FMSoft Lecture 5 — Model checking for CTL

(pre-lecture version)

Tadeusz Litak Nov 13, 2018 Informatik 8, FAU Erlangen-Nürnberg

• Recall our goal: computing

$$\llbracket \phi \rrbracket^{\mathcal{M}} \coloneqq \{ s \in \mathcal{M} \mid s \vDash \phi \}$$

- There are some obvious functions $2^S \rightarrow 2^S$
- Consider $(\mathsf{EX})A \coloneqq \{s \in S \mid \exists t. s \longrightarrow t \& t \in A\} \dots$
- ...and $(AX)A := \{s \in S \mid \forall t. s \longrightarrow t \Rightarrow t \in A\}$
- ...and $f_1(A) = \llbracket \phi \rrbracket^{\mathcal{M}} \cap (\mathsf{AX})A \dots$
- ...now contrast it with $f_2(A) = \llbracket \phi \rrbracket^{\mathcal{M}} \cup (\mathsf{EX})A$

1

3

- $\llbracket \mathsf{E}[\phi \mathsf{U}\psi] \rrbracket^{\mathcal{M}} = \llbracket \psi \rrbracket^{\mathcal{M}} \cup (\llbracket \phi \rrbracket^{\mathcal{M}} \cap (\mathsf{EX}) \llbracket \mathsf{E}[\phi \mathsf{U}\psi] \rrbracket^{\mathcal{M}})$
- $\llbracket \mathsf{A} \llbracket \phi \mathsf{U} \psi \rrbracket^{\mathcal{M}} = \llbracket \psi \rrbracket^{\mathcal{M}} \cup (\llbracket \phi \rrbracket^{\mathcal{M}} \cap (\mathsf{AX}) \llbracket \mathsf{A} \llbracket \phi \mathsf{U} \psi \rrbracket^{\mathcal{M}})$

- $\llbracket \mathsf{AF}\phi \rrbracket^{\mathcal{M}} = \llbracket \phi \rrbracket^{\mathcal{M}} \cup (\mathsf{AX})\llbracket \mathsf{AF}\phi \rrbracket^{\mathcal{M}}$ • $\llbracket \mathsf{EF}\phi \rrbracket^{\mathcal{M}} = \llbracket \phi \rrbracket^{\mathcal{M}} \cup (\mathsf{EX}) \llbracket \mathsf{EF}\phi \rrbracket^{\mathcal{M}}$
- $\llbracket \mathsf{EG}\phi \rrbracket^{\mathcal{M}} = \llbracket \phi \rrbracket^{\mathcal{M}} \cap (\mathsf{EX})\llbracket \mathsf{EG}\phi \rrbracket^{\mathcal{M}}$
- $\llbracket \mathsf{AG}\phi \rrbracket^{\mathcal{M}} = \llbracket \phi \rrbracket^{\mathcal{M}} \cap (\mathsf{AX})\llbracket \mathsf{AG}\phi \rrbracket^{\mathcal{M}}$

Denotations as fixpoins

• $E[\phi \cup \psi] \equiv \psi \lor (\phi \land EXE[\phi \cup \psi])$

• $A[\phi \cup \psi] \equiv \psi \lor (\phi \land AXA[\phi \cup \psi])$

- $EG\phi \equiv \phi \wedge EXEG\phi$

• $AF\phi \equiv \phi \lor AXAF\phi$

• $\mathsf{EF}\phi \equiv \phi \lor \mathsf{EX}\mathsf{EF}\phi$

- $AG\phi \equiv \phi \land AXAG\phi$

Equivalences for fixpoint computation

• Which one is greatest, which one is least?

- Now for actual model checking
- Recall: we could formulate CTL using EX, EU, AF as modal primitives

and, say $\wedge,\,\neg$ as \bot as propositional ones

- All of them computable using least fixpoints
- As it turns out, this is a suboptimal choice ...
- ...but let us describe this "pure least fixpoints" strategy first
- We compute $\llbracket \phi \rrbracket^{\mathcal{M}}$ passing through the model and labelling states with increasingly complex subformulas of ϕ

- nothing labelled with \perp
- clauses for $\psi_1 \wedge \psi_2$ and $\neg \psi$ obvious
- the clause for $\mathsf{EX}\psi$ obvious too
- $\llbracket \mathsf{AF}\psi \rrbracket^{\mathcal{M}} = \llbracket \psi \rrbracket^{\mathcal{M}} \cup (\mathsf{AX})\llbracket \mathsf{AF}\psi \rrbracket^{\mathcal{M}}$:
 - if a state labelled with $\psi,$ label it with $\mathsf{AF}\psi$...
 - ...then the states whose all successors labelled with $\mathsf{AF}\psi$...
 - ...repeat the last step until no new states labelled

