Bismilarity in Fresh-Register Automata

Paul Gauer

20.01.2026

1/56

Logical Methods in Computer Science
Volume 21, Issue 1, 2025, pp. 13:1-13:59 Submitted May 14, 2020
https://Imcs.episciences.org/ Published ~ Feb. 06, 2025

BISIMILARITY IN FRESH-REGISTER AUTOMATA

ANDRZEJ S. MURAWSKI ©°, STEVEN J. RAMSAY ©%, AND NIKOS TZEVELEKOS
@ University of Oxford, UK
b University of Bristol, UK

“Queen Mary University of London, UK

ABSTRACT. Register automata are a basic model of tation over infinite
Fresh-register automata extend register automata with the capability to generate fresh
symbols in order to model computational sconarios involving name creation. This paper

the ity of the bisimilarity problem for classes of register and fresh-
register automata. We examine all main disciplines that have appeared in the literature:
general register assi i where duplicate register values are disallowed;

and assignments without duplicates in which registers cannot be cmpty. In the general
case, we show that the problem is EXPTIME-complete.

However, the absence of duplicate values in registers enables us to identify inherent
symmetries inside the associated bisimulation relations, which can be used to establish a
polynomial bound on the depth of Attacker-winning strategies. Furthermore, they enable a
highly succinct repr tion of the cor ling bisimulations. By exploiting results
from group theory and computational group theory, we can then show membership in
PSPACE and NP respectively for the latter two register disciplines. In each case, we find
that freshness does not affect the complexity class of the problem.

The results allow us to close a complexity gap for language equivalence of deterministic
register automata. We show that deterministic language ineq for the
fragment is NP- lete, which di an old conj of Sak

Finally, we discover that, unlike in the finitc-alphabet case, the addition of pushdown
store makes bisimilarity undecidable, even in the case of visibly pushdown storage.

2/56

(Fresh-)Register Automata

3/56

Register Automata

An r-register automaton is a tuple A = (Q, X, d) where:

> (@ is a set of states
> 3 is a finite alphabet

» J is a transition function

A additionally has r registers it can access during a computation

4/56

Register Automata (RA)

Register Assignments

As input A reads tuples (t, a) € (X x D) where D is an infinite
alphabet
A register assignment is a function p : {1,...,r} = DU {#}

» p defines which value from D is stored in the register with
index i€ {1,...,r}
> If a register is empty, it is mapped to #

5/56

Register Automata (RA)

Transitions
d:QxEXPHL,....r}) x{0,....r} x P({1,..,r}) > Q
. . tX,0,Z ;. . . .

A transition, written ¢ ——= ¢, is applicable on input (¥, a) if:

> t=1t

> X is the set of register indices so that p(x) = a < xe€ X
Then:

> ais written into register i. (No write if i =0)

» The content of the registers corresponding to the indices in Z
is deleted. (p(2) is set to # for all z€ 2)

6/56

Fresh-Register Automata (FRA)

Fresh Transitions

» For fresh-register automata additionally X = & is allowed.

. \®,i,Z . . .
> A transition g LLILEN g is only applicable for inputs (t, a)
where a is fresh. Meaning this is the first time that a appears
in an input.
» (Register automata are a special case of fresh-register
automata, where always X # ®.)

7/56

Bisimilarity

8/56

Labelled Transition Systems (LTS)

An LTS is a tuple S = (C, Act, —) where:
> C is a set of configurations

> Act is a set of labels

> — is a transition relation of type C x Act x C

9/56

LTS for Fresh-Register Automata

Configurations

A configuration of an FRA A is a tuple (g, p, H) where:

» g is the current state

> p is the current register assignment

» H is the history of names read as input (only for FRA)
C4 denotes the set of all configurations of A
If A takes a transition g BXhZ, q reading input (t, d) then it
passes from (q, p, H) to (¢, p’, H') where:

» o' is obtained from p by setting p/(i) = d and p/(z) = # for all

zeZ/

» H =HU{d}
The LTS is then given by S(A) = (C4,X X D, —4), where —4
the induced transition relation.

10/56

Bisimilarity

A bisimulation is a relation R C C x C where for each (c1,) € R
and each /¢ € Act:

> if c; 5 ¢}, then there is some ¢, - ¢, with (¢}, ;) € R

> if ¢ 5 ¢, then there is some ¢; — ¢, with (¢}, c,) € R

Bisimulation Game:

» Attacker takes any valid transition from one of the current
configurations

» Defender has to match this transition (same label) for the
respective other configuration.

