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Register Automata

Definition
An r-register automaton is a tuple A = (Q,Σ, δ) where:
▶ Q is a set of states
▶ Σ is a finite alphabet
▶ δ is a transition function
A additionally has r registers it can access during a computation
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Register Automata (RA)

Register Assignments
As input A reads tuples (t, a) ∈ (Σ×D) where D is an infinite
alphabet
A register assignment is a function ρ : {1, ..., r} → D ∪ {#}
▶ ρ defines which value from D is stored in the register with

index i ∈ {1, ..., r}
▶ If a register is empty, it is mapped to #

5 / 56



Register Automata (RA)

Transitions
δ : Q× Σ× P({1, ..., r})× {0, ..., r} × P({1, ..., r})→ Q
A transition, written q t,X,i,Z−−−−→ q′, is applicable on input (t′, a) if:
▶ t = t′
▶ X is the set of register indices so that ρ(x) = a⇔ x ∈ X

Then:
▶ a is written into register i. (No write if i = 0)
▶ The content of the registers corresponding to the indices in Z

is deleted. (ρ(z) is set to # for all z ∈ Z)
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Fresh-Register Automata (FRA)

Fresh Transitions
▶ For fresh-register automata additionally X = ⊛ is allowed.
▶ A transition q t,⊛,i,Z−−−−→ q′ is only applicable for inputs (t, a)

where a is fresh. Meaning this is the first time that a appears
in an input.

▶ (Register automata are a special case of fresh-register
automata, where always X ̸= ⊛.)
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Bisimilarity
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Labelled Transition Systems (LTS)

Definition
An LTS is a tuple S = (C,Act,→) where:
▶ C is a set of configurations
▶ Act is a set of labels
▶ → is a transition relation of type C× Act× C
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LTS for Fresh-Register Automata

Configurations
A configuration of an FRA A is a tuple (q, ρ,H) where:
▶ q is the current state
▶ ρ is the current register assignment
▶ H is the history of names read as input (only for FRA)

CA denotes the set of all configurations of A

If A takes a transition q t,X,i,Z−−−−→ q′ reading input (t, d) then it
passes from (q, ρ,H) to (q′, ρ′,H′) where:
▶ ρ′ is obtained from ρ by setting ρ′(i) = d and ρ′(z) = # for all

z ∈ Z
▶ H′ = H ∪ {d}

The LTS is then given by S(A) = (CA,Σ×D,→A), where →A
the induced transition relation.
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Bisimilarity

Definition:
A bisimulation is a relation R ⊂ C× C where for each (c1, c2) ∈ R
and each ℓ ∈ Act:
▶ if c1

ℓ−→ c′1, then there is some c2
ℓ−→ c′2 with (c′1, c′2) ∈ R

▶ if c2
ℓ−→ c′2, then there is some c1

ℓ−→ c′1 with (c′1, c′2) ∈ R

Bisimulation Game:
▶ Attacker takes any valid transition from one of the current

configurations
▶ Defender has to match this transition (same label) for the

respective other configuration.
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Problems regarding Bisimilarity in (Fresh-) Register
Automata

12 / 56



Restrictions on the Register Assignment

Single (S) and Multiple (M) Assignments
Register assignment can either be Single (S) or Multiple (M)

▶ S : If a register is nonempty, its content has to be different to
the content of all other registers

▶ M : Two different registers can hold the same content

Policies for empty registers
There are three different policies (F/#0/#):
▶ F : All registers have to be filled at all times.
▶ #0 : Registers can be initially empty.
▶ # : The content of a register can be deleted
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Bisimilarity Problems in (Fresh-) Register Automata

Let X ∈ {S,M} and Y ∈ {F,#0,#}.

∼ FRA(XY)
▶ Given: FRA with a register assignment policy that obeys the

restrictions imposed by X and Y, two configurations
κ1 = (q1, ρ1,H) and κ2 = (q2, ρ2,H)

▶ Question: is κ1 ∼ κ2?

