FMSoft
Lecture 5 — Model checking for CTL

(pre-lecture version)

Tadeusz Litak
Nov 13, 2018

Informatik 8, FAU Erlangen-Niirnberg

Why both smallest and greatest fixpoints are going to be

important for us?

Recall our goal: computing

[p]Y = {seM|sE ¢}

There are some obvious functions 2° — 2°
Consider (EX)A:={seS|Ft.s — t&tec A} ..
~and (AX)A:={se S |Vt.s—t=>1tec A}
~and fi(A) = [¢]M n (AX)A4 ..

..now contrast it with f(A) = [¢]™ u (EX)A4

Equivalences for fixpoint computation

e AGo = ¢ AAXAGH

e EGH=pAEXEGH

e AFd= bV AXAFS

e EF¢=¢vEXEFQ

o A[U] =9V (¢ AAXA[$UY])
. E[¢Uy] =¥V (¢ A EXE[gU])

Denotations as fixpoins

o [AG]™ = [¢]™ n (AX)[AGE]
o [EGoI™ = [¢]™ n (EX)[EGo]™
o [AFEIM =[] u (AX)[AF]
o [EFgI™ = [¢]™ U (EX)[EF]
o [A[oUL]I = [v]™ U ([¢]™ n (AX)[AloUw]TM)
o [E[eUv]I™ =[] u ([o]™ n (EX)[E[0Uw]]™)

e Which one is greatest, which one is least?

e Now for actual model checking

e Recall: we could formulate CTL using EX, EU, AF as modal
primitives
and, say A, - as L as propositional ones

o All of them computable using least fixpoints

e As it turns out, this is a suboptimal choice ...

e ..but let us describe this “pure least fixpoints” strategy first

o We compute [¢]™ passing through the model and

labelling states with increasingly complex subformulas of ¢

nothing labelled with 1
clauses for 11 A Y9 and —1) obvious

the clause for EXvy obvious too

[AFIM = [] u (AX)[AFpTM:
o if a state labelled with), label it with AF ...
e ..then the states whose all successors labelled with AF ...
o ..repeat the last step until no new states labelled

[E[v1U2]1 = [0 U ([9n 1M 0 (BX)[E [91U2] 1)
o if a state labelled with 15, label it with E[¢Uo] ..
e ..then label these states which are already labelled with)¢
and have a successor with E[¢1 U] ...
e ..repeat the last step until no new states labelled

Note on complexity: a naive implementation yields
2
O(|o] * |S]° + [—1)
With some care in the implementation of AF labelling, we should be able to
get down to O(|@| * |S| * (|S|+| — |)) claimed by Huth&Ryan Logic in

Computer Science book, § 3.6 on model-checking algorithms

linear in the size of the formula, quadratic in the size of the

model

Improvement

e make sure you do, e.g., backwards breadth-first search to

avoid visiting same mode
e replace AF with EG
« [EGYIM = [¥]M n (EX)[EGuIM
e This needs greatest fixpoint!
e ..you need to start with 7 and keep deleting points ...

o ..find the maximal strongly connected components (SCCs)
among those satisfying 1 ...
This is so-called Tarjan’s algorithm
Does not revisit nodes, forms a spanning forest of search trees, SCCs

recovered as its subtrees

e is it enough?

e ..n0, one needs to find (backwards breadth-first search?)
all points from which a -SCC is reachable

o Complexity O(|¢| * (|S]+]—1))
Huth&Ryan, § 3.6
Baier & Katoen, Principles of Model Checking, § 6.4.3

e _..linear both in the size of the formula and the size of the

model!

10

Fairness?

e We mentioned liveness and especially fairness
o recall FAIRNESS keyword in NuSMV /nuXmv ..

e how would they fare here?

