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Example: \-Calculus

Syntax: t,s = x|Ax.t|ts

+

value

Big-step operational semantics: t || Ax.t/

t§ M.t t[s/x] | Ax.t”
Ax.t | Ax.t ts | Ix.t”
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Big-step transitions t |} Ax.t/

¢

yi A= {L}+ AN, y(t) = (e t'e/x]) if t d Ax.t!, ~(t) =L else.

A-terms
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Example: \-Calculus

Big-step transitions t |} Ax.t’

A-terms i

yi A= {L}+ AN () = (e te/x]) if t § Ax.t!, ~(t) =L else.

e Determ. labelled transition system with states A and labels A.
e Higher-order coalgebra v: A — B(A,A) for B(X,Y) = {1} + Y*X.

Compositionality Theorem [Abramsky '90]

LTS-bisimilarity ~ on (A, ) is a congruence:

t~s implies C[t]~ Cl[s] for every context C[-].

Proof: Non-trivial (Howe's method)
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Example: Affine Probabilistic A-Calculus

Syntax: t,s = x|Ax.t|ts|tDs|Q

if FV(t) NFV(s) =0 probabilistic choice diverging term

subdistribution of values

Big-step operational semantics: t | ¢ =), pi - Ax.t;

Ax.t 1 Ax.t Qo

tly sy
tos s -p+i-9

tl > pi- At ts/x] U3 pi - Ax.t
ts >0 pi Py AX.t] .
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Big-step transitions t | >, pi - Ax.t;
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e Higher-order coalgebra v: A — B(A,A) for B(X,Y) = S(YX).



Example: Affine Probabilistic A-Calculus

Big-step transitions t | >, pi - Ax.t;

H
v A= S(NY), ()= pi- (e tile/x]) iftd > pi- Ax.ti.

e Labelled Markov chain with states A and labels A.
e Higher-order coalgebra v: A — B(A,A) for B(X,Y) = S(YX).

Compositionality Theorem [Crubillé & Dal Lago, LICS ’15]
The LMC bisimulation metric dp on (A,7) is a congruence:

dr(C[t], C[s]) < da(t,s) for every context C[-].

fails for non-affine prob. A-calculus



Towards a General Compositionality Theorem

There are many compositionality theorems for many HO languages.

® complex, language-specific, ad hoc ®



Towards a General Compositionality Theorem

There are many compositionality theorems for many HO languages.

® complex, language-specific, ad hoc ®

Goal: A general, abstract, unifying
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e the induced higher-order coalgebra v: A — B(A,A\) on program terms.

Then the bisimulation metric dy on (A, ) is a congruence.
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Compositionality Theorem for Higher-Order Coalgebras
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e a ‘nice’ higher-order language (syntax + big-step operational rules);
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Abstract Modelling of Higher-Order Languages

Concrete/Abstract

Syntax

Program terms
Congruence
Behaviour type
Bisimulation metric

Big-step rules

N o g kB w Db o=
SO Gl R ORI

Operational model
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Abstract Modelling of Higher-Order Languages

Concrete/Abstract

1. Syntax 1. ¥x: C—>C

2. Program terms 2. Initial Z-algebra A
3. Congruence 3.

4. Behaviour type 4

5. Bisimulation metric 5.

6. Big-step rules 6

7. Operational model 7
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Syntax, Abstractly

>: C—C
Algebra Initial algebra Free algebra on X
A —— A YYRX X TEX - X
YAS A | |
Zhl \‘/h Zhl vh%
YA 25 A YA A

Example: Polynomial functor X = [[; X" on Set
Algebra: set A with operations f;: A" — A (i € I)

Initial algebra A: algebra of closed ¥-terms

Free algebra >*X: algebra of ¥-terms in variables from X

13



Example: A-Calculus [Fiore, Plotkin & Turi, LICS '99]

t,si=x|Ax.t|ts

C = Set” (IF = finite cardinals and functions).

n = untyped variable context xi,...,Xxp

...e.g. NeSetl, A(n)={)\-terms in context xi,...,x, }.
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Example: \-Calculus [Fiore, Plotkin & Turi, LICS '99]

t,si=x|Ax.t|ts

C = Set” (IF = finite cardinals and functions).

n = untyped variable context xi,...,Xxp

...e.g. NeSetl, A(n)={)\-terms in context xi,...,x, }.
Key observation
A carries the initial algebra of the endofunctor X : Set® — Set",
YX(n)=n+ X(n+1)+ X(n) x X(n).

