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Motivation

• Automata with name binding (e.g. RNNA’s [Sch+17], RANA’s [Fra+25]) have been introduced to accept
literal/bar/data languages over infinite alphabets.

• RANA’s provide full alternation and have a corresponding lineartime logic Bar-µTL.
• Büchi RNNA’s [Urb+21] extend RNNA’s for words of infinite length.
• All three automata models come with decidable inclusion and emptiness problems.

• Can we extend RANA’s for words of infinite length with similar results?

Elliger et. al. Nominal Alternating Parity Automata January 13, 2026 2/23



Motivation

• Automata with name binding (e.g. RNNA’s [Sch+17], RANA’s [Fra+25]) have been introduced to accept
literal/bar/data languages over infinite alphabets.

• RANA’s provide full alternation and have a corresponding lineartime logic Bar-µTL.
• Büchi RNNA’s [Urb+21] extend RNNA’s for words of infinite length.
• All three automata models come with decidable inclusion and emptiness problems.
• Can we extend RANA’s for words of infinite length with similar results?

Elliger et. al. Nominal Alternating Parity Automata January 13, 2026 2/23



Nominal Sets [Pit13]
Intuition

• Intuitively, a nominal set is a set X whose elements x ∈ X depend on a finite subset supp(x) ⊆ A of
names: π · x = x if π fixes all a ∈ supp(x).

• A nominal set is equipped with a permutation action · : Perm(A) ×X → X to allow renamings.

Example

• FO-Formulae: supp(∀x. P (x, y)) = {x, y}
• FO-Formulae modulo α-equivalence: supp(∀x. P (x, y)) = {y}
• Finitely supported functions together with the (pointwise) group action (π · f )(x) := π−1 · f (π · x)

• An object x ∈ X is equivariant, if supp(x) = ∅.
• Nominal sets form a category together with equivariant functions f : X → X .
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Nominal Sets [Pit13]
Name Abstraction

• Equivalence Relation ∼α⊆ (A ×X) × (A ×X) where
(a, x) ∼α (b, y) :⇐⇒ ∃c ̸∈ supp(a, b, x, y). (a c) · x = (b c) · y.

Example

(x,∀x. P (x, y)) ∼α (z,∀z. P (z, y))
(x,∀x. P (x, y)) ̸∼α (y,∀y. P (y, y))

• Equivalence Classes ⟨a⟩x := {(b, y) | (b, y) ∼α (a, x)}
• Abstraction Functor [A]X := {⟨a⟩x | a ∈ A, x ∈ X}, defined on equivariant functions via

([A]f (⟨a⟩x) := ⟨a⟩f (x).
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Bar Strings [Sch+17]

• Duplicate name set in order to introduce binders: Ā := A ∪ { a | a ∈ A}
• Finite bar strings are words over Ā and form a nominal set Ā∗.

• What about the set of infinite bar strings w ∈ Āω?
• Only finitely supported infinite bar strings form a nominal set Āω

fs.
• α-equivalence ≡α on finite bar strings is generated by w au ≡α w bv where ⟨a⟩u = ⟨b⟩v.
• Two infinite bar strings w, v ∈ Āω are α-equivalent, if all of their finite prefixes are α-equivalent.

Example

a a a . . . ≡α b b b . . .

• Literal Languages are subsets of Ā∗ (resp. Āω).
• Bar Languages are subsets of Ā∗/ ≡α (resp. Āω/ ≡α).
• Data Languages are subsets of A∗ (resp. Aω).
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RNNA’s [Sch+17]
Syntax

Definition
A regular nondeterministic nominal automaton (RNNA) is a tuple (Q, δ, q0, F ) consisting of
• an orbit-finite set Q of states,
• an equivariant transition relation δ ⊆ Q× Ā ×Q,
• an initial state q0 ∈ Q,
• an equivariant subset F ⊆ Q of final states,
such that
1. δ is α-invariant, meaning q a−−→ q′ and ⟨a⟩q′ = ⟨b⟩q′′ implies q b−−→ q′′,
2. δ is finitely branching up to α-equivalence, meaning that the two sets {(a, q′) | q a−→ q′} and

{⟨a⟩q′ | q a−−→ q′} are finite.
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RNNA’s [Sch+17]
Semantics

• RNNA A = (Q, δ, q0, F )
• A run for a finite bar string w ∈ Āω from q ∈ Q is a finite sequence of transitions

q
β0−−→ q1

β1−−→ · · · βn−1−−−→ qn.