∼ RA(XY)
▶ Given: RA with a register assignment policy that obeys the

restrictions imposed by X and Y, two configurations κ1 and κ2
▶ Question: is κ1 ∼ κ2?
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Alternating Linear Bounded Automata
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Alternating Linear Bounded Automata

Definition
An alternating linear bounded automaton (ALBA) is a tuple
M = ⟨Γ,Q∀,Q∃, q0, qacc, qrej, δ⟩ where:
▶ Γ is a finite alphabet containing end of tape markers ▷,◁ ∈ Γ

▶ Q∀ is a set of universal states
▶ Q∃ is a set of existential states
▶ qacc ̸= qrej /∈ Q∀ ∪ Q∃
▶ δ : (Q \ {qacc, qrej})× Γ→ P(Q× Γ× {1,+1}) is a transition

function which forbids moving beyond the end of tape markers
(Q refers to (Q∀ ⊎ Q∃ ⊎ qacc ⊎ qrej))
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Alternating Linear Bounded Automata

Computation Trees
A computation tree has configurations (q, k, t) of M as nodes and
▶ is rooted at (q0, 0,▷w◁)

▶ if q ∈ Q∀ then (q, k, t) has one child for each successor
configuration

▶ if q ∈ Q∃ then (q, k, t) has exactly one child, which is any
possible successor configuration

▶ The tree is accepting if it is finite and all leaves are of type
(qacc, k, t)

M accepts input w ∈ Γ \ {▷,◁} if there is an accepting
computation tree w.
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EXPTIME-Complete Bisimilarity Problems
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∼ FRA(M#) ∈ EXPTIME

Reminder ∼ FRA(M#):
▶ fresh register automaton
▶ different registers can hold same value
▶ register content can be deleted

General idea:
▶ Use a finite subset N ⊆ D with |N| = 2r + 2 to capture the

full bisimulation.
▶ Determine the winner of this bounded bisimulation in

alternating polynomial time and use the fact that
APSPACE = EXPTIME
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∼ FRA(M#) ∈ EXPTIME

Given (q1, ρ1,H) and (q2, ρ2,H)

For transitions in a bisimulation only the information
▶ which sets of registers from ρ1 and ρ2 contain the same data
▶ is H ⊆ (rng(ρ1) ∪ rng(ρ2))

is of importance
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∼ FRA(M#) ∈ EXPTIME

▶ Let ⟨A, (q1, ρ1,H0), (q2, ρ2,H0)⟩ be an instance of
∼ FRA(M#)

▶ Choose a set N = {d1, ..., d2r+2} with:
▶ N ⊆ H0, if |H0| < 2r + 2
▶ rng(ρ1) ∪ rng(ρ2) ⊆ N ⊆ H0, otherwise
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∼ FRA(M#) ∈ EXPTIME

To do so, we define N-Bisimilarity for Configurations from:

CA,N = {(q, ρ,H) ∈ CA|H ⊊ N}

that handle histories which are trimmed to contain at most 2r + 1
elements:

⌈H⌉Nρ1,ρ2 =

{
H if H ⊊ N
H \ {min(N \ (rng(ρ1) ∪ rng(ρ2)))} if H = N
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∼ FRA(M#) ∈ EXPTIME

N-Bisimilarity
N-Bisimilarity is a relation ∼N⊆ CA,N × CA,N where for all
(q1, ρ1,H1) ∼N (q2, ρ2,H2):
▶ H1 = H2

▶ for all transitions (q1, ρ1,H1)
(t,d)−−→ (q′1, ρ′1,H′

1) with d ∈ N,
where either:
▶ d ∈ rng(ρ1) ∪ rng(ρ2)
▶ rng(ρ1) ∪ rng(ρ2) ⊊ H and d = min(H \ (rng(ρ1) ∪ rng(ρ2)))
▶ d = min(N \ H)

there is (q2, ρ2,H2)
(t,d)−−→ (q′2, ρ′2,H′

2) and
(q′1, ρ′1, ⌈H′

1⌉Nρ1,ρ2) ∼N (q′2, ρ′2, ⌈H′
2⌉Nρ1,ρ2)
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∼ FRA(M#) ∈ EXPTIME
Lemma:
(q1, ρ1,H0) ∼ (q2, ρ2,H0)⇔ (q1, ρ1, Ĥ0) ∼N (q2, ρ2, Ĥ0) where
Ĥ0 = ⌈H0 ∩ N⌉Nρ1,ρ2

D = (rng(ρ1) ∪ rng(ρ2)) ⊎ (H \ (rng(ρ1) ∪ rng(ρ2))) ⊎ (D \ H)

