Explainability of Probabilistic Bisimilarity Distances in Labelled Markov Chains

Amgad Rady, Fank van Breugel

Chris Römmer (Presentation)

2025-11-25

Outline

- 1 Labelled Markov Chains
- 2 Probabilistic Bisimilarity Distances
- 3 Logical Characterization
- 4 Explainability
- 5 Algorithm

Labelled Markov Chains

What is a Labelled Markov Chain?

Labelled Markov Chains

What is a Labelled Markov Chain?

Definition

A Labelled Markov Chain is a tuple $\mathcal{M} = (S, L, \tau, I)$ consisting of

- a finite set S of states
- a finite set L of labels
- lacksquare a transition probability function $au: \mathcal{S} o \mathcal{D}_{\mathbb{Q}}(\mathcal{S})$
- lacksquare a labeling function I:S o L
- $\mathcal{D}_{\mathbb{Q}}(X) = \{ \mu : X \to \mathbb{Q} \mid \mu \text{ is a probability distribution} \}$

Definition

For all $\mu, \nu \in \mathcal{D}_{\mathbb{R}}(S)$, the set $\Omega_{\mathbb{R}}(\mu, \nu)$ is defined by

$$\Omega_{\mathbb{R}}(\mu,
u) = \{\omega \in \mathcal{D}_{\mathbb{R}}(S \times S) \mid \forall s \in S : \omega(s, S) = \mu(s) \wedge \omega(S, s) = \nu(s) \}$$

Probabilistic Bisimilarity

Definition

For all $\mu, \nu \in \mathcal{D}_{\mathbb{R}}(S)$, the set $\Omega_{\mathbb{R}}(\mu, \nu)$ is defined by

$$\Omega_{\mathbb{R}}(\mu,\nu) = \{\omega \in \mathcal{D}_{\mathbb{R}}(S \times S) \mid \forall s \in S : \omega(s,S) = \mu(s) \land \omega(S,s) = \nu(s)\}$$

Definition

A relation $R \subset S \times S$ is a probabilistic bisimulation if for all $(s,t) \in R$, I(s) = I(t) and there exists $\omega \in \Omega_{\mathbb{R}}(\tau(s), \tau(t))$ with $support(\omega) \subseteq R$. $s \sim t \Leftrightarrow (s,t) \in R$ for some probabilistic bisimulation R.

Probabilistic Bisimilarity Distances

Definition

The function $\Delta: (S \times S \rightarrow [0,1]) \rightarrow (S \times S \rightarrow [0,1])$ is defined by

$$extstyle \Delta(d)(s,t) = egin{cases} 0 & ext{if } s \sim t \ 1 & ext{if } \mathit{l}(s)
eq \mathit{l}(t) \ & ext{inf} \ \omega \cdot d & ext{otherwise} \end{cases}$$

Notation: $\omega \cdot d = \sum_{u,v \in S} \omega(u,v) \cdot d(u,v)$

Fixpoint of Δ

 Δ has a least fixed point δ , i.e. $\Delta(\delta) = \delta$. $\delta(s,t)$ is the *probabilistic* bisimilarity distance of s and t.

Fixpoint of Δ

 Δ has a least fixed point δ , i.e. $\Delta(\delta) = \delta$. $\delta(s,t)$ is the probabilistic bisimilarity distance of s and t.

Definition

For $n \geq 0$ the function $\delta_n : S \times S \rightarrow [0,1]$ is defined by

$$\delta_n = \begin{cases} 0 & \text{if } n = 0 \\ \Delta(\delta_{n-1}) & \text{otherwise} \end{cases}$$

Fixpoint of Δ

 Δ has a least fixed point δ , i.e. $\Delta(\delta) = \delta$. $\delta(s,t)$ is the *probabilistic* bisimilarity distance of s and t.

