Behavioural Metrics for Higher-Order Coalgebras

 λ

Henning Urbat

Friedrich-Alexander-Universität Erlangen-Nürnberg

Dagstuhl Workshop 'Behavioural Metrics and Quantitative Logics'

October 2024

Higher-Order Coalgebras

Transition Systems

Behavioural equivalence and metrics

Coalgebras

$$\gamma\colon X o BX$$
 (Behaviour type $B\colon \mathbb{C} o \mathbb{C}$)

Behavioural equivalence and metrics

Higher-Order Coalgebras

Transition Systems

Behavioural equivalence and metrics

Operational Semantics of HO Languages

Behavioural equivalence and metrics

Coalgebras

 $\gamma \colon X \to BX$

(Behaviour type $B\colon\thinspace \mathbb{C} \to \mathbb{C}$)

Behavioural equivalence and metrics

Higher-Order Coalgebras

Transition Systems

Behavioural equivalence and metrics

Operational Semantics of HO Languages

Behavioural equivalence and metrics

Coalgebras

$$\gamma \colon X \to BX$$

(Behaviour type $B\colon\thinspace \mathbb{C} \to \mathbb{C}$)

Behavioural equivalence and metrics

Higher-Order Coalgebras

$$\gamma\colon X\to B(X,X)$$

(Behaviour type $B\colon \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C}$)

Behavioural equivalence and metrics

Syntax:
$$t,s ::= x \mid \lambda x.t \mid ts$$

+

Big-step operational semantics: $t \Downarrow \lambda x.t'$

$$\frac{t \Downarrow \lambda x.t' \quad t'[s/x] \Downarrow \lambda x.t''}{t s \Downarrow \lambda x.t''}$$

Big-step transitions $t \Downarrow \lambda x.t'$

 λ -terms

$$\gamma \colon \Lambda \to \{\bot\} + \Lambda^{\Lambda}, \quad \gamma(t) = (e \mapsto t'[e/x]) \text{ if } t \Downarrow \lambda x.t', \quad \gamma(t) = \bot \text{ else.}$$

Big-step transitions $t \Downarrow \lambda x.t'$

$$\begin{array}{c} \stackrel{\lambda\text{-terms}}{\downarrow} \\ \gamma\colon \Lambda \to \{\bot\} + \Lambda^{\color{red}\Lambda}, \quad \gamma(t) = (e \mapsto t'[e/x]) \text{ if } t \Downarrow \lambda x.t', \quad \gamma(t) = \bot \text{ else.} \end{array}$$

- Determ. labelled transition system with states Λ and labels Λ.
- **Higher-order coalgebra** $\gamma \colon \Lambda \to B(\Lambda, \Lambda)$ for $B(X, Y) = \{\bot\} + Y^X$.

Big-step transitions $t \Downarrow \lambda x.t'$

$$\begin{array}{c} \stackrel{\lambda\text{-terms}}{\downarrow} \\ \gamma\colon \mathsf{\Lambda} \to \{\bot\} + \mathsf{\Lambda}^{\mathsf{\Lambda}}, \quad \gamma(t) = (e \mapsto t'[e/x]) \text{ if } t \Downarrow \lambda x.t', \quad \gamma(t) = \bot \text{ else.} \end{array}$$

- **Determ. labelled transition system** with states Λ and labels Λ .
- Higher-order coalgebra $\gamma \colon \Lambda \to B(\Lambda, \Lambda)$ for $B(X, Y) = \{\bot\} + Y^X$.

Compositionality Theorem [Abramsky '90]

LTS-bisimilarity \approx on (Λ, γ) is a congruence:

 $t \approx s$ implies $C[t] \approx C[s]$ for every context $C[\cdot]$.

Big-step transitions $t \Downarrow \lambda x.t'$

$$\begin{array}{c} & & \downarrow \\ & & \downarrow \\ \gamma \colon \bigwedge \to \{\bot\} + \bigwedge^{\bigwedge}, \quad \gamma(t) = (e \mapsto t'[e/x]) \text{ if } t \Downarrow \lambda x.t', \quad \gamma(t) = \bot \text{ else.} \end{array}$$

- **Determ. labelled transition system** with states Λ and labels Λ .
- Higher-order coalgebra $\gamma \colon \Lambda \to B(\Lambda, \Lambda)$ for $B(X, Y) = \{\bot\} + Y^X$.

Compositionality Theorem [Abramsky '90]

LTS-bisimilarity \approx on (Λ, γ) is a congruence:

 $t \approx s$ implies $C[t] \approx C[s]$ for every context $C[\cdot]$.

