. We form the following H-
coalgebra:

e ≡ SX
Se //SHMX

λ∗MX //HSMX
HχX

//HSX . (A.5)
Since c : C → HC is a terminal H-coalgebra there exists a unique H-coalgebra homomorphism h
from (SX, e) to (C, c). We shall prove that the morphism

e† ≡ X
inj0X //SX

h //C (A.6)

is the desired unique solution of the λ-equation e.
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(1) e† is a solution of e. It is our task to establish that the outside of the diagram below com-
mutes (cf. Diagram A.4):

X

e

��

inj0X // SX

Se
��

h // C

c

��

��

e†

SHMX

λ∗MX
��

HSMX

HχX

��

HSX
Hh

// HC

HMX
H inj1X

77

inj0HMX

@@

H inj0MX

??

HMe†
// HMC

Hb

OO

The upper part commutes by the definition of e†, and the upper right-hand square commutes since
h is a coalgebra homomorphism. The upper left-hand part commutes due to the naturality of inj0,
the triangle below that commutes by the definition of λ∗, and the lowest triangle commutes by the
definition of χ. It remains to verify that the lowest part commutes. To this end we will now establish
the following equation

b ·Me† = h · inj1X . (A.7)
Consider the diagram below:

MX
Me† //

M inj0X

$$

inj0MX

��

inj1X

��

MC

b

��

MSX

Mh
::

SMX

εX

OO

χXzz

SX
h

// C

The upper triangle commutes by the definition of e†, the left-hand triangle commutes by the
definition of χ and the inner triangle commutes by the definition of ε. In order to establish that
the right-hand part commutes we will use that C is a terminal H-coalgebra. Thus, we shall exhibit
H-coalgebra structures on the five objects and then show that all edges of the right-hand part of the
diagram are H-coalgebra homomorphisms. Then by the uniqueness of coalgebra homomorphisms
into the terminal coalgebra (C, c), we conclude that the desired part of the above diagram commutes.

For C, we use c : C → HC, and forMC we use λC ·Mc. We already know that b :MC → C
is a coalgebra homomorphism (see (A.3)). For SX , we use e from (A.5); again, we already know
that h : SX → C is a coalgebra homomorphism. For MSX we use λSX ·Me. The verification
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that Mh is a coalgebra morphism comes from the diagram below:

MSX
Mh //

Me
��

MC

Mc
��

MHSX
MHh //

λSX

��

MHC

λC
��

HMSX
HMh

// HMC

To see that the upper square commutes, remove M and recall that h is a coalgebra homomorphism
from (SX, e) to (C, c). The lower square commutes by the naturality of λ.

Now we show that εX : SMX → MSX is a coalgebra homomorphism, where the structure
on SMX is the composite on the left below:

SMX
εX //

SMe
��

MSX

MSe
��

Me

oo

SMHMX
εHMX //

SλMX

��

MSHMX

Mλ∗MX
��

SHMMX

λ∗MMX
��

MHSMX

MHχX

��

λSMX

vv

HSMMX
HεMX //

HχMX

��

HMSMX

HMχX ))

MHSX

λSX

��

HSMX
HεX

// HMSX

The upper square commutes by the naturality of ε, and the inner triangle commutes by the naturality
of λ. To see that the right-hand part commutes, remove M and consider the definition of e. The
lowest part commutes due to Lemma A.6, and the middle part commutes by Lemma A.8.

Finally, we show that χX : SMX → SX is a coalgebra homomorphism. To do this we
consider the following diagram:

SMX
χX

//

SMe
��

SX

Se
��

SMHMX
χHMX

//

SλMX

��

SHMX

λ∗MX

��

SHMMX

λ∗MMX
��

HSMMX
HχMX

//

HχMX

��

HSMX

HχX

��

HSMX
HχX

// HSX
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The upper square commutes by the naturality of χ, the middle square commutes by Lemma A.7,
and the lower square commutes obviously. This concludes the proof that e† is a solution of e.

