FMSoft
Lecture 7 — Bounded Model Checking

(pre-lecture version)

Tadeusz Litak
November 27, 2018

Informatik 8, FAU Erlangen-Niirnberg

o We have already heard about model checking

o Now we focus on (theoretical foundations of) symbolic

model checking, in particular bounded model checking
e Why do we care?

e As it turns out, we find these techniques at the heart of
both NuSMV /nuXmv and even more so, the SCADE suite
https://de.wikipedia.org/wiki/SCADE
which Christoph may or may not demonstrate. And our Chair is using is

elsewhere: we even had a Praktikum for that

e But what is it all about?

https://de.wikipedia.org/wiki/SCADE

Model checking with explicit states and transition relations
(represented, say, as adjacency matrix) has its limits: it

runs into state explosion problem

We’ve seen how complex it can be

A 1987 breakthrough: Kenneth McMillan, while doing his
PhD at CMU, comes up with the idea of using symbolic
representations of state transition diagrams in terms of

(canonical forms for) boolean formulas!
Ordinary propositional logic instead of temporal formalisms

His canonical forms are Binary Decision Diagrams (BDDs),

specifically Ordered Binary Decision Diagrams (OBDDs)

His first symbolic model checker based on this technique
was SMV—which was followed by Cadence SMV of
Cadence Berkeley Labs and NuSMV of IRST in Trento

In last 20 years or so, OBDDs are part and parcel of
standard expositions of model checking techniques

See, e.g., Chapter 6 of the Huth and Ryan book if you’re interested

But even with these, there is a limit to the number of state
variables they can efficiently handle. Still suffer from a

form of potential state explosion
Bottleneck: finding the right ordering of state variables

Bounded model checking (Biere/Cimatti/Clarke/Zhu,
ETAPS 1999: Symbolic Model Checking without BDDs)

uses ordinary boolean formulas

relies on powerful SAT solving techniques
Quickly finds counterexamples of minimal size
uses much less space than OBDDs

does not need manual ordering of variables

Crucial insight allowing encoding of temporal formulas:
there are two main types of finite path prefixes

Those that matter contain a back loop
— can represent an infinite path, thus being a potential

witness of satisfiability for a temporal formula
Prefixes without a loop are not representing infinite paths
Thus, bounded semantics splits into two cases:

..with a loop: the earlier state to which there is a back loop

is the successor of the last one in the prefix

..without a loop: no formula prefixed with G is true and

neither is a formula prefixed with X at the end of the prefix

In order to ensure everything works, we need to restrict

attention to formulas in negation normal form

Recall of usual LTL semantics

note: it’s NNF, so we need more primitives
M,mEepif peL(w(0))

M,mEe-pif p¢ L(w(0))

M,meprp it M,mE ¢ and M, 7=y
M,mepvyift M,mEdor M, mEY
M,mEXpif M,m1 E ¢

M,meFpif IneN. M, 1, E ¢

M,reGpif YneN. M, 7, E @

M, mEoUy if AneN. M, 1, ¢ and Vi< n.M,m; E ¢
M, = ¢RY if

either An e N. M, 7, £ ¢ and Vi<n. M, m;
or Yne N. M, 7, Y

Bounded semantics

A path is a k-loop if it has no more than £ distinct states

This means that for some [< k, it enters an infinitely
repeating cycle looping back to [
Given a specific [, we can be more precise and call it (k, [)-path
We define now k-semantics for formulas, notation 7 &5 ¢:
e if mis a k-loop, then 7wy ¢ if T E ¢
o otherwise, m kg ¢ if ™ lzg [0)

where lzi ¢, for i < k, is defined to capture the above:

no formula prefived with G is true and neither is a formula
prefized with X at the end of the prefix