⇒ Every transition (q, ρ,H)
(t,d∈D)−−−−−→ (q′, ρ′,H′) in the bisimulation

game can be captured by a transition (t, d′ ∈ N) in the
N-bisimulation game:
▶ if d ∈ rng(ρ1) ∪ rng(ρ2) this is clear
▶ if d ∈ H \ (rng(ρ1) ∪ rng(ρ2)) then

d′ = min(Ĥ \ (rng(ρ1) ∪ rng(ρ2)))

▶ if d ∈ D \ H then d′ = min(N \ Ĥ)

26 / 56



∼ FRA(M#) ∈ EXPTIME
(q01, ρ01, Ĥ) ̸∼N (q02, ρ02, Ĥ) can be decided in APSPACE by the
following algorithm:

1: (q1, ρ1, q2, ρ2,H)← (q01, ρ01, q02, ρ02, Ĥ0)
2: repeat
3: Existentially choose i ∈ {1, 2} and a valid transition

(qi, ρi,H)
(t,d)−−→ (q′i, ρ′i,H′) or return FALSE, if no such

transition exists
4: Universally choose a valid transition

(q3−i, ρ3−i,H)
(t,d)−−→ (q′3−i, ρ

′
3−i,H′) or return TRUE, if no such

transition exists
5: (q1, ρ1, q2, ρ2,H)← (q′1, ρ′1, q′2, ρ′2, ⌈H′⌉Nρ′1,ρ′2)
6: until termination

The algorithm accepts as soon as the defender cannot defend
himself, meaning the two configurations are not bisimilar. The
space used is in O(2r(log(2r + 2)) + (2r + 2) + log(|Q|))
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∼ RA(S#) is EXPTIME-hard

Reminder ∼ RA(S#):
▶ register automaton (without fresh transitions)
▶ all registers must contain different values (or be empty)
▶ register content can be deleted

General idea:
▶ Reduction from EXPTIME-hard problem ALBA-MEM to
∼ RA(S#)

▶ Simulate computation of the ALBA twice, where one
simulation behaves different to the other only if the input is
rejected
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∼ RA(S#) is EXPTIME-hard

Given an instance of an ALBA-MEM problem ⟨M,w⟩
▶ wlog: Γ \ {▷,◁} = {0, 1}, |δ(q, a)| ≤ 2 for all (q, a)

Build RA(S#) Aw
M = (Q′,Σ, δ) with 2w + 1 registers as follows:

▶ Q′ = (Q× [0, |w|+ 1], {L,R}) ⊎ Qaux
▶ |Σ| = 1 (all tags are equal → will be left out from here on)
▶ δ, so that (q0, 0, L) ∼ (q0, 0,R)⇔ M accepts w
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∼ RA(S#) is EXPTIME-hard

Transitions
▶ δ will assure that the bisimulation game for

(q0, 0, L) ∼ (q0, 0,R) simulates the computation of M with
input w.

▶ If M is in a configuration, (q, k, t) then the bisimulation is in a
configuration ((q, k, L), ρ), ((q, k,R), ρ) where:
▶ ρ(2k) = #⇔ ρ(2k + 1) ̸= #⇔ cell k on t contains 0
▶ ρ(2k) ̸= #⇔ ρ(2k + 1) = #⇔ cell k on t contains 1
⇒ add transitions depending on δ(q, a)
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∼ RA(S#) is EXPTIME-hard

Case 1: δ(q, a) = ∅: No need to add any transitions

Case 2: δ(q, a) = {(q′, b, z)}: Add the following transitions:

(q, k,C) · (q′, k + z,C)
ℓa ℓ′b

where:
ℓ0 = ({2k + 1}, 0, {2k + 1}) ℓ′0 = (∅, {2k + 1}, ∅)
ℓ1 = ({2k}, 0, {2k}) ℓ′1 = (∅, {2k}, ∅)

32 / 56



∼ RA(S#) is EXPTIME-hard

Case 3: δ(q, a) = {(q1, b1, z1), (q2, b2, z2)}:

If q is a universal state add transitions

(q, k,C)··(q1, k + z1,C) · · (q2, k + z2,C)
ℓaAℓ′b1 ℓa B ℓ′b2

If q is an existential state, use defender forcing gadget
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∼ RA(S#) is EXPTIME-hard

Defender forcing gadget

qL qR

· · ·

pL p′L pR p′R

ℓ ℓ
ℓ

ℓ ℓ

ℓ1 ℓ2 ℓ2 ℓ1 ℓ2ℓ1
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∼ RA(S#) is EXPTIME-hard