(2) e† in (A.6) is the unique solution of e. Suppose now that e† is any solution of the λ-equation
e. Recall that the object SX is a colimit of the diagram D at object X with the colimit injections
injnX :MnX → SX , n ∈ N. We will use the universal property of that colimit to define a morphism
h : SX → C. To this end we need to give a cocone hn : MnX → C, n ∈ N, for the appropriate
diagram. We define this cocone inductively as follows:

h0 = e† :M0X = X → C;

hn+1 = Mn+1X =MMnX
Mhn //MC

b //C , n ∈ N.
We now verify by induction on n that the morphisms hn, n ∈ N do indeed form a cocone. For the
base case consider the diagram below:

M0X = X
ηX

//

h0
%%h0

//

MX =M1X

Mh0
��

C
ηC

// MC

b
��

C

The upper part commutes by the naturality of η, the lower triangle commutes since b : MC → C
is an algebra for the pointed endofunctor M , and the left-hand part is trivial. For the induction step
consider for any natural number n = i+ j the following diagram:

Mn+1X =MM i+jX
MM iη

MjX //

Mhn
((hn+1

//

MM iMM j =Mn+2X

Mhn+1
vv hn+2

oo

MC

b
��

C

This diagram commutes: for the upper triangle removeM and use the induction hypothesis, and the
remaining two inner parts commute by the definition of hn+1 and hn+2, respectively.

Now we obtain a unique morphism h : SX → C such that for any natural number n the
triangle below commutes:

MnX

injnX
��

hn

##

SX
h
// C .

(A.8)
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Next we show that h : SX → C is a coalgebra homomorphism from (SX, e) to the terminal
coalgebra (C, c). To this end we will now verify that the lower part in the diagram below commutes:

MnX

injnX
��

Mne //

hn

//

MnHMX

injnHMX
��

λnMX // HMnMX

H injnMX
��

HMn+1X

H injn+1
X

��

Hhn+1

oo

SX
Se //

h
��

SHMX
λ∗MX // HSMX

HχX
// HSX

Hh
��

C
c // HC

It suffices to show that the desired lower part commutes when extended by any colimit injection
injnX . Indeed, the left-hand part of the diagram above commutes by Diagram (A.8), and for the
commutativity of the right-hand part, remove H and use Diagram (A.8) again. The upper left-hand
square commutes by the naturality of injn, the upper middle square commutes by the definition of
λ∗, and for the commutativity of the upper right-hand part remove H and use the definition of χ. It
remains to verify that the outside of the diagram commutes. We will now prove this by induction
on n. For the base case n = 0 we obtain the following diagram

X

h0

��

e // HMX

HMh0
��

HMC

Hb
��

C c
// HC oo

Hh1

This diagram commutes: for the commutativity of the right-hand part remove H and use the defini-
tion of h1, and the left-hand part commutes since h0 = e† is a solution of the λ-equation e.

Finally, for the induction step we consider the diagram below:

Mn+1X

Mhn
��

Mn+1e //

hn+1

//

Mn+1HMX
MλnMX //

λn+1
MX

��

MHMnMX

MHhn+1

��

λMn+1X // HMn+2X

HMhn+1

��

Hhn+2

oo

MC
Mc //

b
��

MHC
λC // HMC

Hb
��

C c
// HC

We see that this diagram commutes as follows: the lower part commutes by the definition of b
(see (A.3)), the left-hand part commutes by the definition of hn+1, and for the commutativity of the
right-hand part remove H and use the definition of hn+2. The small upper part commutes by the
definition of λn+1, the upper right-hand square commutes by the naturality of λ, and finally, to see
the commutativity of the upper left-hand square remove M and use the induction hypothesis.

We have finished the proof that h : SX → C is a coalgebra homomorphism from (SX, e) to the
terminal coalgebra (C, c). Since h is uniquely determined, it follows that the solution e† = h · inj0X
is uniquely determined, too. This completes our proof.
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Remark A.9. As explained by Bartels in [1], Theorem A.4 extends to the case where a distributive
law λ of M over the cofree copointed functor H × Id is given. We briefly explain the ideas.

Let D = H × Id and ε = π1 : D → Id.
(1) A coalgebra for the copointed functor (D, ε) is a pair (X,x) where x : X → DX is such that
εX ·x = idX . Homomorphisms of coalgebras for (D, ε) are the usualD-coalgebra homomorphisms.
It is trivial to prove that

C
〈c,idC〉

// HC × C
is a terminal coalgebra for (D, ε).

(2) One verifies that λ-equations e : X → HMX are in bijective correspondence with morphisms
f : X → DMX such that

X
f
//

ηX ##

DMX

εMX

��

MX

commutes, and also that solutions of e correspond bijectively to solutions of f , i. e., morphisms
f † : X → C such that Diagram (A.4) commutes with H replaced by D and c replaced by 〈c, idC〉:

X
f

//

f†

��

DMX

DMf†

��

C
〈c,idC〉

// DC DMC
Dboo

See [1], Lemma 4.3.9.