11/56

Problems regarding Bisimilarity in (Fresh-) Register
Automata

12/56

Restrictions on the Register Assignment

Single (S) and Multiple (M) Assignments

Register assignment can either be Single (S) or Multiple (M)

» S: If a register is nonempty, its content has to be different to
the content of all other registers

> M : Two different registers can hold the same content

Policies for empty registers

There are three different policies (F/#0/#):
> F: All registers have to be filled at all times.

>+ : Registers can be initially empty.
> . The content of a register can be deleted

13/56

Bisimilarity Problems in (Fresh-) Register Automata

Let X € {S, M} and Y € {F, #q,#}.

~ FRA(XY)

> Given: FRA with a register assignment policy that obeys the
restrictions imposed by X and Y, two configurations

k1 = (q1, p1, H) and k2 = (g2, p2, H)
» Question: is k1 ~ kp?

~ RA(XY)

» Given: RA with a register assignment policy that obeys the
restrictions imposed by X and Y, two configurations 1 and k)

» Question: is kK1 ~ Ko7

14 /56

Bisimilarity Problems in (Fresh-) Register Automata

~ FRA(SF) ~ FRA(S#0) ~ FRA(S#) ~ FRA(MF) ~ FRA(M#q) ~ FRA(M#)

~ RA(SF) ~ RA(S#) ~ RA(S#) ~ RA(MF) ~ RA(Mio) ~ RA(M#)

Bisimilarity Problems in (Fresh-) Register Automata

~FRA(SF) < ~FRA(S#o) < ~FRA(S#) < ~FRAMF) < ~FRA(M#) < ~ FRA(M#)
VI VI VI v VI VI

~RASH < ~RA(SH) < ~RASH) < ~RAMA < ~RAMAE) <~ RAME)

Bisimilarity Problems in (Fresh-) Register Automata

NP-solvable PSPACE-Complete EXPTIME-Complete

“FRAGSF)) < (~FRA(S#0)) < (~FRA(S#) < ~FRAMF) < ~FRA(M#) < -~ FRA(M#)
VI VI \ v VI VI

~RASA) < \~RAS#)) < (SRAGSH) < ~RAMP) < ~RAM#) < ~RAMA)

Alternating Linear Bounded Automata

16 /56

Alternating Linear Bounded Automata

An alternating linear bounded automaton (ALBA) is a tuple
M — <r7 QVa QH? 490, 9acc; Qrej7 5) where:
I" is a finite alphabet containing end of tape markers >, <1 € I’

Qv is a set of universal states

Gacc 7é Arej ¢ QvU Q3

61 (Q\ {Gace: Grej}) x T — P(Q x T x {1,41}) is a transition
function which forbids moving beyond the end of tape markers

(Q refers to (Qv W Q3 W Gacc W Grej))

>
>
> @5 is a set of existential states
>
>

17/56

Alternating Linear Bounded Automata

Computation Trees

A computation tree has configurations (g, k, t) of M as nodes and
> is rooted at (qo, 0, >w<)
> if g € Qy then (q, k, t) has one child for each successor
configuration
» if g € Q3 then (g, k, t) has exactly one child, which is any
possible successor configuration

» The tree is accepting if it is finite and all leaves are of type
(qaca k, t)

M accepts input w € T\ {r>, <} if there is an accepting
computation tree w.

18/56

EXPTIME-Complete Bisimilarity Problems

19/56

EXPTIME-Complete Bisimilarity Problems

~FRA(S#) < ~FRAMF) < ~FRA(M#) < ~ FRA(M#)
VI VI VI VI

~RA(S#) < ~RAMF) < ~RAM#) < ~RA(MA)

EXPTIME-Complete Bisimilarity Problems

€ EXPTIME
~FRA(S#) < ~FRAMF) < ~FRA(M#) <

VI VI VI VI

~RA(S#) < ~RAMF) < ~RAM#) < ~RA(MA)

EXPTIME-Complete Bisimilarity Problems

€ EXPTIME
~FRA(S#) < ~FRAMF) < ~FRA(M#) <

VI VI VI VI

(“RASH) < ~RAMA < ~RAM#) < ~RAMA)
EXPTIME-hard

EXPTIME-Complete Bisimilarity Problems

€ EXPTIME
~FRA(S#) < ~FRAMF) < ~FRA(M#) <

VI VI VI VI
(“RASH) < ~RAMA < ~RAM#) < ~RAMA)

EXPTIME-hard

= EXPTIME-Completeness

~ FRA(M#) € EXPTIME

Reminder ~ FRA(M#):

> fresh register automaton
> different registers can hold same value

P register content can be deleted

General idea:

» Use a finite subset N C D with |N| = 2r+ 2 to capture the
full bisimulation.