End of the simulation:
▶ No transitions from states (qacc, k,C) ⇒ (qacc, k, L) and

(qacc, k,R) are trivially bisimilar
▶ For qrej add transition (qrej, k, L)

({1},0,∅)−−−−−→ (qrej, k, L) only in
the Left copy ⇒ (qrej, k, L) and (qrej, k,R) are not bisimilar
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Bisimilarity Problems in (Fresh-) Register Automata
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∼ RA(S#0) is PSPACE-complete
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∼ RA(S#0) is PSPACE-complete

Reminder ∼ RA(S#0):
▶ register automaton (without fresh transitions)
▶ all registers must contain different values (or be empty)
▶ register content cannot be deleted (only updated)

Notation:
There are only two types of transitions:
▶ p (t,i)−−→ q (short for p (t,{i},0,∅)−−−−−−→ q)
▶ p (t,i•)−−−→ q (short for p (t,∅,i,∅)−−−−→ q)
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∼ RA(S#0) ∈ PSPACE

General idea:
▶ Define symbolic bisimulation which tracks the set of active

registers in two configurations and relates those registers from
the configurations that hold the same value

▶ Define indexed bisimilarity, which represents how many rounds
are needed at most for an attacker to show that two
configurations are not bisimilar

▶ Show that there is a polynomial upper bound for indexed
bisimilarity ⇒ suffices to play the bisimulation game for
polynomially many rounds
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∼ RA(S#0) ∈ PSPACE
Symbolic Bisimulations
U = {(q1, S1, σ, q2, S2)|q1, q2 ∈ Q, S1, S2 ⊆ [1, r], σ ∈ ISr ⊆
S1 × S2}
R ⊆ U is a symbolic simulation if all members satisfy the (SyS)
conditions:
▶ for all q1

(t,i)−−→ q′1
▶ if i ∈ dom(σ) then there is some q2

(t,σ(i))−−−−→ q′
2 with

(q′
1, S1)Rσ(q′

2, S2)

▶ if i ∈ S1 \ dom(σ) then there is some q2
(t,j•)−−−→ q′

2 with
(q′

1, S1)Rσ[i→j](q′
2, S2[j])

▶ for all q1
(t,i•)−−−→ q′1

▶ there is some q2
(t,j•)−−−→ q′

2 with (q′
1, S1[i])Rσ[i→j](q′

2, S2[j])
▶ for all j ∈ S2 \ rng(σ), there is some q2

(t,j)−−→ q′
2 with

(q′
1, S1[i])Rσ[i→j](q′

2, S2).
R is a symbolic bisimulation if R and R−1 are symbolic simulations. 41 / 56



∼ RA(S#0) ∈ PSPACE

Notation:
▶ s∼ denotes the union of all symbolic Bisimulations.
▶ We write (q1, ρ1)

s∼ (q2, ρ2) if
(q1, dom(ρ1), ρ1; ρ

−1
2 , q2, dom(ρ2)) ∈

s∼

Lemma
(q1, ρ1) ∼ (q2, ρ2)⇔ (q1, ρ1)

s∼ (q2, ρ2)
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∼ RA(S#0) ∈ PSPACE

Indexed Bisimilarity
▶ 0∼= U
▶ i+1∼= {(q1, S1, σ, q2, S2)|

(q1, S1, σ, q2, S2) satisfies the (SyS) conditions in i∼
(q2, S2, σ−1, q1, S1) satisfies the (SyS) conditions in i∼}

⇒ If c ∈ i∼ but c /∈i+1∼ , then there is a strategy for an Attacker to
win the bisimulation game in i + 1 rounds

Goal: show that there is an upper bound B so that B∼= s∼
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∼ RA(S#0) ∈ PSPACE
Lemma
▶ s∼= CL( s∼)
▶ for all i: i∼= CL( i∼)

CL(R) refers to the smallest relation R′ containing R which is
closed under the rules:

(q, S, idS, q, S) ∈ R′ (ID)

(q1, S1, σ1, q2, S2) ∈ R′ (q2, S2, σ2, q3, S3) ∈ R′

(q1, S1, σ1;σ2, q3, S3) ∈ R′ (TR)

(q1, S1, σ, q2, S2) ∈ R′

(q2, S2, σ−1, q1, S1) ∈ R′ (SYM)

