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ABSTRACT. This is an appendix that provides additional results and proof details that we omitted
from our paper due to space constraints.

APPENDIX A. RESULTS FOR POINTED FUNCTORS

We mentioned in Remark 3.7 that Theorems 3.5 and 3.6 hold more generally for pointed endo-
functors M in lieu of a free monad M = K. However, in this case we need our base category to be
cocomplete. In this appendix we provide the details.

Assumption A.1. We assume that A is a cocomplete category, that H : A — A is a functor and
that (M, n) is a pointed functor on A, i.e., M : A — A is a functor and 7 : Id — M is a natural
transformation. As before ¢ : C' — HC' is a terminal coalgebra for H.

Definition A.2. (1) An algebra for (M, n) is a pair (A, a) where A is an objectof Aanda : M A —
A is a morphism satisfying the unit law a - na = id 4.

(2) A distributive law of M over H is a natural transformation A : M H — HM such that the
diagram

H H
K K (A.1)
A
MH——HM
commutes.
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(3) Let (D,¢) be a copointed endofunctor on A. A distributive law of (M,n) over (D,¢) is a
distributive law A : M D — DM of (M, n) over the functor D that makes, in addition to (A.1) with
H replaced by D, the diagram

MD—2 DM

Me eM
M
commute.

Remark A.3. (1) Every distributive law A : M H — HM gives a distributive law of the cofree
copointed functor H x Id via

MH—2 s gM

o] Tn

M(H x 1d) - — » (H x 1d)M (A2)

1
My

M
but not conversely.

(2) Analogously to Theorem 2.7, we have for any distributive law A of M over the cofree copointed
functor H x Id a unique A-interpretation, i.e., a unique morphism b : MC — C such that the
diagram below commutes

e XN HE % 0) =2 HMC x MC —™— HMC

bl le
C - HC

and (C,b) is an algebra for the pointed functor M, see [1]. Notice that b here corresponds to

b : KC — C in Theorem 2.7. If we have a distributive law \ : MH — HM , then we obtain
one of M over the copointed functor H X Id as in (A.2). We again call the resulting morphism
b: MC — C the A-interpretation in C. In this case, the diagram above simplifies to

MC My mrHC 2% MO
bl JH” (A3)
C c He.

Next we shall need a version of Theorem 2.12 for a given distributive law A\ of M over H (or
over the cofree copointed functor H x Id). This is a variation of Theorem 4.2.2 of Bartels [1] (see
also Lemma 4.3.2 in loc. cit.) using the cocompleteness of .A. Since one part (the uniqueness part)
of the proof in [1] is only presented for Set we give a full proof here for the convenience of the
reader.

Theorem Ad4. Let \ : MH — HDM be a distributive law of the pointed functor M over the
functor H. Then for every A-equation e : X — H M X there exists a unique solution, i. e., a unique
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morphism el : X — C such that the diagram below commutes:

X € HMX
e{ lHMeT (A4)
C—sHC 2 gye

Before we proceed to the proof of the statement we need some auxiliary constructions and
lemmas. We begin by defining an endofunctor .S on our cocomplete category A as a colimit. We
denote by M"™, n € N, the n-fold composition of M with itself. Now we consider the diagram D
in the category of endofunctors on A given by the natural transformations in the picture below:

nM M

M
" %

ld—> M MM——3"..
—
MMn
More formally, the diagram D is formed by all natural transformations

. MipMi
ppid MM

Let S be a colimit of this diagram D:

M+ 4 jeN.

S = colim D with injections inj’ : M* — S.
Then S is a pointed endofunctor with the point inj’ : Id = M° — S.

Recall that colimits in the category of endofunctors of 4 are formed objectwise. So for any
object X, SX is a colimit of the diagram D at that object X with colimit injections inj’y : M"X —
SX,n € N. This implies that for any endofunctor F' of A the functor S F is a colimit with injections
inj"F : M"F — SF.

The above definition of S appears in Bartels [1]. Next we define additional data using the
universal property of the colimits SM and SH:

(1) a natural transformation x : SM — S uniquely determined by the commutativity of the

triangles below:

Mn+l
injnt1
inj"Ml foralln € N.