X Ax. t ts

From now on: Pretend that ¥ : Set — Set and A € Set.
14



Abstract Modelling of Higher-Order Languages

Concrete/Abstract
1. Syntax 1. 2: C—C
2. Program terms 2. Initial X-algebra A
3. Congruence 3. Y-congruence
4. Behaviour type 4
5. Bisimulation metric 5.
6. Big-step rules 6
7. Operational model 7

ii5)



Congruences, Abstractly [Hermida & Jacobs '98]

FRel = fuzzy relations (X, d: X x X — [0,1]) and nonexpansive maps

FRel —= FRel

Ul lu

Set — = Set

A Y-congruence on an algebra a: ©A — Ais a fuzzy relation d on A s. th.

a: X(A d) — (A d) is nonexpansive.

Example: Polynomial functor X = X x X on Set
Y(X,d) = (X x X,d) where d((x,y), (X, y")) = d(x,x") + d(y,y").

d congruence on (A,®) <= d(a® b,a ®b') < d(a,a’) +d(b,V).
16



Abstract Modelling of Higher-Order Languages

Concrete/Abstract

Syntax .2 C—=C

1
Program terms 2. Initial X-algebra A
Congruence 3. Y-congruence
Behaviour type 4. B: C*xC — C
Bisimulation metric 5. B-bisimulation metric
6
7

Big-step rules

N o g kB w Db o=

Operational model
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Bisimulation Metrics, Abstractly

cf. [Hermida & Jacobs '98], [Baldan, Bonchi, Kerstan & Konig '13]

FRel® x FRel —2 FRel

U°P x Ul JU

Set® x Set — 2 Set

A fuzzy B-bisimulation on v: C — B(C, C) is a fuzzy rel. d on C s. th.
v: (C,d) — B((C,d=),(C,d)) is nonexpansive.
discrete metric
Fuzzy B-bisimilarity dj is the greatest fuzzy bisimulation.

dCd < Vt,s.d(t,s) > d'(t,s)

Note: dj is a metric under mild assumptions on the lifting B.
18



Example: Probabilistic A-Calculus

B(X,Y)=S8(YX)=D(1+ YX)

subdistributions distributions o
Wasserstein lifting

[ 1

FRel x FRel 1%, FRel 2" FRel — 2, FRel

] o s
Set% x Set — oM , Get ) Set — 2 Set

L B J

B

19



Example: Probabilistic A-Calculus

B(X,Y)=S8(YX)=D(1+ YX)
subdistributions distributions o
Wasserstein lifting

[ 1

FRel x FRel 1%, FRel 2" FRel — 2, FRel

o~ o o s

Set% x Set — oM , Get ) Set — 2 Set

L B J

B

5(()<7 dX)) - (DX7 d)7

d(p1,02) = inf{ Y _ dx(x,x) - (x,x) | p € DX x X), Dmi(0) = ¢; }

x,x!
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Example: Probabilistic A-Calculus

B(X,Y)=S8(YX)=D(1+ YX)

subdistributions distributions o
Wasserstein lifting

[ 1

FRel x FRel 1%, FRel 2" FRel — 2, FRel

] o s
Set% x Set — oM , Get ) Set — 2 Set

L B J

m((Xv dX)7 (Y7 dY)) - (YX7 d)7

B

d(f,g) =inf{e >0]|Vx,x.dy(f(x),g(x)) < dx(x,x')+¢e}

Note: f nonexpansive iff d(f,f) = 0. -



Abstract Modelling of Higher-Order Languages

Concrete/Abstract

Syntax .2 C—=C

1
Program terms 2. Initial X-algebra A
Congruence 3. Y-congruence
Behaviour type 4. B: C°xC— C
Bisimulation metric 5. B-bisimulation metric
6
7

Big-step rules . Abstract Big-Step Spec.