(q1, S1, σ, q2, S2) ∈ R′ σ ≤S1,S2 σ
′

(q1, S1, σ′, q2, S2) ∈ R′ (EXT)
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∼ RA(S#0) ∈ PSPACE

Characteristic Sets and Groups
Let p ∈ Q, S ⊆ [1, r],R ⊆ U closed.
▶ X p

S (R) =
∩
{X ⊆ S|(p, S)RidX(p, S)}

▶ Gp
S(R) = {σ ⊆ Xp

S(R)× Xp
S(R)|(p, S)Rσ(p, S)}
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∼ RA(S#0) ∈ PSPACE

Lemma
For fixed S1, S2 ⊆ [1, r], the sub-chain
{ i∼ |(i+1∼ ∩US1,S2) ⊊ (

i∼ ∩US1,S2} has size at most
2r|Q|+ 2r|Q|(2r− 2) + |Q|2

Proof (sketch):
If (i+1∼ ∩US1,S2) ⊊ (

i∼ ∩US1,S2} then this is because one of three
reasons:
▶ X q

Sk
(
i+1∼ ) ⊊ X q

Sk
(

i∼)

▶ Gq
Sk
(
i+1∼ ) is a strict subgroup of Gq

Sk
(

i∼)
▶ there are configurations (q1, S1), (q2, S2) that are unseparated

in (
i∼) and become separated in (

i+1∼ )
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∼ RA(S#0) ∈ PSPACE

Lemma
Let B = (2r + 1) · (2r|Q|+ 2r|Q|(2r− 2) + |Q|2). Then

B∼ ∩US1,S2 =
s∼ ∩US1,S2

for any S1, S2

Therefore it suffices to play the bisimulation game for polynomially
many steps. This can be done via an alternating Turing machine,
and the PSPACE bound follows from APTIME = PSPACE.
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∼ RA(S#0) is PSPACE-hard

▶ Reduce from PSPACE-hard problem checking the validity of
totally quantified boolean formulas in prenex conjunctive
normal form

▶ Construct write once ALBA that guesses a truth assignment
in alternating moves according to the quantifiers and verifies
its correctness

▶ Use previous construction to build a RA(S#0)

▶ Because the ALBA is write once, the resulting RA obeys #0
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∼ RA(SF) ∈ NP
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∼ RA(SF) ∈ NP

Reminder ∼ RA(SF):
▶ register automaton (without fresh transitions)
▶ all registers must contain different values
▶ all registers must always be filled

Notation:
We are only going to consider s∼ and S1 = S2 = [1, r] for all
elements (q1, S1, σ, q2, S2) ∈ U . Therefore, we write:
▶ X p for X p

[1,r](
s∼)

▶ Gp for Gp
[1,r](

s∼)
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∼ RA(SF) ∈ NP

Lemma
s∼ can be generated by polynomially many elements

Idea:
▶ Partition Q into equivalence classes

(p ∼ q⇔ ∃σ.(p, [1, r], σ, q, [1, r]) ∈ s∼

▶ Pick random member pi for each equivalence class Pi
▶ Select sets Gpi of linearly many generators for Gpi

▶ For q ∈ Pi \ {pi} there exists σ so that
(pi, [1, r], σ, q, [1, r]) ∈ s∼. Set raypiq = σ ∩ (Xpi × [1, r])

▶ Then s∼= CL({(pi, [1, r], σ, pi, [1, r])|σ ∈ Gpi}∪
{(pi, [1, r], raypiq , q, [1, r])|q ∈ Pi})
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∼ RA(SF) ∈ NP

Theorem
∼ RA(SF) ∈ NP

Proof
▶ Guess a generating system in polynomial time
▶ Test if the so generated system is a bisimultaion → test (SyS)

conditions for elements in the generating system
▶ If it is a bisimulation, then test if the given problem instance

is part of the generated system.
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Bisimilarity Problems in (Fresh-) Register Automata

∼ RA(SF) ∼ RA(S#0) ∼ RA(S#) ∼ RA(MF) ∼ RA(M#0) ∼ RA(M#)

∼ FRA(SF) ∼ FRA(S#0) ∼ FRA(S#) ∼ FRA(MF) ∼ FRA(M#0) ∼ FRA(M#)

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤

≤ ≤ ≤ ≤ ≤ ≤

EXPTIME-Complete ✓PSPACE-Complete (✓)NP-solvable (✓)



Future Work

▶ Can the NP bound for ∼ (F)RA(SF) be improved?
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