(2) a natural transformation € : SM — M S uniquely determined by the commutativity of the
triangles below:

Mn+1
Minj™
inj"MJ \ foralln € N.
SM —— MS

(3) a natural transformation \* : SH — HJS; indeed, define first \ : M"H — HM"
recursively as follows:

N = idy:H — H;
At = At = v M v v A A M = ML
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Then \* is uniquely determined by the commutativity of the squares below:
M"H 2 HM"
inj”HJ lHinjn foralln € N.
SH — HS

Observe that \* is a distributive law of the pointed endofunctor S over H; the unit law is
the above square for the case n = 0.

We now need to verify that the three natural transformations above are well-defined. More
precisely, we need to prove that those natural transformations are induced by appropriate cocones.
For x : SM — S and \* : SH — HS, this follows from Lemma 4.3.2 in Bartels’ thesis [1].
Hence, we make the explicit verification only for € and leave the details for the other two natural
transformations for the reader. To verify that the natural transformations Minj" : M1 — M S
form a cocone for the appropriate diagram with colimit SM consider the triangles below:

N 1Fi+ MMM ML+
foralln e N,n =14 7.
Minj™ Minjnt1
MS

These triangles commute since inj” : M"™ — S form a cocone.
Next, notice that in the definition of \* above there are two possible canonical choices for A" 1.
We now show that these two choices are equal:

Lemma A.5. For all natural numbers n we have the commutative square below:

Mo g M g

M)\"J/ J{)\"M

MHM"™ —— HM"™H1,
AM™

Proof. We prove the result by induction on n. The base case n = 0 is clear: both composites in
the desired square are simply A : M H — H M. For the induction step we need to verify that the
diagram below commutes:

M”‘HMH w M”'HHM

MM/\"J/ JMX"M

M>\7L+1 MMHM” MAaM™ MHM”M )\’VLJrlM

M)\M”l J)\M"M

MHM"™' — s HM™ M
by Mn+ 1
The left-hand and right-hand parts both commute due to the definition of \**!. The lower square
obviously commutes, and for the commutativity of the upper one apply the functor M to the induc-
tion hypothesis. Thus the desired outside square commutes. [
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Next we need to establish a couple of properties connecting the three natural transformations
X, € and A\*.

Lemma A.6. The following diagram of natural transformations commutes:

svm M s

ol

MSM —— MS.
Mx

Proof. To verify that the square in the statement commutes we extend that square by precomposing
with the injections into the colimit SM M. This yields the following diagram:

MMM M
inj® MM
M inj"t1 M
SMM 2 SM
W
MSM —— MS
. Mx -
MW w’l“
MMM M ML

The left-hand and right-hand inner squares commute by the definition of ¢, and the upper and lower
inner square commute by the definition of x. Since the outside commutes obviously, so does the
desired middle square when precomposed by any injection inj" M M of the colimit SM M. Thus,
the desired middle square commutes. ]

Lemma A.7. The following square of natural transformations commutes:

SMH -2 sHM XM, gsm
le le
SH — HS.

Proof. It suffices to verify that the desired square commutes when we extend it by precomposition
with an arbitrary colimit injection inj”* M H of SM H. To this end we consider the diagram below:

M"MH M7 M"HM ATM HM" M

W‘H l I HV
inj
SX

SMH -2 sgm 2 M, gsm

] |

SH - HS
inj’V ‘Wﬁ—l
Mn+1H HMn+1

>\n+1
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The left-hand and right-hand parts commute by the definition of y, and the lower and the upper right-
hand parts commute by the definition of A\*. The upper left-hand part commutes by the naturality of
inj". Finally, the outside commutes by the definition of \"*! together with Lemma A.5. Thus, the
desired middle square commutes when extended by any colimit injection inj” M H of the colimit

SMH. L]
Lemma A.8. The following diagram of natural transformations commutes:

SMH -2 sHM 22 gSMm

| |

MSH BYEv MHS 5 HMS

Proof. Once more it is sufficient to verify that the desired square commutes when extended by any
injection of the colimit SM H. So consider the diagram below:

M"MH M7 M"HM ATM HM"M
IanHM
SMH —22 s sgm 2 M, gsm

| |

MSH —— MHS —— HMS

.
Minj"H MA AS HMinj™
M Hinj"

MM"™H MHM™ HMM™
MA" AM™

The left-hand and right-hand parts commute by the definition of ¢, and the lower left-hand and upper
right-hand parts commute by the definition of A*. The upper left-hand and the lower right-hand parts
both commute due to the naturality of inj” and A, respectively. Finally, the outside commutes by
Lemma A.5. Thus, the desired inner square commutes when extended by any colimit injection
in"MH: M"MH — SMH. ]

We are now prepared to prove the statement of Theorem A.4.