(3) The same proof as the one for Theorem A.4 shows that for every f : X → DMX as in (2)
above there exists a unique solution f †. One only replaces H by D, c by 〈c, idC〉, and one has to
verify that the coalgebra e : SX → DSX from (A.5) is a coalgebra for the copointed endofunctor,
see [1], Lemma 4.3.7.

To sum up, we obtain the following

Corollary A.10. Let λ be a distributive law of the pointed functorM over the copointed oneH×Id.
Then for every e : X → HMX there exists a unique solution, i. e., a unique e† : X → C such that
(A.4) commutes.

Theorem A.11. Let λ be a distributive law of the pointed functorM over the copointed oneH×Id,
and let b :MC → C be its λ-interpretation. Consider the algebra

k = ( HMC
Hb // HC

c−1
// C ) .

Then (C, k) is a cia for HM .

Indeed, to prove this result copy the proof of Theorem 3.5 replacing b̂ : K̂C → C by b :
MC → C.

However, for our version of Theorem 3.6 in the current setting we need a different proof. We
start with an auxiliary lemma.

Lemma A.12. Let λ :MH → HM be a distributive law of the pointed functor M over the functor
H , and let b : MC → C be its interpretation. Then the natural transformation λ′ = λM ·Mλ :
MMH → HMM is a distributive law of the pointed functor MM over H , and Mb · b is the
λ′-interpretation in C.
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Proof. Clearly (MM,ηM · η = Mη · η : Id → MM) is a pointed endofunctor. The following
commutative diagram

H
ηH

yy

Hη

%%

MH
MηH

yy MHη %%

HM

ηHMyy

HηM

%%

MMH
Mλ

// MHM
λM

// HMM

shows that λ′ = λM ·Mλ is a distributive law of the pointed functor MM over H . In fact, the
triangles commute by the assumption on λ, and the remaining upper square commutes by naturality
of η; thus the outside triangle commutes.

To see that b ·Mb is the λ′-interpretation in C, consider the following diagram:

MMC
MMc //

Mb
��

MMHC
MλC // MHMC

λMC //

MHb
��

HMMC

HMb
��

MC
Mc //

b
��

MHC
λC // HMC

Hb
��

C c
// HC

It commutes since b is the λ-interpretation in C and by the naturality of λ. In addition, b ·Mb is
easily seen to be an algebra for the pointed functor (MM,ηM · η) since b is one for (M,η) and η
is a natural transformation:

C

ηC
��

MC

ηMC

��

b
// C

ηC
��

MMC
Mb

// MC
b
// C

This concludes the proof.

Theorem A.13. Let λ : MH → HM be a distributive law of the pointed functor M over the
functor H , and let b :MC → C be its λ-interpretation. Consider the algebra

k′ = (MHMC
Mk //MC

b //C ) ,

where k = c−1 ·Hb as in Theorem A.11. Then (C, k′) is a cia for MHM .

Proof. We have to prove that for every flat equation morphism e : X →MHMX +C for MHM
there is a unique solution e† : X → C in k′ = b ·Mc−1 ·MHb : MHMC → C, i. e., a unique
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morphism e† such that the outside of the diagram

X

e

��

ē

""

e† // C oo

[k′,C]

HC + C

[c−1,C]

66

MC + C

[b,C]

OO

Mc+C
��

HMMX + C

HMMe†+C
((

HMC + C

Hb+C

OO

MHC + C
λC+C
oo

Mc−1+C

OO

HMMC + C

HMb+C

OO

MHMX + C

λMX+C

<<

MHMe†+C
// MHMC + C

λMC+C

hh
MHb+C

OO

commutes. To this end, we define the flat equation morphism

e = (X
e //MHMX + C

λMX+C
//HMMX + C )

for HMM (this is the left-hand triangle). According to Lemma A.12 and Theorem A.11,

HMMC
HMb //HMC

Hb //HC
c−1
//C

is a cia for HMM . So e has a unique solution e† in this cia, i. e., the big inner part of the diagram
commutes. In the upper right-hand part, b is the λ-interpretation in C. Since that part and the two
remaining squares also commute (due to naturality of λ), the desired outside commutes. Thus, e†

also is a solution of e in the algebra k′ :MHMC → C.
This solution is unique, since any other solution e‡ of e in k′ (i. e., the outside of the above

diagram with e‡ in lieu of e† commutes) is a solution of e in the cia c−1 ·Hb·HMb : HMMC → C
(i. e., the inner part commutes with e‡ in lieu of e†), thus e‡ = e†.
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