
FMSoft
Lecture 7 — Bounded Model Checking
(pre-lecture version)

Tadeusz Litak
November 27, 2018

Informatik 8, FAU Erlangen-Nürnberg

1

• We have already heard about model checking
• Now we focus on (theoretical foundations of) symbolic

model checking, in particular bounded model checking
• Why do we care?
• As it turns out, we find these techniques at the heart of

both NuSMV/nuXmv and even more so, the SCADE suite
https://de.wikipedia.org/wiki/SCADE
which Christoph may or may not demonstrate. And our Chair is using is

elsewhere: we even had a Praktikum for that

• But what is it all about?

2

https://de.wikipedia.org/wiki/SCADE


• Model checking with explicit states and transition relations
(represented, say, as adjacency matrix) has its limits: it
runs into state explosion problem

• We’ve seen how complex it can be
• A 1987 breakthrough: Kenneth McMillan, while doing his

PhD at CMU, comes up with the idea of using symbolic
representations of state transition diagrams in terms of
(canonical forms for) boolean formulas!

• Ordinary propositional logic instead of temporal formalisms
• His canonical forms are Binary Decision Diagrams (BDDs),

specifically Ordered Binary Decision Diagrams (OBDDs)
• His first symbolic model checker based on this technique

was SMV—which was followed by Cadence SMV of
Cadence Berkeley Labs and NuSMV of IRST in Trento

3

• In last 20 years or so, OBDDs are part and parcel of
standard expositions of model checking techniques
See, e.g., Chapter 6 of the Huth and Ryan book if you’re interested

• But even with these, there is a limit to the number of state
variables they can efficiently handle. Still suffer from a
form of potential state explosion

• Bottleneck: finding the right ordering of state variables
• Bounded model checking (Biere/Cimatti/Clarke/Zhu,

ETAPS 1999: Symbolic Model Checking without BDDs)

4



• uses ordinary boolean formulas
• relies on powerful SAT solving techniques
• Quickly finds counterexamples of minimal size
• uses much less space than OBDDs
• does not need manual ordering of variables

5

• Crucial insight allowing encoding of temporal formulas:
• there are two main types of finite path prefixes
• Those that matter contain a back loop
Ô⇒ can represent an infinite path, thus being a potential
witness of satisfiability for a temporal formula

• Prefixes without a loop are not representing infinite paths
• Thus, bounded semantics splits into two cases:
• …with a loop: the earlier state to which there is a back loop

is the successor of the last one in the prefix
• …without a loop: no formula prefixed with G is true and

neither is a formula prefixed with X at the end of the prefix
• In order to ensure everything works, we need to restrict

attention to formulas in negation normal form

6



Recall of usual LTL semantics

• note: it’s NNF, so we need more primitives
• M, π ⊧ p if p ∈ L(π(0))
• M, π ⊧ ¬p if p /∈ L(π(0))
• M, π ⊧ φ ∧ ψ if M, π ⊧ φ and M, π ⊧ ψ
• M, π ⊧ φ ∨ ψ if M, π ⊧ φ or M, π ⊧ ψ
• M, π ⊧ Xφ if M, π1 ⊧ φ
• M, π ⊧ Fφ if ∃n ∈ N.M, πn ⊧ φ
• M, π ⊧ Gφ if ∀n ∈ N.M, πn ⊧ φ
• M, π ⊧ φUψ if ∃n ∈ N.M, πn ⊧ ψ and ∀i < n.M, πi ⊧ φ
• M, π ⊧ φRψ if

either ∃n ∈ N.M, πn ⊧ φ and ∀i≤n.M, πi ⊧ ψ
or ∀n ∈ N.M, πn ⊧ ψ

7

Bounded semantics

• A path is a k-loop if it has no more than k distinct states
• This means that for some l ≤ k, it enters an infinitely

repeating cycle looping back to l
Given a specific l, we can be more precise and call it (k, l)-path

• We define now k-semantics for formulas, notation π ⊧k φ:
• if π is a k-loop, then π ⊧k φ if π ⊧ φ
• otherwise, π ⊧k φ if π ⊧0

k φ

• where π ⊧i
k φ, for i ≤ k, is defined to capture the above:

no formula prefixed with G is true and neither is a formula
prefixed with X at the end of the prefix

8



• M, π ⊧i
k p if p ∈ L(π(i))

• M, π ⊧i
k ¬p if p /∈ L(π(i))

• M, π ⊧i
k φ ∧ ψ if M, π ⊧i

k φ and M, π ⊧i
k ψ

• M, π ⊧i
k φ ∨ ψ if M, π ⊧i

k φ or M, π ⊧i
k ψ

• M, π ⊧i
k Xφ if i < k and M, π ⊧i+1

k φ

• M, π ⊧i
k Fφ if ∃n. i ≤ n ≤ k and M, π ⊧n

k φ

• it is never the case that M, π ⊧i
k Gφ

• M, π ⊧i
k φUψ if ∃n. i ≤ n ≤ k and M, π ⊧n

k ψ and
∀j s.t. i ≤ j < n.M, π ⊧j

k φ

• M, π ⊧i
k φRψ if ∃n. i ≤ n ≤ k and M, π ⊧n

k φ and
∀j s.t. i ≤ j ≤ n.M, π ⊧j

k ψ

note the “or” clause is not there anymore: it’s like G

9

Theorem
For any M, k, π and φ (in NNF), M, π ⊧k φ implies M, π ⊧ φ

Proof.
Inductively, works because of NNF: k-satisfaction clauses
restrict normal ones and everything is monotone.