Proof of Theorem A 4. Let ¢ : X — HMX be any A-equation. We form the following H-
coalgebra:

= SX—2° S HMX M, Niax HSMX 5 HSX . (A.5)

Since ¢ : C — HC is a terminal H -coalgebra there exists a unique H-coalgebra homomorphism h
from (SX,€) to (C, c¢). We shall prove that the morphism

inj% h
el = X—55x— "0 (A.6)

is the desired unique solution of the A-equation e.
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(1) ef is a solution of e. It is our task to establish that the outside of the diagram below com-
mutes (cf. Diagram A.4):

el

o Y
x M Lgx h C
Se
SHMX

AMx ¢
inj?{I\/IX
e HSMX
/ Hxx

Hinj%, HSX — HC

.. Hb

HMX HMC
HMet

The upper part commutes by the definition of ef, and the upper right-hand square commutes since
h is a coalgebra homomorphism. The upper left-hand part commutes due to the naturality of inj°,
the triangle below that commutes by the definition of \*, and the lowest triangle commutes by the
definition of . It remains to verify that the lowest part commutes. To this end we will now establish
the following equation

b-Me' =h-injk . (A7)
Consider the diagram below:
MX Mel MC
MSX
injt }x b
SMX
%
SX C
h

The upper triangle commutes by the definition of ef, the left-hand triangle commutes by the
definition of x and the inner triangle commutes by the definition of €. In order to establish that
the right-hand part commutes we will use that C' is a terminal H-coalgebra. Thus, we shall exhibit
H-coalgebra structures on the five objects and then show that all edges of the right-hand part of the
diagram are H-coalgebra homomorphisms. Then by the uniqueness of coalgebra homomorphisms
into the terminal coalgebra (C, ¢), we conclude that the desired part of the above diagram commutes.

For C,weuse c: C'— HC, and for M C we use A¢ - M c. We already know thatb : MC' — C
is a coalgebra homomorphism (see (A.3)). For SX, we use € from (A.5); again, we already know
that A : SX — (' is a coalgebra homomorphism. For M SX we use Agx - Me. The verification
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that M h is a coalgebra morphism comes from the diagram below:

MSx —Mh v

| |

MHSX “MAM  vrHC

o i

HMSX ——— HMC
HMh

To see that the upper square commutes, remove M and recall that h is a coalgebra homomorphism
from (SX,€) to (C, ¢). The lower square commutes by the naturality of \.
Now we show that ex : SMX — MSX is a coalgebra homomorphism, where the structure

on SM X is the composite on the left below:

€X

SMX MSX
Y
SMe MSe
SMHMX FHMX MSHMX
SAmx MMy x Me
SHMMX MHSMX
A
Ny arx SMX MHxx
HSMMX MX 0 FArSMX MHSX
Hxwmx m Asx
HSMX HMSX
Hex

The upper square commutes by the naturality of €, and the inner triangle commutes by the naturality
of A. To see that the right-hand part commutes, remove M and consider the definition of €. The
lowest part commutes due to Lemma A.6, and the middle part commutes by Lemma A.8.

Finally, we show that xx : SMX — SX is a coalgebra homomorphism. To do this we

consider the following diagram:

SMX — X 58X
SMe Se
SMHMX MM, SHMX

S x

SHMMX Nirx
Maax

HSMMX 2%, gonx
Hxumx Hxx

HSMX —— HSX
Hxx
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The upper square commutes by the naturality of y, the middle square commutes by Lemma A.7,
and the lower square commutes obviously. This concludes the proof that e is a solution of e.