Proof: Non-trivial (Howe's method)

Syntax:
$$t,s ::= x \mid \lambda x.t \mid ts \mid t \oplus s \mid \Omega$$
 if $\mathsf{FV}(t) \cap \mathsf{FV}(s) = \emptyset$ probabilistic choice diverging term

Syntax:
$$t,s$$
 ::= $x \mid \lambda x.t \mid ts \mid t \oplus s \mid \Omega$

if $\mathsf{FV}(t) \cap \mathsf{FV}(s) = \emptyset$ probabilistic choice diverging term

+ subdistribution of values

Big-step operational semantics: $t \Downarrow \varphi = \sum_i p_i \cdot \lambda x.t_i$
 $\lambda x.t \Downarrow 1 \cdot \lambda x.t$ $\Omega \Downarrow 0$

$$\frac{t \Downarrow \varphi \quad s \Downarrow \psi}{t \oplus s \Downarrow \frac{1}{2} \cdot \varphi + \frac{1}{2} \cdot \psi}$$

$$\frac{t \Downarrow \sum_{i} p_{i} \cdot \lambda x. t'_{i} \quad t'_{i}[s/x] \Downarrow \sum_{j} p_{ij} \cdot \lambda x. t''_{ij}}{t s \Downarrow \sum_{i,j} p_{i} \cdot p_{ij} \cdot \lambda x. t''_{ij}}$$

Big-step transitions
$$t \Downarrow \sum_{i} p_{i} \cdot \lambda x.t_{i}$$

$$\gamma \colon \Lambda \to \mathcal{S}(\Lambda^{\Lambda}), \quad \gamma(t) = \sum_{i} p_{i} \cdot (e \mapsto t_{i}[e/x]) \quad \text{if } t \Downarrow \sum_{i} p_{i} \cdot \lambda x.t_{i}.$$

$$\gamma \colon \Lambda \to \mathcal{S}(\Lambda^{\Lambda}), \quad \gamma(t) = \sum_i p_i \cdot (e \mapsto t_i[e/x]) \quad \text{if } t \Downarrow \sum_i p_i \cdot \lambda x.t_i.$$

- Labelled Markov chain with states Λ and labels Λ.
- Higher-order coalgebra $\gamma \colon \Lambda \to B(\Lambda, \Lambda)$ for $B(X, Y) = \mathcal{S}(Y^X)$.

Big-step transitions
$$t \Downarrow \sum_i p_i \cdot \lambda x. t_i$$
 \diamondsuit

$$\gamma \colon \Lambda \to \mathcal{S}(\Lambda^{\Lambda}), \quad \gamma(t) = \sum_i p_i \cdot (e \mapsto t_i[e/x]) \quad \text{if } t \Downarrow \sum_i p_i \cdot \lambda x.t_i.$$

- Labelled Markov chain with states Λ and labels Λ .
- Higher-order coalgebra $\gamma \colon \Lambda \to B(\Lambda, \Lambda)$ for $B(X, Y) = S(Y^X)$.

Compositionality Theorem [Crubillé & Dal Lago, LICS '15]

The LMC bisimulation metric d_{Λ} on (Λ, γ) is a congruence:

$$d_{\Lambda}(C[t], C[s]) \leq d_{\Lambda}(t, s)$$
 for every context $C[\cdot]$.

fails for non-affine prob. $\lambda\text{-calculus}$

There are many compositionality theorems for many HO languages.

complex, language-specific, ad hoc

There are many compositionality theorems for many HO languages.

complex, language-specific, ad hoc

Goal: A general, abstract, unifying

Compositionality Theorem for Higher-Order Coalgebras

Suppose that we are given:

- a 'nice' higher-order language (syntax + big-step operational rules);
- the induced higher-order coalgebra $\gamma \colon \Lambda \to B(\Lambda, \Lambda)$ on program terms.

Then the bisimulation metric d_{Λ} on (Λ, γ) is a congruence.

There are many compositionality theorems for many HO languages.

go complex, language-specific, ad hoc go

Goal: A general, abstract, unifying

Compositionality Theorem for Higher-Order Coalgebras

Suppose that we are given:

- a 'nice' higher-order language (syntax + big-step operational rules);
- the induced higher-order coalgebra $\gamma \colon \Lambda \to B(\Lambda, \Lambda)$ on program terms.

Then the bisimulation metric d_{Λ} on (Λ, γ) is a congruence.

Related: Higher-Order Abstract GSOS

Theory of behavioural equivalence based on small-step semantics.

⊆ {Goncharov, Milius, Schröder, Tsampas, Urbat}: LICS '23 '24 & POPL '23, '25

There are many compositionality theorems for many HO languages.

© complex, language-specific, ad hoc ©

Goal: A general, abstract, unifying

Compositionality Theorem for Higher-Order Coalgebras

Suppose that we are given:

- a 'nice' higher-order language (syntax + big-step operational rules);
- the induced higher-order coalgebra $\gamma \colon \Lambda \to B(\Lambda, \Lambda)$ on program terms.