5 M,thpifpel)(w(z’))

. M,7TI=;C -pif p ¢ L(w(7))

o« M,mELdAYiIf M,mEL ¢ and M, EL Y

. M,le}%(bvwif/\/l,ﬁlz};gbor/\/l,ﬂlzzw

e« M,mELX¢ifi<kand M,

. M,lezFqﬁifEIn.iSnSkandM,WI:Z(b

e it is never the case that M, w I:};;qu

o« M,mE! ¢Ut if In. i< n <k and M, EL ¢ and
Vj s.t. i§j<n../\/l,7ﬂ:g€q§

. M,leégbRw if In. i <n<kand M, 7k} ¢ and
Vist. i<j<n. M,mEe 1

note the “or” clause is not there anymore: it’s like G

Theorem
For any M, k, m and ¢ (in NNF), M,w & ¢ implies M, 7 E ¢

Proof.
Inductively, works because of NNF': k-satisfaction clauses

restrict normal ones and everything is monotone. []

Theorem
For any finite M, 7w and ¢ (in NNF), M, E ¢ implies there

exists k s.t. M, Ey, ¢

In order to find a concrete bound on this k, we’d need to resort to previously

discussed model checking algorithms

The next step: using bounded semantics to move from LTL to

propositional logic

10

from LTL to propositional logic

The notion of k-satisfiability can be encoded via ordinary
propositional calculus
Given a model M with a distinguished state s' and a

formula ¢, we will construct a propositional formula

I[M, ¢]]l<; S.t.
M,s' =Y E[@] i [M,]k is satisfiable

We deliberately switch to indexing from 1: you’ll see why

Combined with above theorems, this will yield
M, st T E[¢] iff [M,e]s is satisfiable for some k

and still further
M, st T ()N iff [M, @]k is unsatisfiable for all k

Recall: M, st ¢ iff M, s S Alo]
In fact, one does not need to scan infinitely many k: it’s
always bound by the diameter of M

It’s always helpful to have a better bound than the size of M.

11

Recall your NuSMV experience: states are really vectors of

state variables
let’s assume all state variables boolean

in principle always doable for enumerative types, if painful
This is why the size of M grows pretty fast
E.g., recall how many states we have in

VAR
message : boolean;
control : boolean;
success : boolean;

Each state is a tuple:
s=(s(message),s(control), s(success))

But labelling is just saying which state variables hold at a

given state ...
..and a state is completely determined by its labelling!

e.g. L(s)={message,success} equivalent to
s=(T,L,7T)

Still more abstractly: each s is of the form (s1, s2,s3) and
for this concrete s, L(s) ={1,3}

i.e., atoms are now coordinate numbers

12

13

e Now for the transition relation
(s1,...,s3) —(s'1,...,s'3)

e Recall

next(success) :
next(control) :
case
success : !control;
TRUE : control;
esac;
next(message) :=
case
success : {TRUE, FALSE};
TRUE : message;
esac;

next(control);

14

e The transition relation

(31,...,3n)—>(31,...,3;)

is defined in each M by a DNF of (in)equalities, e.g.,

((s1=53) A (3% 83)) v (2= 53)

o From now on, we will write TM(s, s') for this formula. It is

called the transition predicate

o We thus use s, s’ as (meta)variables ranging over vectors.
For any k, fix s',...s" to be a sequence of such

(meta)variables

o For each atom p (which is now identified with a coordinate

number), we can write “p(s")” to abbreviate “sj = T”

e Atoms either of the form “sé = sé” or of the form “sé =T

15

o We already have the first conjunct of our [M, ¢]x
k-1 .
o Ttis [M]p:= A TM(s?, s
=1
see why I didn’t V\?ant to start from 07

e Now we need to encode the bounded semantics

16

Recall the loopless variant of k-semantics ...