(2) el in (A.6) is the unique solution of e. Suppose now that ef is any solution of the A-equation
e. Recall that the object SX is a colimit of the diagram D at object X with the colimit injections
inj’x : M"X — SX,n € N. We will use the universal property of that colimit to define a morphism
h : SX — C. To this end we need to give a cocone h,, : M"X — C, n € N, for the appropriate
diagram. We define this cocone inductively as follows:

hy = eT:MoX:X—>C;
— M x = M x Mve—t o, nen

We now verify by induction on n that the morphisms h,, n € N do indeed form a cocone. For the
base case consider the diagram below:

hn+1

MX=X_——"" . MX=MX

\ J/Mh()
ho
ho nc

C —MC

~

C

The upper part commutes by the naturality of 7, the lower triangle commutes since b : MC — C
is an algebra for the pointed endofunctor M, and the left-hand part is trivial. For the induction step
consider for any natural number n = ¢ + j the following diagram:

MMLX = MMHX MUEX MM = MY

\ %
n+1 n+2
lb

C

This diagram commutes: for the upper triangle remove M and use the induction hypothesis, and the
remaining two inner parts commute by the definition of h,,; and h,, 42, respectively.

Now we obtain a unique morphism h : SX — C such that for any natural number n the
triangle below commutes:

M"X
- hn
IanXJ( \ (A.8)
SX T) C-
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Next we show that h : SX — C is a coalgebra homomorphism from (SX,€) to the terminal
coalgebra (C, ¢). To this end we will now verify that the lower part in the diagram below commutes:

Mrx M vmEMX % HM"MX —— HM" ' X
inj}l linj}}MX JHian/IX JHinj?jl
| SX — L SHMX % gSMX —X L HSX | i
hl JHh
C = HC

It suffices to show that the desired lower part commutes when extended by any colimit injection
inj’y. Indeed, the left-hand part of the diagram above commutes by Diagram (A.8), and for the
commutativity of the right-hand part, remove H and use Diagram (A.8) again. The upper left-hand
square commutes by the naturality of inj”, the upper middle square commutes by the definition of
A*, and for the commutativity of the upper right-hand part remove H and use the definition of . It
remains to verify that the outside of the diagram commutes. We will now prove this by induction
on n. For the base case n = 0 we obtain the following diagram

X—5 SHMX

Hthl

ho HMC |Hh

g

C———HC

This diagram commutes: for the commutativity of the right-hand part remove H and use the defini-
tion of A1, and the left-hand part commutes since hg = el is a solution of the A-equation e.
Finally, for the induction step we consider the diagram below:

n+1
)\IVIX

n+1 f M7 A X
Mol MUe vl g X M vrE MM X X gyt x

Mth/ lMth+1 HMhnHJ
C

hoii|  MC M MHC — 2 SHMC | Hhose
bJ{ le
C Hc

[

We see that this diagram commutes as follows: the lower part commutes by the definition of b
(see (A.3)), the left-hand part commutes by the definition of k1, and for the commutativity of the
right-hand part remove H and use the definition of h, 2. The small upper part commutes by the
definition of \"*!, the upper right-hand square commutes by the naturality of ), and finally, to see
the commutativity of the upper left-hand square remove M and use the induction hypothesis.

We have finished the proof that b : SX — C'is a coalgebra homomorphism from (S X, €) to the
terminal coalgebra (C, ¢). Since h is uniquely determined, it follows that the solution ef = £ - injg(
is uniquely determined, too. This completes our proof. L]
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Remark A.9. As explained by Bartels in [1], Theorem A.4 extends to the case where a distributive

law A\ of M over the cofree copointed functor H x Id is given. We briefly explain the ideas.
Let D = H xIdande =71 : D — Id.

(1) A coalgebra for the copointed functor (D, ¢) is a pair (X, x) where x : X — DX is such that

ex-x = idx. Homomorphisms of coalgebras for (D, ) are the usual D-coalgebra homomorphisms.

It is trivial to prove that

c 9 po s o

is a terminal coalgebra for (D, ¢).

(2) One verifies that A-equations e : X — H M X are in bijective correspondence with morphisms
f: X — DMX such that

X pux

\ J{é]ux
nx

MX

commutes, and also that solutions of e correspond bijectively to solutions of f, i.e., morphisms
fT: X — C such that Diagram (A.4) commutes with [ replaced by D and c replaced by (c, id¢):

X ! DMX
f’fJ’ J(DM 7t
(c,id¢) Db
DC DMC

See [1], Lemma 4.3.9.