11

e strong fairness condition: a conjunction of the form
A(GF i > GFy;)
i<n
where ¢;, 1¥; are CTL formulas
o weak fairness condition: a conjunction of the form
N (FGoi > GFey)
i<n
where ¢;, 1; are CTL formulas
e unconditional fairness condition: a conjunction of the form
/\ GF;
i<n
where 1;’s are CTL formulas
e More generally, a fairness condition C' is any conjunction of
the above three
Baier and Katoen, Principles of Model Checking, § 6.5

12

e Consider a path 7 in M, ¢, ¥ CTL-formulas

o M, E GF¢ if for infinitely many i, M, (7) & ¢

e M, mEGF¢p - GFy if ...

e ..whenever ¢ holds on infinitely many points, so does ¥
e M,mEFGp - GFy if ...

e ..whenever ¢ holds on some suffix of 7, 1) holds on

infinitely many points
e A path is C-fair if it satisfies all the conjuncts of C
o IIo(s) is the set of all C-fair paths starting at s

Presenting FCTL

e« Now let us extend the language of CTL with
o ...EcXo|Ec[oUy]|Ac[oUy]
o M,sEEgXg if exists mella(s) s.t. M,n(1) = ¢

o M,skEEg[oUy] if exists me Il (s) and n e N s.t.
M, m(n) ey and for any ¢ < n, M, 7(i) E ¢

o M,s=Aq[opUr] if for all m € I1(s) there exists n e N s.t.

M, m(n) e and for any i < n, M,n(i) E ¢

e Other connectives work in a similar way

13

14

Any improvements in expressivity?

o Consider even the simplest unconditional fairness condition

GF-1idle
e How would you express Agr_iqleG¢ in ordinary CTL?
e In LTL you simply write GF-1dle — G¢
o AG(AGAF-1dle — ¢) does not have the same meaning ...

15

Extending the model checking algorithm

e As before, EoG, EoX and E U form a sufficient set of

connectives

e Moreover, we have additional equivalences:

EcleUy] =E[oU (¢ AECGT)]
EcXd=EX(¢AEGGT)

e Proof sketch: 7 satisfies C' iff all its suffixes do

In other words, a single finite prefix is irrelevant anyway
e Thus, we just need to extend the algorithm with E-G¢

o We also need to pre-compute extensions of all CTL

subformulas used in C

16

Improvement

e make sure you do, e.g., backwards breadth-first search to

avoid visiting same mode
o for [EoGy]M, you again start with deleting non-1) points ...

o ..find the maximal strongly connected components (SCCs)
among those satistying 1 ...

our old friend Tarjan’s algorithm

e and furthermore depending on C' ..

17

o M, E GF¢ if for infinitely many i, M, 7w (7) & ¢
e ..to check EgryG1p, delete all SCC’s with no ¢

e M,mE GF¢p - GFy if it is not the case that ¢ holds on
infinitely many points and yet x holds only on finitely

many points

e ..to check Egry-cryG?, delete all SCC’s where ¢ occurs,
but x does not

e M, mEFG@p - GFy if it is not the case that ¢ holds on

some suffix of 7 and yet y only on finitely many points

e ..to check Ergy-cry G, delete all SCC’s where ¢ holds
everywhere, but 1) nowhere

remember that a SCC represents a suffix rather than the entire path

18

Finish as before

one needs to find (backwards breadth-first search?) all
points from which a ¢-SCC is reachable

same procedure for every subformula of ¢ of the form

EcGY
Complexity O(|¢] * |C] (|S]+] — 1)
..still linear both in |¢| and in |S)|!

Of course, rather awkward syntax and semantics

19

Aside on CTL/

A new extension CTL/ (fair CTL) proposed by Ghilardi and
van Gool at LiCS 2016

Deeper mathematical motivation, no actual model checking in that paper

Instead of these fairness constraints and all the new

connectives like E -G, EoX and EoU ..
..just return to ordinary CTL and replace EG with E[¢G1)]

M, s E[¢pGy] if for some 7w € TI(s), ¢ holds at all points of
7w and 9 holds at infinitely many points of 7

The old EG¢ is expressible as E[¢pGT]

20

Binary EG expresses directly unconditional fairness ...
EcreGY is E[9G @]

How do you express weak fairness Ergg-cr, G 7
Note that (FG¢p - GFx) =11 (GF-¢ v GFy)

Hence, you can do it as E[¢)G=¢] v E[¢Gx]

Can you express strong fairness Egry_cr Gy 7

..check it out!

However, in order to compare LTL and CTL systematically,

let us consider something still more powerful

CTL* (Emerson and Clarke 1986), a language whose syntax
incorporates both

e explicit path formulas and
e explicit state formulas

Price: model checking no longer polynomial in ||

In fact, it can be done by reduction to model checking for

LTL that Christoph is going to discuss

Still more powerful: fixpoint calculi and parity games

Beyond the scope of this lecture but amazingly effective

21

22