. M,thpifpeL(w(i))

. M,7TI=;C -pif p ¢ L(w(7))

o« M,mELdAYiIf M,mEL ¢ and M, EL Y

e M,mELdVYif M,mELGor M,mEL Y

e« M,mE!X¢if i<kand M,r L

o« M,mELF¢ifIn.i<n<kand M,m, =L ¢

e it is never the case that M, |=};qu

. M,wlzz(bUzpifEln.iSnSkandM,WI:ZQpand
Vist. i<j<n. M,me, ¢

. M,leé(j)Rw if In. i <n<kand M, 7k} ¢ and
Vist. i<j<n. M,

note the “or” clause is not there anymore: it’s like G

17

Now for 7 < k define ...

e [pl;:=p(s)

e [-p]}=-p(s")

o [oAv]} =[]~ [4];

o [ovoli=[el;vIvI;

o [Xoli=[o]itif i<k, else 1
 [Foli= VoK,

- [Gol; =1

+ [UVL = V(KA A LT

+ [6Ru1 = V(GK A ALV

18

e For the loop variant, we need to pick [< k: the state

variable to which £ loops back
o s'is the successor of s*, even though it lies in its past
e Of course, we don’t know where it exactly it loops back to

e We will thus need to form a disjunction of suitably

translated formulas for each [... but let’s not jump ahead

19

Now for 7,/ < k define ...

el =p(sY), -k = -p(s") | |
Lonily =delindvly Loy oli=doliv vl
IXelt = l[[gb]lzucc(l), where succ(k) :=1
: k :
[Fel, = Vv lol,

j=min(i,l)

[Gell = A eF

j=min(i,l)

) . j—1
LUVT; = VLK A A1)
5 . -1

VOWEA A Q9T A A 91D
LoRvly = VOISEA AUID Y A vl v

j=min(1,l

97— . k
jj(zl[qs]l?m AT~ A 61

o Each element of the family {;[¢];}ix should give rise to a
disjunct of (some subformula of) [M, ¢]x

e But clearly, each such disjunct should also state that &
loops back precisely to [rather than some other I’ < k

e We already know how to say it: ;L= TM(s", s')
recall this was the DNF of (in-)equalities defining — in M

e Hence, by the way, we also know how to say that the path
is a k-loop: Lﬁ/‘ = \/f‘;1 lLéVl

o Finally, we can define

[M, 61 = [MTe A (LM A [610)v l_\k/lwzﬁ N

o This is a propositional formula, whose atoms are either of

the form “sé = sa” or of the form “sé = 17

20

21

Theorem
Given a model M with a distinguished state s' and a formula ¢,

we have

M, st I:%TL* El¢] iff [M,¢]r is satisfiable

Corollary

M, sP eV B[] iff [M,]k is satisfiable for some k

Corollary

M, st ELTE () YNE i [M, ¢ s unsatisfiable for all k

Recall: M, s =T ¢ iff M, s =CTH Al o]

e Recall again: in fact, one does not need to scan infinitely

many k. It’s always bound by the diameter of M

e This allow us to replace a potentially infinite disjunction
over all possible k’s with a finite one
As noted by Biere et al. 1999, when a Kripke structure comes with an
explicit state representation, diameter computed by an easy graph
algorithm, but with a boolean representation, encoding that n is the
diameter may require a QBF'. Less tight constraints, like being the

recurrence diameter, easier to encode

e Another important complexity observation: the size of
[M,] can be made polynomial in ¢ using the technique

of sharing common subformulas

22

23

We can now use very powerful SAT-solving techniques.
Some, like Stalmarck’s algorithm, patented: you cannot

write a commercial tool using it

In fact, the company owning it is Prover Technologies: the
engine behind the SCADE tool

Bounded model checking extended with k-induction and
various heuristics

for some, see Generating Property-Directed Potential Invariants By
Backward Analysis by Champion, Delmas, Dierkes; Instantiation-Based

Invariant Discovery by Kahsai, Ge, Tinelli

Standard SAT-solving techniques, e.g., the
Davis-Putnam-Logemann-Loveland (DPLL) algorithm
(1962) ...

24

	from LTL to propositional logic