Theorem
For any finite M, π and φ (in NNF), M, π ⊧ φ implies there
exists k s.t. M, π ⊧k φ

In order to find a concrete bound on this k, we’d need to resort to previously

discussed model checking algorithms

The next step: using bounded semantics to move from LTL to
propositional logic

10



from LTL to propositional logic

• The notion of k-satisfiability can be encoded via ordinary
propositional calculus

• Given a model M with a distinguished state s1 and a
formula φ, we will construct a propositional formula
[[M, φ]]k s.t.

M, s1
⊧
CTL∗
k E[φ] iff [[M, φ]]k is satisfiable

We deliberately switch to indexing from 1: you’ll see why

• Combined with above theorems, this will yield
M, s1

⊧
CTL∗ E[φ] iff [[M, φ]]k is satisfiable for some k

and still further
M, s1

⊧
LTL
(¬φ)NNF iff [[M, φ]]k is unsatisfiable for all k

Recall: M, s ⊧LTL φ iff M, s ⊧CTL
∗

A[φ]

• In fact, one does not need to scan infinitely many k: it’s
always bound by the diameter of M
It’s always helpful to have a better bound than the size of M.

11



• Recall your NuSMV experience: states are really vectors of
state variables
let’s assume all state variables boolean

in principle always doable for enumerative types, if painful

• This is why the size of M grows pretty fast
• E.g., recall how many states we have in

VAR
message : boolean;
control : boolean;
success : boolean;

• Each state is a tuple:
s = (s(message), s(control), s(success))

12

• But labelling is just saying which state variables hold at a
given state …

• …and a state is completely determined by its labelling!
• e.g. L(s) = {message,success} equivalent to

s = (⊺,�,⊺)

• Still more abstractly: each s is of the form (s1, s2, s3) and
for this concrete s, L(s) = {1,3}
i.e., atoms are now coordinate numbers

13



• Now for the transition relation
(s1, . . . ,s3)Ð→ (s′1, . . . ,s′3)

• Recall
next(success) := next(control);
next(control) :=
case

success : !control;
TRUE : control;

esac;
next(message) :=
case

success : {TRUE, FALSE};
TRUE : message;

esac;

14

• The transition relation

(s1, . . . , sn)Ð→ (s′1, . . . , s′n)

is defined in each M by a DNF of (in)equalities, e.g.,

((s1 = s′2) ∧ (s3 ≠ s′3)) ∨ (s2 = s′4)

• From now on, we will write TM(s, s′) for this formula. It is
called the transition predicate

• We thus use s, s′ as (meta)variables ranging over vectors.
For any k, fix s1, . . . sk to be a sequence of such
(meta)variables

• For each atom p (which is now identified with a coordinate
number), we can write “p(si)” to abbreviate “si

p = ⊺”
• Atoms either of the form “si

p = sj
q” or of the form “si

p = ⊺”

15



• We already have the first conjunct of our [[M, φ]]k

• It is [[M]]k ∶=
k−1
⋀
i=1

TM(si , si+1)
see why I didn’t want to start from 0?

• Now we need to encode the bounded semantics

16

Recall the loopless variant of k-semantics …

• M, π ⊧i
k p if p ∈ L(π(i))

• M, π ⊧i
k ¬p if p /∈ L(π(i))

• M, π ⊧i
k φ ∧ ψ if M, π ⊧i

k φ and M, π ⊧i
k ψ

• M, π ⊧i
k φ ∨ ψ if M, π ⊧i

k φ or M, π ⊧i
k ψ

• M, π ⊧i
k Xφ if i < k and M, π ⊧i+1

k φ

• M, π ⊧i
k Fφ if ∃n. i ≤ n ≤ k and M, πn ⊧i

k φ

• it is never the case that M, π ⊧i
k Gφ

• M, π ⊧i
k φUψ if ∃n. i ≤ n ≤ k and M, π ⊧n

k ψ and
∀j s.t. i ≤ j < n.M, π ⊧j

k φ

• M, π ⊧i
k φRψ if ∃n. i ≤ n ≤ k and M, π ⊧n

k φ and
∀j s.t. i ≤ j ≤ n.M, π ⊧j

k ψ

note the “or” clause is not there anymore: it’s like G

17



Now for i ≤ k define …

• [[p]]ik ∶= p(si)
• [[¬p]]ik ∶= ¬p(si)
• [[φ ∧ ψ]]ik ∶= [[φ]]ik ∧ [[ψ]]ik
• [[φ ∨ ψ]]ik ∶= [[φ]]ik ∨ [[ψ]]ik
• [[Xφ]]ik ∶= [[φ]]i+1

k if i < k, else �

• [[Fφ]]ik ∶=
k
⋁
j=i
[[φ]]jk

• [[Gφ]]ik ∶= �

• [[φUψ]]ik ∶=
k
⋁
j=i
([[ψ]]jk ∧

j−1
⋀

n=i
[[φ]]nk )