N o g kB w Db o=

Operational model
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Big-Step Rules, Abstractly

Syntax ¥: C — C + Behaviour B: C®*xC — C

An Abstract Big-Step Specification (ABSS) is a morphism

0: TB¥(A,A) = B(A, T*N)

e A: initial 2-algebra
e >*\: free X-algebra on A (‘terms over terms’)

e B(A,N\): cofree B(A\, —)-coalgebra on A (‘iterated behaviours')

B(A), BNB(AY),

C 2 B(A, C) 227, B(A, B(A, €))

22



Big-Step Rules, Abstractly

Syntax ¥: C — C + Behaviour B: C®*xC — C

An Abstract Big-Step Specification (ABSS) is a morphism

0: £B=(A,\) = B(A, £*A)

Intuition: p encodes big-step operational rules into a function.

t M.t/ ts/x] | Ax.t”
ts Ax.t”

23



Big-Step Rules, Abstractly

Syntax ¥: C — C + Behaviour B: C®*xC — C
An Abstract Big-Step Specification (ABSS) is a morphism
0: XB*®(A,N) — B(A,X*N)

Intuition: p encodes big-step operational rules into a function.

t§ Ax.t! ts/x] | Ax.t”
t sl x.t’

23



Big-Step Rules, Abstractly

Syntax ¥: C — C + Behaviour B: C®*xC — C

An Abstract Big-Step Specification (ABSS) is a morphism

0: TB®(A,A) — B(A, £*A)

Intuition: p encodes big-step operational rules into a function.

t§ M.t/ t'[s/x] | Ax.t”
ts | Ax.t”

23



Big-Step Rules, Abstractly
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Big-Step Rules, Abstractly

Syntax ¥: C — C + Behaviour B: C®*xC — C

An Abstract Big-Step Specification (ABSS) is a morphism

0: B¥(A,A) = B(A,T*N)

Intuition: p encodes big-step operational rules into a function.

t | Ax.t! t[s/x] | Ax.t”
ts | Ax.t”

Related: Abstract GSOS [Turi & Plotkin, LICS '97], HO Abstract GSOS
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Abstract Modelling of Higher-Order Languages

Concrete/Abstract
1. Syntax 1. ¥: C—>C |
2. Program terms 2. Initial X-algebra A
3. Congruence 3. ¥-congruence
4. Behaviour type 4. B: C?xC— C
5. Bisimulation metric 5. B-bisimulation metric
6. Big-step rules 6. Abstract Big-Step Spec.
7. Operational model 7. v=V,7: N—= B(\A)

24



Abstract Big-Step Specification: Operational Model

ABSS o: TB=(A,A) — B(A, £*A)

Higher-order coalgebra ~v: A — B(A,\)

25



Abstract Big-Step Specification: Operational Model

ABSS o: £B>®(A,A) — B(A, *N)

A —2— B(AN)

L=

Intuition:
e 7o: no information — e.g. vo: A — S(AM), t — 0.

25



Abstract Big-Step Specification: Operational Model

ABSS o: £B>®(A,A) — B(A, *N)

™
=
IR|=

Ll=7% <m

Intuition:
e 71: all t |} ¢ provable from the rules with a proof tree of height 1.
25



Abstract Big-Step Specification: Operational Model

ABSS o: £B>®(A,A) — B(A, *N)

™
=
IR|=

Ll=v%<m <7y

Intuition:
e 7o: all t |} ¢ provable from the rules with a proof tree of height 2.
25



Abstract Big-Step Specification: Operational Model

ABSS p: £B®(A,A) — B(A, *N)

T, B(A,N)
TB(/\,z)

za{
YB®(A,A) ——2— B(A,T*\)

< Y < Yot

A

™
=
IR |«

L= <m <1 < -

Intuition:
e 7,: all t | ¢ provable from the rules with a proof tree of height n.

25



Abstract Big-Step Specification: Operational Model

ABSS o: £B>(A,A) — B(A, *N)

T B(A,N)
TB(/\,Z)

IR |

YA
Z’yi
YB®(A,A) ——2 5 B(A,T*A)

l=v% <M <2< <% < Y1 < -

v & ’Y:\/’Yn
n

Intuition:
e v, all t | ¢ provable from the rules with a proof tree of height n.
25

o ~v: all t | ¢ provable from the rules.