» Determine the winner of this bounded bisimulation in
alternating polynomial time and use the fact that
APSPACE = EXPTIME

21/56

~ FRA(M#) € EXPTIME

Given (g1, p1, H) and (g2, p2, H)

For transitions in a bisimulation only the information

» which sets of registers from p; and p» contain the same data

> is HC (rng(p1) U rng(p2))
is of importance

22/56

~ FRA(M#) € EXPTIME

» Let (A, (g1, 1, Ho), (g2, p2, Ho)) be an instance of
~ FRA(M+)
» Choose a set N = {di, ..., dort2} with:
> N C Ho, if |Ho| < 2r+2
> rng(p1) U rng(p2) € N C Hy, otherwise

23/56

~ FRA(M#) € EXPTIME

To do so, we define N-Bisimilarity for Configurations from:

(C-A,N = {(qvp’ H) € (CA’H - N}

that handle histories which are trimmed to contain at most 2r + 1
elements:

Y {H if HC N
ez | H\ Amin(N\ (rg(p1) U mg(p2)))} if H= N

24 /56

~ FRA(M#) € EXPTIME

N-Bisimilarity

N-Bisimilarity is a relation ~yC C 4 o X C4 A where for all
(g1, p1, H1) ~n (92, p2, Ho):
> Hi = H,

d
» for all transitions (g1, p1, H1) Q) (g1, Py, Hy) with d € N,

where either:

> d e rg(p1) U mg(p2)
> rng(p1) U rng(p2) & H and d = min(H\ (rng(p1) U rmg(p2)))
> d=min(N\ H)

there is (g2, p2, H2) —> () (g5, ph, Hy) and
(q,17p17 (H,-Ipl,pQ) ~N (q27p27 [H/2-|p1,p2)

25 /56

~ FRA(M#) € EXPTIME

(1, 1, Ho) ~ (g2, p2, Ho) <= (a1, p1, Ho) ~n (g2, p2, Ho) where

~

Ho = [Ho N N},’)’W2

D = (rng(p1) U rng(p2)) & (H\ (rng(p1) U rmg(p2))) & (D\ H)
.. (t,deD) T .. .
= Every transition (q, p, H) — (¢’, p’, H') in the bisimulation
game can be captured by a transition (t,d € N) in the
N-bisimulation game:
> if d € rng(p1) U rng(pz2) this is clear

> if de H\ (rng(p1) U rmg(p2)) then
d = min(H\ (rg(p1) U rg(p2)))
» if d e D\ Hthen d = min(N\ H)

26/56

~ FRA(M#) € EXPTIME

(qo1, po1,) % n (o2, Po2,) can be decided in APSPACE by the
following algorithm:

L (q17 P1,q2, P2, H) A (q017 P01, 902, P02, I:IO)

2: repeat
3: Existentially choose i € {1,2} and a valid transition
d)
(gi, piy H) —> (t (q;, pi, H') or return FALSE, if no such
transition exists
4: Universally choose a valid transition

(CI37,', P3—i, H) @)

transition exists
5. (qup1, 92,02, H) = (a4, P4 a0 [HTYS)
6: until termination
The algorithm accepts as soon as the defender cannot defend
himself, meaning the two configurations are not bisimilar. The
space used is in O(2r(log(2r+2)) + (2r+ 2) + log(|Q|))

(q5_;, p5_; H') or return TRUE, if no such

27 /56

EXPTIME-Complete Bisimilarity Problems

€ EXPTIME v
~FRA(S#) < ~FRAMF) < ~FRA(M#) <

VI VI VI VI

~RA(S#) < ~RAMF) < ~RAM#) < ~RA(MA)