(3) The same proof as the one for Theorem A.4 shows that for every f : X — DMX as in (2)
above there exists a unique solution ff. One only replaces H by D, ¢ by (c,id¢), and one has to
verify that the coalgebrae : SX — DSX from (A.5) is a coalgebra for the copointed endofunctor,
see [1], Lemma 4.3.7.

To sum up, we obtain the following

Corollary A.10. Let ) be a distributive law of the pointed functor M over the copointed one H x 1d.
Then for every e : X — HMX there exists a unique solution, i. e., a unique e’ : X — C' such that
(A.4) commutes.

Theorem A.11. Let )\ be a distributive law of the pointed functor M over the copointed one H x 1d,
andlet b : MC — C be its M-interpretation. Consider the algebra

1

k=(HMC 2 o < ).

Then (C, k) is a cia for HM.

Indeed, to prove this result copy the proof of Theorem 3.5 replacing b: KC - C by b :
MC — C.

However, for our version of Theorem 3.6 in the current setting we need a different proof. We
start with an auxiliary lemma.

Lemma A.12. Let A : M H — H M be a distributive law of the pointed functor M over the functor
H, andletb : MC — C be its interpretation. Then the natural transformation N' = \M - M\ :
MMH — HMM is a distributive law of the pointed functor M M over H, and Mb - b is the
N -interpretation in C.
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Proof. Clearly (MM,nM -n = Mn-n :1d — MM) is a pointed endofunctor. The following
commutative diagram

H
N
MH HM
MnH HnM
/ MHn nHM \
MMH MHM HMM
M AM

shows that \' = AM - M )\ is a distributive law of the pointed functor M M over H. In fact, the
triangles commute by the assumption on A, and the remaining upper square commutes by naturality
of n; thus the outside triangle commutes.

To see that b - Mb is the X -interpretation in C, consider the following diagram:

MMC MM v e M2 pra e 2 EvMC

] oo

MC Me MHC —2 gMC
| |
C HC

[

It commutes since b is the A-interpretation in C' and by the naturality of A. In addition, b - Mb is
easily seen to be an algebra for the pointed functor (M M,nM - n) since b is one for (M, n) and n
is a natural transformation:

C
%J\\\\
77Mci ﬂcl \
MMC MC C
Mb b
This concludes the proof. ]

Theorem A.13. Let A\ : M H — HM be a distributive law of the pointed functor M over the
functor H, and let b : M C' — C be its A-interpretation. Consider the algebra

K = (MEMCME o0,
where k = c¢=! - Hb as in Theorem A.11. Then (C, k') is a cia for M H M.

Proof. We have to prove that for every flat equation morphisme : X — M HMX + C for M HM
there is a unique solution e’ : X — C'ink' = b- Mc™'- MHb : MHMC — C, i.e., a unique
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morphism e such that the outside of the diagram

T
X c C
22 |
1b,C]
HC +C MC +C
Hb—&-CT Mc+CHMc—1+C
. HMMX +C HMC +C 2 ype + o .1
HMMHCT
Avx+C
HMMC +C MHb+C
Avc+
MHMX +C MHMC +C —
MHMet+C

commutes. To this end, we define the flat equation morphism

6= (X—“SMHMX + C- 22X \gyMMx +0)

for HM M (this is the left-hand triangle). According to Lemma A.12 and Theorem A.11,

aMMe e po—< o

is a cia for HM M. So € has a unique solution e’ in this cia, i.e., the big inner part of the diagram
commutes. In the upper right-hand part, b is the A-interpretation in C'. Since that part and the two
remaining squares also commute (due to naturality of ), the desired outside commutes. Thus, e
also is a solution of e in the algebra &’ : MHMC — C.

This solution is unique, since any other solution et of e in &’ (i.e., the outside of the above
diagram with e? in lieu of e’ commutes) is a solution of € in the cia ¢! - Hb- HMb : HMMC — C
(i. e., the inner part commutes with et in lieu of ef), thus ef = ef. L]
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