Abstract Modelling of Higher-Order Languages

Concrete/Abstract
1. Syntax 1. ¥: C—>C |
2. Program terms 2. Initial X-algebra A
3. Congruence 3. ¥-congruence
4. Behaviour type 4. B: C?xC— C
5. Bisimulation metric 5. B-bisimulation metric
6. Big-step rules 6. Abstract Big-Step Spec.
7. Operational model 7. v=V,7: N—= B(A\A)
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Towards a General Compositionality Theorem

Goal: A general, abstract, unifying

Compositionality Theorem for Higher-Order Coalgebras

Suppose that we are given:

e a ‘nice’ higher-order language (syntax + big-step operational rules);

e the induced higher-order coalgebra v: A — B(A,\) on program terms.

Then the bisimulation metric dp on (A, ) is a congruence.

27



Compositionality Theorem for Bisimulation Metrics

FRel® x FRel —2— FRel

Y=V, Vn =

TN ——=— A B(A,A) FRel —=— FRel
z@l ABSS + model TB(“) o] Lv ) l”
Set % Set Set®P x Set # Set

YB®(A,N) ——2——% B(A,T*A)

Compositionality Theorem for Higher-Order Coalgebras
The B-bisimulation metric on v: A — B(A,A) is a -congruence
if

a few mild conditions on ¥, B, < & the ABSS o is liftable.

28



Liftable ABSS

ABSS p liftable: For every fuzzy relation d: A x A — [0, 1],

0: TB((A, d), (A, d)) = B((A, d), L7 (A, d)) is nonexpansive.

Intuition: Rules are nonexpansive.
ti > pi- At ts/x] U3 py - Ax.tf
ts D2 pi Py AX.t]

1)
w: DD(X,d) — D(X, d) nonexpansive.

29



Compositionality Theorem for Bisimulation Metrics

Y=Vap - 5
B(A,N) FRel —=— FRel FRel*® x FRel — FRel
U°p><Ul lU

SetP x Set L> Set

YA ——=— A
z@l ABSS + model TB(“) “l l“

¥B®(A,A) ——2— B(A, T*A) Set —>— Set

Compositionality Theorem for Higher-Order Coalgebras
The B-bisimulation metric on v: A — B(A,A) is a -congruence
if

a few mild conditionson ¥, B, < & the ABSS o is liftable.

® Liftability isolates the language-specific core of compositionality!

® In applications: not difficult to verify!
29



Compositionality Theorem for Fibrational Bisimulations

The Compositionality Theorem generalizes

FRel E
from lu to InQtl-fibrations lp
Set B

InQtl-fibration: every fiber [Ex is an involutive unital quantale
(EX7 L= (_)O)

abstracting composition - and reversal (—)° of fuzzy relations.

30



Compositionality Theorem for Fibrational Bisimulations

SA —5— A V2% g A E—I3B EP xE —25 B
z@l ABSS + model TB(/\,;) p p p°P Xpl lp
TB®(A,A) ——2—— B(A,=*A) B—2>B B® xB —2- B

Compositionality Theorem for Higher-Order Coalgebras
The B-bisimilarity object on v: A — B(A,A) is a -congruence
if
a few mild conditions on ¥, B, < & the ABSS o is liftable.

Proof: Fibrational generalization of Howe's method.

31



Applications

Compositionality Theorems for Bisimulations/Bisimulation Metrics

e Deterministic A-calculus [Abramsky '90]
e Probabilistic A-calculus [Crubillé & Dal Lago, LICS' 15]
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Applications

Compositionality Theorems for Bisimulations/Bisimulation Metrics

e Deterministic A-calculus [Abramsky '90]
Probabilistic A-calculus [Crubillé & Dal Lago, LICS' 15]

Nondeterministic A-calculus
S ~» P (power set monad with Hausdorff lifting P to FRel)

Nondeterministic probabilistic A-calculus
S ~» C (convex sets of distributions monad)

Effectful A-calculus (?)
S ~» T (monad on Set with a lifting T to FRel)

Continuous probabilistic A-calculus (?7?)

S ~ G (Giry monad on nice measurable spaces)
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