• A run for w from q is accepting, if qn ∈ F .
• A state q accepts w, if there exists an accepting run for w from q.
• The RNNA A accepts w, if q0 accepts w.
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RNNA’s [Sch+17]

Example

q0 q1(a) q2(a, b)
a b
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RNNA’s [Sch+17]

Example

q0 q1(a) q2(a, b)
a b

q1(b) q2(b, a)

q1(c) q2(c.d)

b

a

c

d
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RNNA’s [Sch+17]

Example

q0 q1(a) q2(a, b)
a b

q2(a, a)
a

• Clashes with α-invariance, as ⟨b⟩q2(a, b) ̸≡α ⟨a⟩q2(a, a).
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RNNA’s [Sch+17]

Example

q0 q1(a) q2(a, b)
a b

• Literal Language: { a b | a ̸= b} where a a is not included although α-equivalent to a b.
• Bar Language: {[ a b]≡α

}

• Closure of literal language under α-equivalence?
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RNNA’s [Sch+17]

Example

q0 q1(a) q2(a, b)
a b

q2(⊥, a)
a

• Idea: Name-Dropping Modification
• Now, a a is (literally) accepted.
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Büchi RNNA’s [Urb+21]
(Same) Syntax

• Extend RNNA’s from finite to infinite bar strings.
• No syntactical changes, just other semantics.
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Büchi RNNA’s [Urb+21]
Semantics

• Büchi RNNA A = (Q, δ, q0, F )
• A run for an infinite bar string w ∈ Āω from q ∈ Q is an infinite sequence of transitions

q
β0−−→ q1

β1−−→ · · ·
• A run for w from q is accepting, if qi ∈ F for infinitely many i ∈ N.
• A state q accepts w, if there exists an accepting run for w from q.
• The Büchi RNNA A accepts w, if q0 accepts w.
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Büchi RNNA’s [Urb+21]

Example

q0 (a, 0) (a, 1)

a

a

a

b

b

a

• Data Language consists of all w ∈ Aω where some letter occurs infinitely often.
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(Positive) RANA’s [Fra+25]
Syntax

Definition
Positive Boolean Formulae B+(X) over X :

ϕ, ψ ::= ⊤ | ⊥ | x ∈ X | ϕ ∧ ψ | ϕ ∨ ψ

Definition
A positive regular alternating nominal automaton (RANA) is a tuple A = (Q, δ, q0) consisting of
• an orbit-finite nominal set Q of states,
• an equivariant transition function δ : Q → B+(1 + A ×Q + [A]Q).
• an equivariant initial state q0 ∈ Q,

Define some notation for atomic formulae:

ε := ∗ ∈ 1
♢aq := (a, q) ∈ A ×Q
♢ aq := ⟨a⟩q ∈ [A]Q
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(Positive) RANA’s [Fra+25]
Semantics

• RANA A = (Q, δ, q0)
• For w ∈ Ā∗ and ϕ ∈ B+(1 + A ×Q + [A]Q), define satisfaction w |= ϕ recursively:

w |= ε :⇐⇒ w = ϵ
bv |= ♢aq :⇐⇒ b = a and v |= δ(q)
bv |= ♢ aq :⇐⇒ bv ≡α cv′ and ⟨a⟩q = ⟨c⟩q′ and v′ |= δ(q′) for some c ∈ A, v′ ∈ Ā∗, q′ ∈ Q
w |= ϕ ∧ ψ :⇐⇒ w |= ϕ and w |= ψ
w |= ϕ ∨ ψ :⇐⇒ w |= ϕ or w |= ψ

• A state q ∈ Q accepts w ∈ Ā∗, if w |= δ(q).
• The RANA A accepts w ∈ Ā∗, if q0 accepts w.
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Correspondence between RANA’s and
Bar-µTL [Fra+25; HMS21]

• Syntax given by grammar ϕ, ψ ∈ Bar ::= ε | ¬ε | ϕ ∧ ψ | ϕ ∨ ψ | ♢βϕ | X | µX. ϕ where β ∈ Ā.
• For simplicity, we leave out □σ here.
• Satisfaction w |= ϕ for finite bar strings w and closed formulae ϕ defined as expected, e.g.

bv |= ♢aϕ :⇐⇒ b = a and v |= ϕ

bv |= ♢ aϕ :⇐⇒ bv ≡α cv′ and ⟨a⟩ϕ = ⟨c⟩ψ and v′ |= ψ for some c ∈ A, v′ ∈ Ā∗, ψ ∈ Bar
w |= µX. ϕ :⇐⇒ w |= ϕ[X 7→ µX. ϕ]

• As formulae are only evaluated over finite bar strings, least and greatest fixpoints coincide, therefore the
syntax has only least fixpoints.

Proposition
For every ϕ ∈ Bar, there is a RNNA A that accepts the same closed bar strings w that satisfy ϕ, and vice
versa.
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NAPA’s
Syntax

Definition
A nominal alternating parity automata (NAPA) is a tuple A = (Q, δ, q0, c) consisting of
• an orbit-finite nominal set Q of states,
• an equivariant transition function δ : Q → B+(A ×Q + [A]Q),
• an equivariant initial state q0 ∈ Q,
• an equivariant color function c : Q → N.