Definition

For $n \geq 0$ the function $\delta_n : S \times S \rightarrow [0,1]$ is defined by

$$\delta_n = \begin{cases} 0 & \text{if } n = 0 \\ \Delta(\delta_{n-1}) & \text{otherwise} \end{cases}$$

Theorem

(Kleene's fixed point theorem)

$$\lim_{n\to\infty}\delta_n\to\delta$$

The Logic \mathcal{L}_{\neg} - Grammar

Definition

The logic \mathcal{L}_{\neg} is defined by the grammar

$$\varphi, \psi ::= \mathbf{a} \mid \bigcirc \varphi \mid \neg \varphi \mid \varphi \ominus \mathbf{q} \mid \varphi \lor \psi$$

with $a \in L$ and $q \in \mathbb{Q} \cap [0,1]$

The Logic \mathcal{L}_{\neg} - Semantics

Definition

The semantics of \mathcal{L}_{\neg} are defined as follows:

- $\blacksquare \llbracket \bigcirc \varphi \rrbracket(s) = \llbracket \varphi \rrbracket \cdot \tau(s)$
- $\blacksquare \llbracket \neg \varphi \rrbracket(s) = 1 \llbracket \varphi \rrbracket(s)$
- $\blacksquare \ \llbracket \varphi \ominus q \rrbracket(s) = \max\{\llbracket \varphi \rrbracket(s) q, 0\}$
- $\blacksquare \ \llbracket \varphi \lor \psi \rrbracket(s) = \max\{\llbracket \varphi \rrbracket(s), \llbracket \psi \rrbracket(s)\}$

Definition

The logic \mathcal{L} is defined by the grammar

$$\varphi,\psi ::= \mathbf{a} \mid \bigcirc \varphi \mid \varphi \ominus \mathbf{q} \mid \varphi \oplus \mathbf{q} \mid \varphi \vee \psi \mid \varphi \wedge \psi$$

with $a \in L$ and $q \in \mathbb{Q} \cap [0,1]$

Logical Characterization

Labelled Markov Chains

Definition

The logic \mathcal{L} is defined by the grammar

$$\varphi, \psi ::= \mathbf{a} \mid \bigcirc \varphi \mid \varphi \ominus \mathbf{q} \mid \varphi \oplus \mathbf{q} \mid \varphi \vee \psi \mid \varphi \wedge \psi$$

with $a \in L$ and $q \in \mathbb{Q} \cap [0,1]$

The Logic \mathcal{L}

Definition

The logic \mathcal{L} is defined by the grammar

$$\varphi, \psi ::= \mathbf{a} \mid \bigcirc \varphi \mid \varphi \ominus \mathbf{q} \mid \varphi \oplus \mathbf{q} \mid \varphi \lor \psi \mid \varphi \land \psi$$

with $a \in L$ and $q \in \mathbb{Q} \cap [0,1]$

- $\blacksquare \llbracket \varphi \oplus \psi \rrbracket(s) = \min\{ \llbracket \varphi \rrbracket(s) + q, 1\}$
- $\blacksquare \llbracket \varphi \wedge \psi \rrbracket(s) = \min\{\llbracket \varphi \rrbracket(s), \llbracket \psi \rrbracket(s)\}$

 ${\cal L}$ can be fully expressed by ${\cal L}_\neg$

Definition (Distinguishing formula)

A formula φ_{st} is called a distinguishing formula, if

$$\delta(s,t) = \llbracket \varphi_{st} \rrbracket(s) - \llbracket \varphi_{st} \rrbracket(t)$$

Definition (Distinguishing formula)

A formula φ_{st} is called a distinguishing formula, if

$$\delta(s,t) = \llbracket \varphi_{st} \rrbracket(s) - \llbracket \varphi_{st} \rrbracket(t)$$

Question: Does φ_{st} always exist?