Then the bisimulation metric d_{Λ} on (Λ, γ) is a congruence.

Related: Higher-Order Abstract GSOS

Theory of behavioural equivalence based on small-step semantics.

 $\subseteq \{Goncharov,\ Milius,\ Schröder,\ Tsampas,\ Urbat\}\colon\ LICS\ '23\ '24\ \&\ POPL\ '23,\ '25$

Abstract Modelling of Higher-Order Languages

Concrete/Abstract

- 1. Syntax 1.
- 2. Program terms 2.
- 3. Congruence 3.
- 4. Behaviour type 4.
- Bisimulation metric
 5.
- 6. Big-step rules 6.
- 7. Operational model 7.

Abstract Modelling of Higher-Order Languages

Concrete/Abstract

1. Syntax

1. $\Sigma \colon \mathbb{C} \to \mathbb{C}$

2. Program terms

2. Initial Σ -algebra Λ

3. Congruence

3.

4. Behaviour type

Bisimulation metric.

5.

6. Big-step rules

6.

7. Operational model

7.

Syntax, Abstractly

$$\Sigma\colon\thinspace \mathbb{C}\to\mathbb{C}$$

Example: Polynomial functor $\Sigma X = \coprod_i X^{n_i}$ on Set

Algebra: set A with operations $f_i: A^{n_i} \to A \ (i \in I)$

Initial algebra Λ : algebra of closed Σ -terms

Free algebra Σ^*X : algebra of Σ -terms in variables from X

Example: λ -Calculus [Fiore, Plotkin & Turi, LICS '99]

$$\mathbb{C} = \mathbf{Set}^{\mathbb{F}} \qquad (\mathbb{F} = \text{finite cardinals and functions}).$$

$$n \triangleq \text{untyped variable context } x_1, \dots, x_n$$

$$\dots \text{e.g.} \quad \Lambda \in \mathbf{Set}^{\mathbb{F}}, \quad \Lambda(n) = \{ \ \lambda \text{-terms in context } x_1, \dots, x_n \}.$$

Example: λ -Calculus [Fiore, Plotkin & Turi, LICS '99]

$$\mathbb{C} = \mathbf{Set}^{\mathbb{F}} \qquad (\mathbb{F} = \text{finite cardinals and functions}).$$

$$n \triangleq \text{untyped variable context } x_1, \dots, x_n$$

... e.g. $\Lambda \in \mathbf{Set}^{\mathbb{F}}$, $\Lambda(n) = \{ \lambda \text{-terms in context } x_1, \ldots, x_n \}$.

Key observation

 $\Lambda \text{ carries the initial algebra of the endofunctor } \Sigma \colon \textbf{Set}^{\mathbb{F}} \to \textbf{Set}^{\mathbb{F}},$

$$\sum X(n) = n + X(n+1) + X(n) \times X(n).$$

Example: λ -Calculus [Fiore, Plotkin & Turi, LICS '99]

$$t,s := x \mid \lambda x.t \mid ts$$

... e.g. $\Lambda \in \mathbf{Set}^{\mathbb{F}}$, $\Lambda(n) = \{ \lambda \text{-terms in context } x_1, \ldots, x_n \}$.

Key observation

 $\Lambda \text{ carries the initial algebra of the endofunctor } \Sigma \colon \textbf{Set}^{\mathbb{F}} \to \textbf{Set}^{\mathbb{F}},$

$$\sum X(n) = n + X(n+1) + X(n) \times X(n).$$

From now on: Pretend that $\Sigma : \mathbf{Set} \to \mathbf{Set}$ and $\Lambda \in \mathbf{Set}$.

Abstract Modelling of Higher-Order Languages

Concrete/Abstract

- 1. Syntax
- 2. Program terms
- 3. Congruence
- 4. Behaviour type
- 5. Bisimulation metric
- 6. Big-step rules
- 7. Operational model

- 1. $\Sigma \colon \mathbb{C} \to \mathbb{C}$
- 2. Initial Σ -algebra Λ
- 3. $\overline{\Sigma}$ -congruence
- 4.
- 5.
- 6.
- 7.

Congruences, Abstractly [Hermida & Jacobs '98]

FRel = fuzzy relations $(X, d: X \times X \rightarrow [0, 1])$ and nonexpansive maps

$$\begin{array}{ccc} \mathsf{FRel} & \xrightarrow{\overline{\Sigma}} & \mathsf{FRel} \\ \upsilon \! \! \downarrow & & \! \! \! \! \downarrow \upsilon \\ \mathsf{Set} & \xrightarrow{\Sigma} & \mathsf{Set} \end{array}$$

A $\overline{\Sigma}$ -congruence on an algebra $\alpha \colon \Sigma A \to A$ is a fuzzy relation d on A s. th.

$$\alpha \colon \overline{\Sigma}(A,d) \to (A,d)$$
 is nonexpansive.