EXPTIME-Complete Bisimilarity Problems

€ EXPTIME v
~FRA(S#) < ~FRAMF) < ~FRA(M#) <

VI VI VI VI

(“RASH) < ~RAMA < ~RAM#) < ~RAMA)
EXPTIME-hard

~ RA(S#) is EXPTIME-hard

Reminder ~ RA(S#):

> register automaton (without fresh transitions)
» all registers must contain different values (or be empty)

> register content can be deleted

General idea:

» Reduction from EXPTIME-hard problem ALBA-MEM to
~ RA(S#)

» Simulate computation of the ALBA twice, where one
simulation behaves different to the other only if the input is
rejected

29/56

~ RA(S#) is EXPTIME-hard

Given an instance of an ALBA-MEM problem (M, w)
> wlog: '\ {>, <1} = {0,1}, [6(q,a)| < 2 for all (g, a)

Build RA(S#) A}, = (Q, X, d) with 2w+ 1 registers as follows:
> @ =(Q@x[0,|w] +1],{L, R}) W Qaux
» |X| =1 (all tags are equal — will be left out from here on)
» 4, so that (qo,0,L) ~ (qo,0, R) & M accepts w

30/56

~ RA(S#) is EXPTIME-hard

Transitions

» § will assure that the bisimulation game for
(90,0, L) ~ (qo, 0, R) simulates the computation of M with
input w.

» If Mis in a configuration, (g, k, t) then the bisimulation is in a
configuration ((q, k, L), p), ((g, k, R), p) where:

> p(2k) = # < p(2k+ 1) # # < cell k on t contains 0
> p(2k) # # < p(2k+ 1) = # < cell k on t contains 1

= add transitions depending on d(q, a)

31/56

~ RA(S#) is EXPTIME-hard

Case 1: 0(qg,a) = (): No need to add any transitions
Case 2: 0(q,a) = {(¢/, b,2)}: Add the following transitions:

A
(q,k,C)%%(q,k—FZ,C)

where:

lo = ({2k+1},0,{2k+1}) ¢4 = (0,{2k+ 1},0)
ly = ({2k}’0’ {2k}) Ell = (0’ {2k}’®)

32/56

~ RA(S#) is EXPTIME-hard

Case 3: 0(q,a) = {(qg1, b1,21),(q2, b2, 22) }:

If g is a universal state add transitions

Cl, A /L L B C,
(Ch,k—}—Zl,C)<71'<7'é(q,k,C)i'%‘é(qz,k—l—Z%C)

33/56

~ RA(S#) is EXPTIME-hard

Case 3: 0(q,a) = {(qg1, b1,21),(q2, b2, 22) }:

If g is a universal state add transitions

Cl, A /L L B C,
(Ch,k—}—Zl,C)<71'<7'é(q,k,C)L'%‘é(qz,k—l—Z%C)

If g is an existential state, use defender forcing gadget

33/56

~ RA(S#) is EXPTIME-hard

Defender forcing gadget

aL / ar
/ K« E K«
/W' & b NG 0 %\
/ /

PL PL PR Pr

34/56

~ RA(S#) is EXPTIME-hard

End of the simulation:

» No transitions from states (Gacc, k; C) = (Gacc, k, L) and
(Gace, k, R) are trivially bisimilar

» For gre add transition (qyej, k, L) M (qrejs k, L) only in
the Left copy = (qrej, k, L) and (grej, k, R) are not bisimilar

35/56

EXPTIME-Complete Bisimilarity Problems

€ EXPTIME v
~ FRA(S#) < ~FRAMF) < ~FRA(M#o) <

VI VI VI VI

< ~RAMF) < ~RA(M#o) <~ RA(M#)
EXPTIME-hard v/

Bisimilarity Problems in (Fresh-) Register Automata

NP-solvable PSPACE-Complete EXPTIME-Complete v/

“FRAGSF) < (~FRA(S#0)) < (~FRA(S#) < ~FRAMF) < ~FRA(M#) < -~ FRA(M#)
VI VI v v VI VI

~RASA) < \~RAS#)) < (SRASH) < ~RAMA) < ~RAM#o) < ~RAMA)

~ RA(S#) is PSPACE-complete

38/56

~ RA(S#0) is PSPACE-complete

Reminder ~ RA(S#o):

> register automaton (without fresh transitions)
» all registers must contain different values (or be empty)