Definition (Distinguishing formula)

A formula φ_{st} is called a distinguishing formula, if

$$\delta(s,t) = \llbracket \varphi_{st} \rrbracket(s) - \llbracket \varphi_{st} \rrbracket(t)$$

Question: Does φ_{st} always exist? **Answer:** No

Definition (Distinguishing formula)

A formula φ_{st} is called a distinguishing formula, if

$$\delta(s,t) = \llbracket \varphi_{st} \rrbracket(s) - \llbracket \varphi_{st} \rrbracket(t)$$

Question: Does φ_{st} always exist? **Answer:** No

But $\forall s, t \in S$:

$$\delta(s,t) = \sup_{\varphi \in \mathcal{L}} \llbracket \varphi \rrbracket(s) - \llbracket \varphi \rrbracket(t)$$

Convex polytope of non-expansive functions

Definition

A function $f \in S \rightarrow [0,1]$ is non-expansive if for all $s, t \in S$:

$$|f(s)-f(t)| \leq \delta_n(s,t)$$

We denote the set of all non-expansive functions by $(S, \delta_n) \hookrightarrow [0, 1]$.

Definition

A function $f \in S \rightarrow [0,1]$ is non-expansive if for all $s, t \in S$:

$$|f(s)-f(t)| \leq \delta_n(s,t)$$

We denote the set of all non-expansive functions by $(S, \delta_n) \hookrightarrow [0, 1]$.

$\mathsf{Theorem}$

For all $s, t \in S$ with $s \not\sim t$ and l(s) = l(t) and $n \ge 0$ there exists $f_{et}^n \in (S, \delta_n) \hookrightarrow [0, 1]$ such that

$$\delta_{n+1}(s,t) = f_{st}^n \cdot (\tau(s) - \tau(t))$$

Proof.

$$\begin{split} &\delta_{n+1}(s,t) \\ &= \inf_{\omega \in \Omega_{\mathbb{R}}(\tau(s),\tau(t))} \omega \cdot \delta_n & \text{Definition} \\ &= \sup_{f \in (S,\delta_n) \hookrightarrow [0,1]} f \cdot (\tau(s) - \tau(t)) & \text{Kanotorich-Rubinstein} \\ &= \max_{f \in V((S,\delta_n) \hookrightarrow [0,1])} f \cdot (\tau(s) - \tau(t)) & \text{Convex polytope} \end{split}$$

Expressing f_{st}^n as a formula

Assume f_{st}^n can be expressed by $\llbracket \psi_{st}^n \rrbracket$:

$$\begin{split} [\![(\bigcirc \psi^n_{st}) \ominus (f^n_{st} \cdot \tau(t))]\!] (s) &= \max \{ ([\![\psi^n_{st}]\!] \cdot \tau(s)) - (f^n_{st} \cdot \tau(t)), 0 \} \\ &= \max \{ (f^n_{st} \cdot \tau(s)) - (f^n_{st} \cdot \tau(t)), 0 \} \\ &= \max \{ f^n_{st} \cdot (\tau(s) - \tau(t)), 0 \} \\ &= \max \{ \delta_{n+1}(s, t), 0 \} \\ &= \delta_{n+1}(s, t) \end{split}$$

Expressing f_{st}^n as a formula

Assume f_{et}^n can be expressed by $\llbracket \psi_{et}^n \rrbracket$:

$$\begin{split} [\![(\bigcirc \psi^n_{st}) \ominus (f^n_{st} \cdot \tau(t))]\!] (s) &= \max \{ ([\![\psi^n_{st}]\!] \cdot \tau(s)) - (f^n_{st} \cdot \tau(t)), 0 \} \\ &= \max \{ (f^n_{st} \cdot \tau(s)) - (f^n_{st} \cdot \tau(t)), 0 \} \\ &= \max \{ f^n_{st} \cdot (\tau(s) - \tau(t)), 0 \} \\ &= \max \{ \delta_{n+1}(s,t), 0 \} \\ &= \delta_{n+1}(s,t) \end{split}$$

$$\llbracket \psi_{\mathsf{st}}^{\mathsf{n}} \rrbracket = \llbracket \bigwedge_{\mathsf{u} \in \mathsf{S}} \bigvee_{\mathsf{v} \in \mathsf{S}} \psi_{\mathsf{stuv}}^{\mathsf{n}} \rrbracket = f_{\mathsf{st}}^{\mathsf{n}}$$