- $\llbracket \mathsf{E}[\psi_1 \mathsf{U} \psi_2] \rrbracket^{\mathcal{M}} = \llbracket \psi_2 \rrbracket^{\mathcal{M}} \cup (\llbracket \psi_1 \rrbracket^{\mathcal{M}} \cap (\mathsf{EX}) \llbracket \mathsf{E}[\psi_1 \mathsf{U} \psi_2] \rrbracket^{\mathcal{M}})$
 - if a state labelled with ψ_2 , label it with $\mathsf{E}[\psi_1 \cup \psi_2]$...
 - ...then label these states which are already labelled with ψ_1 and have a successor with $\mathsf{E}[\psi_1 \cup \psi_2]$...
 - ...repeat the last step until no new states labelled
- Note on complexity: a naïve implementation yields $O(|\phi| * |S|^2 * | \longrightarrow |)$

With some care in the implementation of AF labelling, we should be able to get down to $O(|\phi| * |S| * (|S| + | \longrightarrow |))$ claimed by Huth&Ryan Logic in Computer Science book, § 3.6 on model-checking algorithms

• linear in the size of the formula, quadratic in the size of the model

- make sure you do, e.g., backwards breadth-first search to avoid visiting same mode
- replace AF with EG
- $\llbracket \mathsf{E}\mathsf{G}\psi \rrbracket^{\mathcal{M}} = \llbracket \psi \rrbracket^{\mathcal{M}} \cap (\mathsf{E}\mathsf{X})\llbracket \mathsf{E}\mathsf{G}\psi \rrbracket^{\mathcal{M}}$
- This needs greatest fixpoint!
- ... you need to start with ψ and keep deleting points ...
- ...find the maximal strongly connected components (SCCs) among those satisfying ψ ...

This is so-called Tarjan's algorithm

Does not revisit nodes, forms a spanning forest of search trees, SCCs recovered as its subtrees

• is it enough?

- ...no, one needs to find (backwards breadth-first search?) all points from which a ψ -SCC is reachable
- Complexity $O(|\phi| * (|S| + | \longrightarrow |))$ Huth&Ryan, § 3.6

Baier & Katoen, Principles of Model Checking, § 6.4.3

• ...linear both in the size of the formula and the size of the model!

Fairness?

- We mentioned liveness and especially fairness
- recall FAIRNESS keyword in NuSMV/nuXmv ...
- how would they fare here?

• strong fairness condition: a conjunction of the form

$$\bigwedge_{i \le n} (\mathsf{GF}\phi_i \to \mathsf{GF}\psi_i)$$

where $\phi_i, \, \psi_i$ are CTL formulas

• weak fairness condition: a conjunction of the form

$$\bigwedge_{i \le n} (\mathsf{FG}\phi_i \to \mathsf{GF}\psi_i)$$

where ϕ_i , ψ_i are CTL formulas

• unconditional fairness condition: a conjunction of the form

$$\bigwedge_{i \le n} \mathsf{GF}\psi_i$$

where ψ_i 's are CTL formulas

• More generally, a fairness condition C is any conjunction of the above three

Baier and Katoen, Principles of Model Checking, § 6.5

- Consider a path π in \mathcal{M}, ϕ, ψ CTL-formulas
- $\mathcal{M}, \pi \vDash \mathsf{GF}\phi$ if for infinitely many $i, \mathcal{M}, \pi(i) \vDash \phi$
- $\mathcal{M}, \pi \vDash \mathsf{GF}\phi \rightarrow \mathsf{GF}\psi$ if ...
- ...whenever ϕ holds on infinitely many points, so does ψ
- $\mathcal{M}, \pi \vDash \mathsf{FG}\phi \rightarrow \mathsf{GF}\psi$ if ...
- ...whenever ϕ holds on some suffix of π , ψ holds on infinitely many points
- A path is C-fair if it satisfies all the conjuncts of C
- $\Pi_C(s)$ is the set of all *C*-fair paths starting at *s*

Presenting FCTL

- Now let us extend the language of CTL with
- ... $\mathsf{E}_{C}\mathsf{X}\phi \mid \mathsf{E}_{C}[\phi\mathsf{U}\psi] \mid \mathsf{A}_{C}[\phi\mathsf{U}\psi]$
- $\mathcal{M}, s \models \mathsf{E}_{\mathbf{C}} \mathsf{X} \phi$ if exists $\pi \in \Pi_{\mathbf{C}}(s)$ s.t. $\mathcal{M}, \pi(1) \models \phi$
- $\mathcal{M}, s \models \mathsf{E}_{C}[\phi \cup \psi]$ if exists $\pi \in \Pi_{C}(s)$ and $n \in \mathbb{N}$ s.t. $\mathcal{M}, \pi(n) \models \psi$ and for any $i < n, \mathcal{M}, \pi(i) \models \phi$
- $\mathcal{M}, s \models \mathsf{A}_{\mathbb{C}}[\phi \cup \psi]$ if for all $\pi \in \Pi_{\mathbb{C}}(s)$ there exists $n \in \mathbb{N}$ s.t. $\mathcal{M}, \pi(n) \models \psi$ and for any $i < n, \mathcal{M}, \pi(i) \models \phi$
- Other connectives work in a similar way

- Consider even the simplest unconditional fairness condition GF¬idle
- How would you express $A_{GF\neg idle}G\phi$ in ordinary CTL?
- In LTL you simply write $GF\neg idle \rightarrow G\phi$
- AG(AGAF¬idle $\rightarrow \phi$) does not have the same meaning ...