> register content cannot be deleted (only updated)

There are only two types of transitions:

> p ﬂ q (short for p ———>(t’{i}’0’@) q)

> p M q (short for pm q)

39/56

~ RA(S#0) € PSPACE

General idea:

» Define symbolic bisimulation which tracks the set of active
registers in two configurations and relates those registers from
the configurations that hold the same value

» Define indexed bisimilarity, which represents how many rounds
are needed at most for an attacker to show that two
configurations are not bisimilar

» Show that there is a polynomial upper bound for indexed
bisimilarity = suffices to play the bisimulation game for
polynomially many rounds

40 /56

~ RA(S#0) € PSPACE

U= {(q1751707 q2752)‘CI1aCI2 € Q7 51752 g [17 r],O' S ISr g
51 X 52}

R C U is a symbolic simulation if all members satisfy the (SyS)
conditions:

> for all g1 ﬂ d

» if i € dom(c) then there is some g, Gl g5 with

(qlla SI)RU(q/27 52)
t%)

» if i€ 51\ dom(o) then there is some g (BN g5 with
(91, S1)Ro1i4 (02, S2l])

> for all gg —=> (") @

» there is some g RN q5 with (d4, S1[1])Roji—j(45, S2[])
> for all j€ S\ rng(o), there is some g)8 g, with
(g1, S1l)Rofimj (a2, S2)-

R is a symbolic bisimulation if R and R~! are symbolic simulations. a1 /56

~ RA(S#0) € PSPACE

» < denotes the union of all symbolic Bisimulations.

> We write (g1, p1) ~ (g2, p2) if
-1 S
(ql,dom(pl)apl;Pz ,QQ,dOm(pQ)) e~

Lemma

(q1,01) ~ (g2, p2) < (q1,p1) ~ (G2, p2)

42/56

~ RA(S#0) € PSPACE

Indexed Bisimilarity

» Ly

> L= {(q1, 51,0, 9, %) ,
(g1, 51,0, g2, Sp) satisfies the (SyS) conditions in ~

(g2, 52,071, q1, S1) satisfies the (SyS) conditions in ri,}

j i+1 :
= If ce~ but ¢ gé'i, then there is a strategy for an Attacker to
win the bisimulation game in i+ 1 rounds

. B
Goal: show that there is an upper bound B so that ~=~

43 /56

~ RA(S#0) € PSPACE

Lemma

S S|

> L= CL(L)
> for all ii A= CL(L)

CL(R) refers to the smallest relation R’ containing R which is
closed under the rules:

(q7 57 idSv a, S) ER (ID)
(Q1,51701,CI2752) eER (q2,527o'2’ q3753) cR
(g1,51,01,02,G3,53) € R

(Q1,51,U, CI2752) S R
(q2?5270—17q1751) S R

(91,51,0,G2,5) € R 0<s,50
(91,51,0',G2,52) € R

(TR)

(SYM)

(EXT)

44 /56

~ RA(S#0) € PSPACE

Characteristic Sets and Groups

Let pe Q,SC[1,r],RC U closed.
> X2(R) = N{X < SI(p.)Ry (p.)}
> GE(R) = {or € X2(R) x X2(R)|(p, SR (p, 9)}

45 /56

~ RA(S#0) € PSPACE

Lemma

For fixed S1, 5> C [1, 1], the sub-chain

(L NUs, s,) & (L MUs, s, } has size at most
2Q| +2rQI(2r - 2) + QP2

Proof (sketch):

If (iil NUs, s,) C (fL MUs, s,} then this is because one of three

reasons:
i+1 i
> xd(F) ¢ xg ()

> ggk(’il) is a strict subgroup of ggk(il)
» there are configurations (g1, S1), (g2, S2) that are unseparated

in (~) and become separated in ('Jrgl)

46 /56

~ RA(S#0) € PSPACE

Lemma

Let B= (2r+1)- (2] Q| +2AQ|(2r — 2) + |Q|?). Then
B
~ ﬁZ/{51,52 == ﬁL{51752

for any 51,5

Therefore it suffices to play the bisimulation game for polynomially
many steps. This can be done via an alternating Turing machine,
and the PSPACE bound follows from APTIME = PSPACE.