Construction of φ_{st}^n

For all $s, t \in S$ and $n \ge 2$:

$$arphi_{st}^n = egin{cases} extit{false}, & extit{if } s \sim t \\ extit{I(s)}, & extit{if } I(s)
eq I(t) \\ (\bigcirc \psi_{st}^{n-1}) \ominus (f_{st}^{n-1} \cdot \tau(t)) & ext{otherwise} \end{cases}$$

Construction of φ_{st}^n

For all $s, t \in S$ and $n \ge 2$:

$$\varphi_{st}^n = \begin{cases} \textit{false}, & \text{if } s \sim t \\ \textit{I(s)}, & \text{if } \textit{I(s)} \neq \textit{I(t)} \\ (\bigcirc \psi_{st}^{n-1}) \ominus (f_{st}^{n-1} \cdot \tau(t)) & \text{otherwise} \end{cases}$$

$$\psi_{st}^n = \bigwedge_{u \in S} \bigvee_{v \in S} \psi_{stuv}^n$$

Construction of φ_{st}^n

Labelled Markov Chains

For all $s, t \in S$ and $n \ge 2$:

$$\varphi_{st}^n = \begin{cases} \textit{false}, & \text{if } s \sim t \\ \textit{l(s)}, & \text{if } \textit{l(s)} \neq \textit{l(t)} \\ (\bigcirc \psi_{st}^{n-1}) \ominus (f_{st}^{n-1} \cdot \tau(t)) & \text{otherwise} \end{cases}$$

$$\psi_{st}^n = \bigwedge \bigvee \psi_{stuv}^n$$

$$\psi_{stuv}^{n} = \begin{cases} false \oplus f_{st}^{n}(u) & \text{if } f_{st}^{n}(u) = f_{st}^{n}(v) \\ (\varphi_{uv}^{n} \ominus (\delta_{n}(u, v) - (f_{st}^{n}(u) - f_{st}^{n}(v)))) \oplus f_{st}^{n}(v) & \text{if } f_{st}^{n}(u) > f_{st}^{n}(v) \\ (\varphi_{vu}^{n} \ominus (\delta_{n}(u, v) - (f_{st}^{n}(v) - f_{st}^{n}(u)))) \oplus f_{st}^{n}(u) & \text{otherwise} \end{cases}$$

Algorithm 1: FindVertex (d, μ, ν)

Computing f_{st}^n

Data:
$$d \in S \times S \rightarrow \mathbb{Q} \cap [0,1], \mu, \nu \in \mathcal{D}_Q(S)$$

Result: $\arg \max_{f \in (S,d) \hookrightarrow [0,1]} f \cdot (\mu - \nu)$
 $d_{\mu\nu} = \inf_{\omega \in \Omega_{\mathbb{R}}(\mu,\nu)} \omega \cdot d$
 $f_{\mu\nu} = \text{vertex of } \{f \in (S,d) \hookrightarrow [0,1] \mid f \cdot (\mu - \nu) = d_{\mu\nu} \}$
return $f_{\mu\nu}$

Chris Römmer

Algorithm

```
Data: \tau: S \to \mathcal{D}_{\mathbb{Q}}(S), I: S \to L, s, t \in S, N \geq 0

Result: (\varphi_{st}^n)_{n=0}^N \forall s, t \in S

// Initialization

declare formula[|S|][|S|][N+1] = \varphi_{st}^1

formula[|S|][|S|][0] = false

declare distance[|S|][|S|] = 0[|S|][|S|]

declare function[|S|][|S|][|S|] = 0[|S|][|S|][|S|]

Algorithm 2: Explain Distances
```

end