- As before, E_CG , E_CX and E_CU form a sufficient set of connectives
- Moreover, we have additional equivalences:

 $E_{C}[\phi \cup \psi] \equiv E[\phi \cup (\psi \land E_{C}G \top)]$ $E_{C}X\phi \equiv EX(\phi \land E_{C}G \top)$

- Proof sketch: π satisfies C iff all its suffixes do In other words, a single finite prefix is irrelevant anyway
- Thus, we just need to extend the algorithm with $E_C G \phi$
- We also need to pre-compute extensions of all CTL subformulas used in ${\cal C}$

15

Improvement

- make sure you do, e.g., backwards breadth-first search to avoid visiting same mode
- for $\llbracket E_C G \psi \rrbracket^{\mathcal{M}}$, you again start with deleting non- ψ points ...
- ...find the maximal strongly connected components (SCCs) among those satisfying ψ ... our old friend Tarjan's algorithm
- and furthermore depending on C ...

- $\mathcal{M}, \pi \models \mathsf{GF}\phi$ if for infinitely many $i, \mathcal{M}, \pi(i) \models \phi$
- ...to check $E_{\mathsf{GF}\phi}\mathsf{G}\psi$, delete all SCC's with no ϕ
- *M*, *π* ⊨ GFφ → GFχ if it is not the case that φ holds on infinitely many points and yet χ holds only on finitely many points
- ...to check $E_{\mathsf{GF}\phi\to\mathsf{GF}\chi}\mathsf{G}\psi$, delete all SCC's where ϕ occurs, but χ does not
- $\mathcal{M}, \pi \vDash \mathsf{FG}\phi \to \mathsf{GF}\chi$ if it is **not** the case that ϕ holds on some suffix of π and yet χ only on finitely many points
- ...to check $\mathsf{E}_{\mathsf{FG}\phi\to\mathsf{GF}\chi}\mathsf{G}\psi$, delete all SCC's where ϕ holds everywhere, but ψ nowhere

remember that a SCC represents a suffix rather than the entire path

- one needs to find (backwards breadth-first search?) all points from which a ψ -SCC is reachable
- same procedure for every subformula of ϕ of the form $\mathsf{E}_C\mathsf{G}\psi$
- Complexity $O(|\phi| * |C| * (|S| + | \longrightarrow |)$
- ...still linear both in $|\phi|$ and in |S|!
- Of course, rather awkward syntax and semantics

Aside on CTL^{f}

- A new extension CTL^f (fair CTL) proposed by Ghilardi and van Gool at LiCS 2016
 Deeper mathematical motivation, no actual model checking in that paper
- Instead of these fairness constraints and all the new connectives like E_CG , E_CX and E_CU ...
- ... just return to ordinary CTL and replace EG with $\mathsf{E}[\phi \mathsf{G} \psi]$
- $\mathcal{M}, s \models \mathsf{E}[\phi \mathsf{G}\psi]$ if for some $\pi \in \Pi(s)$, ϕ holds at all points of π and ψ holds at infinitely many points of π
- The old $\mathsf{EG}\phi$ is expressible as $\mathsf{E}[\phi\mathsf{G}\top]$

- Binary EG expresses directly unconditional fairness ...
- ... $E_{GF\phi}G\psi$ is $E[\psi G\phi]$
- How do you express weak fairness $E_{FG\phi \to GF\chi}G\psi$?
- Note that $(\mathsf{FG}\phi \to \mathsf{GF}\chi) \equiv_{\mathsf{LTL}} (\mathsf{GF}\neg \phi \lor \mathsf{GF}\chi)$
- Hence, you can do it as $\mathsf{E}[\psi \mathsf{G} \neg \phi] \lor \mathsf{E}[\psi \mathsf{G} \chi]$
- Can you express strong fairness $E_{GF\phi \to GF\chi}G\psi$?
- ...check it out!

- However, in order to compare LTL and CTL systematically, let us consider something still more powerful
- CTL*(Emerson and Clarke 1986), a language whose syntax incorporates both
 - explicit **path** formulas and
 - explicit state formulas
- Price: model checking no longer polynomial in $|\psi|$
- In fact, it can be done by reduction to model checking for LTL that Christoph is going to discuss
- Still more powerful: fixpoint calculi and parity games Beyond the scope of this lecture but amazingly effective

21