Define some notation for atomic formulae:

♢aq := (a, q) ∈ A ×Q
♢ aq := ⟨a⟩q ∈ [A]Q
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Nominal Parity Games
Positions

• Given a NAPA A and w ∈ Āω, we define a nominal parity game between ∀belard and ∃loise.
• Perm(A)-set of positions:

Pos := (Q + B+(A ×Q + [A] ×Q)) × Āω × N
pos∀ := {(ϕ ∧ ψ, v, i) | ϕ, ψ ∈ B+(A ×Q + [A]Q), v ∈ Āω, i ∈ N}

∪ {(⊤, v, i) | v ∈ Āω, i ∈ N}
pos∃ := Pos \ pos∀
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Nominal Parity Game
Moves and Plays

• Moves:

(q, v, i) ∃−→ (δ(q), v, i)
(ϕ ∧ ψ, v, i) ∀−→ (ϕ, v, i)
(ϕ ∧ ψ, v, i) ∀−→ (ψ, v, i)
(ϕ ∨ ψ, v, i) ∃−→ (ϕ, v, i)
(ϕ ∨ ψ, v, i) ∃−→ (ψ, v, i)
(♢aq, βv, i)

∃−→ (q, v, i + 1) : ⇐⇒ β = a

(♢ aq, βv, i)
∃−→ (q′, v′, i + 1) : ⇐⇒ ∃a′, c ∈ A. ⟨a⟩q = ⟨c⟩q′, β = a′ and a′v ≡α cv′

• Plays: finite or infinite sequences of moves.
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Nominal Parity Game
Winning Conditions and NAPA Semantics

• ∀belard wins a play r, if one of the following conditions is fulfilled:

◦ r = p1 −→ · · · −→ pn is finite and pn ∈ pos∃.
◦ r is infinite and the highest infinitely often occuring colour is odd.

• ∃loise wins a play r, if one of the following conditions is fulfilled:

◦ r = p1 −→ · · · −→ pn is finite and pn ∈ pos∀.
◦ r is infinite and the highest infinitely often occuring colour is even.

• A NAPA A accepts an infinite bar string w ∈ Āω, if ∃loise has a winning strategy for the corresponding
nominal parity game.
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NAPA’s

Example
Construct an equivalent NAPA A = ({q0} + A × {0, 1}, δ, q0, c) for the Büchi RNNA from before.

δ(q0) := ♢ aq0 ∨ ♢ a(a, 0) c(q0) := 1
δ(a, 0) := ♢a(a, 0) ∨ ♢ b(a, 1) c(a, 0) := 2
δ(a, 1) := ♢a(a, 0) ∨ ♢ b(a, 1) c(a, 1) := 1

q0 ∨ (a, 0) ∨ (a, 1) ∨

a

a

a

b

b

a
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From Büchi RNNA’s to NAPA’s

Construction
• Given: Büchi RNNA A = (Q, δ, q0, F )
• Construct a NAPA A′ := (Q, δ′, q0, c) as follows:

δ′(q) :=
∨

(a,q′)∈Sq

♢aq
′ ∨

∨
⟨a⟩q′∈S q

♢ aq
′

c(q) :=
{

2 ⇐⇒ q ∈ F

1 ⇐⇒ q ̸∈ F

Proposition

1. A accepts w ∈ Āω implies A′ accepts w.
2. A′ accepts w ∈ Āω implies A accepts some v ≡α w.
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Name-Dropping Modification

• Nominal set A#n of total injective maps {0, . . . , n− 1} → A.

• Nominal set A$n of partial injective maps {0, . . . , n− 1} → A.

c0(a, b, c)
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Name-Dropping Modification

• Nominal set A#n of total injective maps {0, . . . , n− 1} → A.
• Nominal set A$n of partial injective maps {0, . . . , n− 1} → A.

Construction
• Given: NAPA A = (Q, δ, q0, c) with strong nominal state set Q =

∐n
i=1 A#ni

• Construct a NAPA (the name-dropping modification of A) And = (Qnd, δnd, q0, cnd) as follows:
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Name-Dropping Modification

Lemma
The name-dropping modification And as described is indeed a NAPA.

Proof Sketch.
Show that δnd and cnd are well-defined and equivariant.

• Goal of the name-dropping modification: Make α-renamings unnecessary when processing
♢ a-transitions.

Conjecture
If a NAPA A accepts some w ∈ Āω and w ≡α w

′ then And accepts w′.

• Problem: No inductive principle for w ∈ Āω available.
• Idea: Use a similar approach as in [Urb+21] using König’s Lemma [Kö27].

Lemma (König’s Lemma (simplified))
Every infinite tree that is finitely branching has some infinite path in it.
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Conclusion and Future Work

Conclusion
• We introduced Nominal Alternating Parity Automata which extend RANA’s for infinite bar strings.
• We presented a construction from Büchi RNNA’s to NAPA’s.
• We showed a name-dropping modification, although without a proof of correctness yet.

Future Work
• Prove correctness of the name-dropping modification.
• Extend Bar-µTL for infinite bar strings.
• De-Alternation of NAPA’s?
• Complexity of emptiness and inclusion problem?
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