
FMSoft
Lecture 5 — Model checking for CTL
(pre-lecture version)

Tadeusz Litak
Nov 13, 2018

Informatik 8, FAU Erlangen-Nürnberg

1

• Why both smallest and greatest fixpoints are going to be
important for us?

• Recall our goal: computing

[[φ]]M ∶= {s ∈ M ∣ s ⊧ φ}

• There are some obvious functions 2S → 2S

• Consider (EX)A ∶= {s ∈ S ∣ ∃t. s Ð→ t & t ∈ A} …
• …and (AX)A ∶= {s ∈ S ∣ ∀t. s Ð→ t ⇒ t ∈ A}
• …and f1(A) = [[φ]]M ∩ (AX)A …
• …now contrast it with f2(A) = [[φ]]M ∪ (EX)A

2



Equivalences for fixpoint computation

• AGφ ≡ φ ∧ AXAGφ
• EGφ ≡ φ ∧ EXEGφ
• AFφ ≡ φ ∨ AXAFφ
• EFφ ≡ φ ∨ EXEFφ
• A[φUψ] ≡ ψ ∨ (φ ∧ AXA[φUψ])
• E[φUψ] ≡ ψ ∨ (φ ∧ EXE[φUψ])

3

Denotations as fixpoins

• [[AGφ]]M = [[φ]]M ∩ (AX)[[AGφ]]M

• [[EGφ]]M = [[φ]]M ∩ (EX)[[EGφ]]M

• [[AFφ]]M = [[φ]]M ∪ (AX)[[AFφ]]M

• [[EFφ]]M = [[φ]]M ∪ (EX)[[EFφ]]M

• [[A[φUψ]]]M = [[ψ]]M ∪ ([[φ]]M ∩ (AX)[[A[φUψ]]]M)
• [[E[φUψ]]]M = [[ψ]]M ∪ ([[φ]]M ∩ (EX)[[E[φUψ]]]M)

4



• Which one is greatest, which one is least?

5

• Now for actual model checking
• Recall: we could formulate CTL using EX , EU , AF as modal

primitives
and, say ∧, ¬ as � as propositional ones

• All of them computable using least fixpoints
• As it turns out, this is a suboptimal choice …
• …but let us describe this “pure least fixpoints” strategy first
• We compute [[φ]]M passing through the model and

labelling states with increasingly complex subformulas of φ

6



• nothing labelled with �
• clauses for ψ1 ∧ ψ2 and ¬ψ obvious
• the clause for EXψ obvious too
• [[AFψ]]M = [[ψ]]M ∪ (AX)[[AFψ]]M:

• if a state labelled with ψ, label it with AFψ …
• …then the states whose all successors labelled with AFψ …
• …repeat the last step until no new states labelled

7

• [[E[ψ1Uψ2]]]M = [[ψ2]]M ∪ ([[ψ1]]M ∩ (EX)[[E[ψ1Uψ2]]]M)
• if a state labelled with ψ2, label it with E[ψ1Uψ2] …
• …then label these states which are already labelled with ψ1

and have a successor with E[ψ1Uψ2] …
• …repeat the last step until no new states labelled

• Note on complexity: a naïve implementation yields
O(∣φ∣ ∗ ∣S ∣2 ∗ ∣ Ð→ ∣)
With some care in the implementation of AF labelling, we should be able to

get down to O(∣φ∣ ∗ ∣S ∣ ∗ (∣S ∣ + ∣ Ð→ ∣)) claimed by Huth&Ryan Logic in

Computer Science book, § 3.6 on model-checking algorithms

• linear in the size of the formula, quadratic in the size of the
model

8



Improvement

• make sure you do, e.g., backwards breadth-first search to
avoid visiting same mode

• replace AF with EG
• [[EGψ]]M = [[ψ]]M ∩ (EX)[[EGψ]]M

• This needs greatest fixpoint!
• …you need to start with ψ and keep deleting points …
• …find the maximal strongly connected components (SCCs)

among those satisfying ψ …
This is so-called Tarjan’s algorithm

Does not revisit nodes, forms a spanning forest of search trees, SCCs

recovered as its subtrees

• is it enough?

9

• …no, one needs to find (backwards breadth-first search?)
all points from which a ψ-SCC is reachable

• Complexity O(∣φ∣ ∗ (∣S ∣ + ∣ Ð→ ∣))
Huth&Ryan, § 3.6

Baier & Katoen, Principles of Model Checking, § 6.4.3

• …linear both in the size of the formula and the size of the
model!

10



Fairness?

• We mentioned liveness and especially fairness
• recall FAIRNESS keyword in NuSMV/nuXmv …
• how would they fare here?