• [[φRψ]]ik ∶=
k
⋁
j=i
([[φ]]jk ∧

j
⋀

n=i
[[ψ]]nk )

18

• For the loop variant, we need to pick l ≤ k: the state
variable to which k loops back

• sl is the successor of sk , even though it lies in its past
• Of course, we don’t know where it exactly it loops back to
• We will thus need to form a disjunction of suitably

translated formulas for each l … but let’s not jump ahead

19



Now for i, l ≤ k define …

l[[p]]ik ∶= p(si), l[[¬p]]ik ∶= ¬p(si)
l[[φ ∧ ψ]]ik ∶= l[[φ]]ik ∧ l[[ψ]]ik , l[[φ ∨ ψ]]ik ∶= l[[φ]]ik ∨ l[[ψ]]ik

l[[Xφ]]ik ∶= l[[φ]]succ(i)
k , where succ(k) ∶= l

l[[Fφ]]ik ∶=
k
⋁

j=min(i,l)
l[[φ]]jk

l[[Gφ]]ik ∶=
k
⋀

j=min(i,l)
l[[φ]]jk

l[[φUψ]]ik ∶=
k
⋁
j=i
(l[[ψ]]jk ∧

j−1
⋀

n=i
l[[φ]]nk )∨

i−1
⋁
j=l
(l[[ψ]]jk ∧

k
⋀

n=i
l[[φ]]nk ∧

j−1
⋀
n=l

l[[φ]]nk )

l[[φRψ]]ik ∶=
k
⋁
j=i
(l[[φ]]jk ∧

j
⋀

n=i
l[[ψ]]nk ) ∨

k
⋀

j=min(i,l)
l[[ψ]]jk ∨

i−1
⋁
j=l
(l[[φ]]jk ∧

k
⋀

n=i
l[[ψ]]nk ∧

j
⋀
n=l

l[[ψ]]nk )

20

• Each element of the family {l[[φ]]1k}l≤k should give rise to a
disjunct of (some subformula of) [[M, φ]]k

• But clearly, each such disjunct should also state that k
loops back precisely to l rather than some other l′ ≤ k

• We already know how to say it: lLMk ∶= TM(sk , sl)
recall this was the DNF of (in-)equalities defining Ð→ in M

• Hence, by the way, we also know how to say that the path
is a k-loop: LMk ∶= ⋁k

l=1 lLMk
• Finally, we can define

[[M, φ]]k ∶= [[M]]k ∧ ((¬LMk ∧ [[φ]]1k)∨
k
⋁
l=1
(lLMk ∧ l[[φ]]1k))

• This is a propositional formula, whose atoms are either of
the form “si

p = sj
q” or of the form “si

p = ⊺”

21



Theorem
Given a model M with a distinguished state s1 and a formula φ,
we have

M, s1 ⊧CTL∗k E[φ] iff [[M, φ]]k is satisfiable

Corollary

M, s1 ⊧CTL∗ E[φ] iff [[M, φ]]k is satisfiable for some k

Corollary

M, s1 ⊧LTL (¬φ)NNF iff [[M, φ]]k is unsatisfiable for all k

Recall: M, s ⊧LTL φ iff M, s ⊧CTL
∗

A[φ]

22

• Recall again: in fact, one does not need to scan infinitely
many k. It’s always bound by the diameter of M

• This allow us to replace a potentially infinite disjunction
over all possible k’s with a finite one
As noted by Biere et al. 1999, when a Kripke structure comes with an

explicit state representation, diameter computed by an easy graph

algorithm, but with a boolean representation, encoding that n is the

diameter may require a QBF. Less tight constraints, like being the

recurrence diameter, easier to encode

• Another important complexity observation: the size of
[[M, φ]]k can be made polynomial in φ using the technique
of sharing common subformulas

23



• We can now use very powerful SAT-solving techniques.
Some, like Stalmarck’s algorithm, patented: you cannot
write a commercial tool using it

• In fact, the company owning it is Prover Technologies: the
engine behind the SCADE tool

• Bounded model checking extended with k-induction and
various heuristics
for some, see Generating Property-Directed Potential Invariants By

Backward Analysis by Champion, Delmas, Dierkes; Instantiation-Based

Invariant Discovery by Kahsai, Ge, Tinelli

• Standard SAT-solving techniques, e.g., the
Davis-Putnam-Logemann-Loveland (DPLL) algorithm
(1962) …

24


	from LTL to propositional logic