47 /56

~ RA(S#) is PSPACE-hard

» Reduce from PSPACE-hard problem checking the validity of
totally quantified boolean formulas in prenex conjunctive
normal form

» Construct write once ALBA that guesses a truth assignment
in alternating moves according to the quantifiers and verifies
its correctness

» Use previous construction to build a RA(S#0)
» Because the ALBA is write once, the resulting RA obeys #q

48 /56

Bisimilarity Problems in (Fresh-) Register Automata

NP-solvable PSPACE-Complete (v') EXPTIME-Complete v/
TFRAGSF)) < (CFRA(SHO)\ < (<FRA(SH) < ~FRAMF) < ~FRA(M#) < ~ FRA(MA)
VI VI VI VI VI VI

~RASA) < \~RAS#)) < (SRASH) < ~RAMA) < ~RAM#o) < ~RAMA)

~ RA(SF) € NP

50/56

~ RA(SF) € NP

Reminder ~ RA(SF):

> register automaton (without fresh transitions)
» all registers must contain different values

» all registers must always be filled

We are only going to consider ~ and S; = S, = [1,] for all
elements (g1, 51,0, g2, S2) € U. Therefore, we write:

> XP for X[fl’ r](ri)
» GP for g[q r](ff./)

51/56

~ RA(SF) € NP

Lemma

~ can be generated by polynomially many elements

> Partition @ into equivalence classes
S
(p~q< 3o.(p,[L, 10,0, [L,) €2

52 /56

~ RA(SF) € NP

Lemma

~ can be generated by polynomially many elements

> Partition @ into equivalence classes
S
(p~q< 3o.(p,[L, 10,0, [L,) €2

» Pick random member p; for each equivalence class P;

52 /56

~ RA(SF) € NP

Lemma

~ can be generated by polynomially many elements

> Partition @ into equivalence classes
S
(p~q< 3o.(p,[L, 10,0, [L,) €2

» Pick random member p; for each equivalence class P;

> Select sets G” of linearly many generators for GPi

52 /56

~ RA(SF) € NP

Lemma

~ can be generated by polynomially many elements

> Partition @ into equivalence classes
S
(p~q< 3o.(p,[L, 10,0, [L,) €2

» Pick random member p; for each equivalence class P;

> Select sets G” of linearly many generators for GPi

» For g € P;\ {pi} there exists o so that
(pi,[1,1, 0,9, [1, 1) €%. Set rayh = o N (XP x [1,1)

52 /56

~ RA(SF) € NP

Lemma

~ can be generated by polynomially many elements

> Partition @ into equivalence classes
S
(p~q< 3o.(p,[L, 10,0, [L,) €2

» Pick random member p; for each equivalence class P;
> Select sets G” of linearly many generators for GPi
» For g € P;\ {pi} there exists o so that
(pis[1,1,0,4,[1,7) €. Set rayl = o N (XP x [1,1])
» Then ~= CL({(p;, [1,1, 0, pi,[1,1)|o € GPIU
{(pi, [1, 1, ravg, q.[1,)| q € Pi})

52 /56

~ RA(SF) € NP

~ RA(SF) € NP

» Guess a generating system in polynomial time

» Test if the so generated system is a bisimultaion — test (SyS)
conditions for elements in the generating system

» If it is a bisimulation, then test if the given problem instance
is part of the generated system.

53 /56

Bisimilarity Problems in (Fresh-) Register Automata

NP-solvable (v') PSPACE-Complete (v') EXPTIME-Complete v/
ZFRAGSF) < (< FRA(S#o)\ < (~FRA(SH) < ~FRA(MF) < ~FRA(M#) < ~ FRA(M#)
VI VI VI VI VI VI

~rash) < \~RAGSE)) < \SRASH < ~RAMA < ~RAMME) <~ RAMA)

Future Work

» Can the NP bound for ~ (F)RA(SF) be improved?

55 /56

References |

@ A. S. Murawski, S. J. Ramsay, and N. Tzevelekos.
Bisimilarity in fresh-register automata.
Log. Methods Comput. Sci., 21(1), 2025.

56 /56

	(Fresh-)Register Automata
	Bisimilarity
	Problems regarding Bisimilarity in (Fresh-) Register Automata
	Alternating Linear Bounded Automata
	EXPTIME-Complete Bisimilarity Problems
	RA(S#0) is PSPACE-complete
	RA(SF) NP