11

• strong fairness condition: a conjunction of the form

⋀
i≤n
(GFφi → GFψi)

where φi , ψi are CTL formulas
• weak fairness condition: a conjunction of the form

⋀
i≤n
(FGφi → GFψi)

where φi , ψi are CTL formulas
• unconditional fairness condition: a conjunction of the form

⋀
i≤n

GFψi

where ψi ’s are CTL formulas
• More generally, a fairness condition C is any conjunction of

the above three
Baier and Katoen, Principles of Model Checking, § 6.5

12



• Consider a path π in M, φ, ψ CTL-formulas
• M, π ⊧ GFφ if for infinitely many i, M, π(i) ⊧ φ
• M, π ⊧ GFφ→ GFψ if …
• …whenever φ holds on infinitely many points, so does ψ
• M, π ⊧ FGφ→ GFψ if …
• …whenever φ holds on some suffix of π, ψ holds on

infinitely many points
• A path is C -fair if it satisfies all the conjuncts of C
• ΠC(s) is the set of all C -fair paths starting at s

13

Presenting FCTL

• Now let us extend the language of CTL with
• . . .ECXφ ∣ EC [φUψ] ∣ AC [φUψ]
• M, s ⊧ ECXφ if exists π ∈ ΠC(s) s.t. M, π(1) ⊧ φ
• M, s ⊧ EC [φUψ] if exists π ∈ ΠC(s) and n ∈ N s.t.
M, π(n) ⊧ ψ and for any i < n, M, π(i) ⊧ φ

• M, s ⊧ AC [φUψ] if for all π ∈ ΠC(s) there exists n ∈ N s.t.
M, π(n) ⊧ ψ and for any i < n, M, π(i) ⊧ φ

• Other connectives work in a similar way

14



Any improvements in expressivity?

• Consider even the simplest unconditional fairness condition
GF¬idle

• How would you express AGF¬idleGφ in ordinary CTL?
• In LTL you simply write GF¬idle→ Gφ
• AG(AGAF¬idle→ φ) does not have the same meaning …

15

Extending the model checking algorithm

• As before, ECG , ECX and ECU form a sufficient set of
connectives

• Moreover, we have additional equivalences:

EC [φUψ] ≡ E[φU(ψ ∧ ECG⊺)]
ECXφ ≡ EX(φ ∧ ECG⊺)

• Proof sketch: π satisfies C iff all its suffixes do
In other words, a single finite prefix is irrelevant anyway

• Thus, we just need to extend the algorithm with ECGφ
• We also need to pre-compute extensions of all CTL

subformulas used in C

16



Improvement

• make sure you do, e.g., backwards breadth-first search to
avoid visiting same mode

• for [[ECGψ]]M, you again start with deleting non-ψ points …
• …find the maximal strongly connected components (SCCs)

among those satisfying ψ …
our old friend Tarjan’s algorithm

• and furthermore depending on C …

17

• M, π ⊧ GFφ if for infinitely many i, M, π(i) ⊧ φ
• …to check EGFφGψ, delete all SCC’s with no φ
• M, π ⊧ GFφ→ GFχ if it is not the case that φ holds on

infinitely many points and yet χ holds only on finitely
many points

• …to check EGFφ→GFχGψ, delete all SCC’s where φ occurs,
but χ does not

• M, π ⊧ FGφ→ GFχ if it is not the case that φ holds on
some suffix of π and yet χ only on finitely many points

• …to check EFGφ→GFχGψ, delete all SCC’s where φ holds
everywhere, but ψ nowhere
remember that a SCC represents a suffix rather than the entire path

18



Finish as before

• one needs to find (backwards breadth-first search?) all
points from which a ψ-SCC is reachable

• same procedure for every subformula of φ of the form
ECGψ

• Complexity O(∣φ∣ ∗ ∣C ∣ ∗ (∣S ∣ + ∣ Ð→ ∣)
• …still linear both in ∣φ∣ and in ∣S ∣!
• Of course, rather awkward syntax and semantics

19

Aside on CTLf

• A new extension CTLf (fair CTL) proposed by Ghilardi and
van Gool at LiCS 2016
Deeper mathematical motivation, no actual model checking in that paper

• Instead of these fairness constraints and all the new
connectives like ECG , ECX and ECU …

• …just return to ordinary CTL and replace EG with E[φGψ]
• M, s ⊧ E[φGψ] if for some π ∈ Π(s), φ holds at all points of
π and ψ holds at infinitely many points of π

• The old EGφ is expressible as E[φG⊺]

20



• Binary EG expresses directly unconditional fairness …
• …EGFφGψ is E[ψGφ]
• How do you express weak fairness EFGφ→GFχGψ ?
• Note that (FGφ→ GFχ) ≡LTL (GF¬φ ∨ GFχ)
• Hence, you can do it as E[ψG¬φ] ∨ E[ψGχ]
• Can you express strong fairness EGFφ→GFχGψ ?
• …check it out!

21

• However, in order to compare LTL and CTL systematically,
let us consider something still more powerful

• CTL∗(Emerson and Clarke 1986), a language whose syntax
incorporates both

• explicit path formulas and
• explicit state formulas

• Price: model checking no longer polynomial in ∣ψ∣
• In fact, it can be done by reduction to model checking for
LTL that Christoph is going to discuss

• Still more powerful: fixpoint calculi and parity games
Beyond the scope of this lecture but amazingly effective

22