Example: Polynomial functor $\Sigma X = X \times X$ on Set

$$\overline{\Sigma}(X,d) = (X \times X, \overline{d}) \text{ where } \overline{d}((x,y),(x',y')) = d(x,x') + d(y,y').$$

d congruence on $(A, \oplus) \iff d(a \oplus b, a' \oplus b') \leq d(a, a') + d(b, b')$.

Abstract Modelling of Higher-Order Languages

Concrete/Abstract

- 1. Syntax
- 2. Program terms
- 3. Congruence
- 4. Behaviour type
- 5. Bisimulation metric
- 6. Big-step rules
- 7. Operational model

- 1. $\Sigma \colon \mathbb{C} \to \mathbb{C}$
- 2. Initial Σ -algebra Λ
- 3. $\overline{\Sigma}$ -congruence
- 4. $B: \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{C}$
- 5. \overline{B} -bisimulation metric
- 6.
- 7.

Bisimulation Metrics, Abstractly

cf. [Hermida & Jacobs '98], [Baldan, Bonchi, Kerstan & König '13]

$$\begin{array}{ccc} \mathsf{FRel}^\mathsf{op} \times \mathsf{FRel} & \stackrel{\overline{B}}{\longrightarrow} \mathsf{FRel} \\ \begin{matrix} U^\mathsf{op} \times U \end{matrix} & & \downarrow U \\ \mathsf{Set}^\mathsf{op} \times \mathsf{Set} & \stackrel{B}{\longrightarrow} \mathsf{Set} \\ \end{array}$$

A fuzzy \overline{B} -bisimulation on $\gamma \colon C \to B(C,C)$ is a fuzzy rel. d on C s. th.

$$\gamma\colon (C,d) o \overline{B}((C,d_=),(C,d))$$
 is nonexpansive.

Fuzzy \bar{B} -bisimilarity d_{Λ} is the greatest fuzzy bisimulation.

$$d \sqsubseteq d' \iff \forall t, s. d(t, s) \geq d'(t, s)$$

Note: d_{Λ} is a metric under mild assumptions on the lifting \overline{B} .

$$B(X,Y) = \mathcal{S}(Y^X) = \mathcal{D}(1+Y^X)$$
subdistributions distributions
$$\overline{B}$$

$$FRel^{op} \times FRel \xrightarrow{\overline{Hom}} FRel \xrightarrow{1+(-)} FRel \xrightarrow{\overline{\mathcal{D}}} FRel$$

$$U^{op} \times U \downarrow \qquad \qquad \downarrow U \qquad \qquad \downarrow U$$

$$Set^{op} \times Set \xrightarrow{Hom} Set \xrightarrow{1+(-)} Set \xrightarrow{\mathcal{D}} Set$$

$$\overline{\mathcal{D}}((X, d_X)) = (\mathcal{D}X, d),$$

$$d(\varphi_1, \varphi_2) = \inf\{ \sum_{x, x'} d_X(x, x') \cdot \varphi(x, x') \mid \varphi \in \mathcal{D}(X \times X), \mathcal{D}\pi_i(\varphi) = \varphi_i \}$$

$$B(X,Y) = \mathcal{S}(Y^X) = \mathcal{D}(1+Y^X)$$
subdistributions distributions
$$\overline{B}$$

$$FRel^{op} \times FRel \xrightarrow{\overline{Hom}} FRel \xrightarrow{1+(-)} FRel \xrightarrow{\overline{\mathcal{D}}} FRel$$

$$U^{op} \times U \downarrow U \downarrow U \downarrow U$$

$$Set^{op} \times Set \xrightarrow{Hom} Set \xrightarrow{1+(-)} Set \xrightarrow{\mathcal{D}} Set$$

$$\overline{\operatorname{Hom}}((X, d_X), (Y, d_Y)) = (Y^X, d),$$

$$d(f, g) = \inf\{ \varepsilon \ge 0 \mid \forall x, x'. d_Y(f(x), g(x')) \le d_X(x, x') + \varepsilon \}$$

Note: f nonexpansive iff d(f, f) = 0.

Abstract Modelling of Higher-Order Languages

Concrete/Abstract

- 1. Syntax
- 2. Program terms
- 3. Congruence
- 4. Behaviour type
- 5. Bisimulation metric
- 6. Big-step rules
- 7. Operational model

- 1. $\Sigma \colon \mathbb{C} \to \mathbb{C}$
- 2. Initial Σ -algebra Λ
- 3. $\overline{\Sigma}$ -congruence
- 4. $B: \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{C}$
- 5. \overline{B} -bisimulation metric
- 6. Abstract Big-Step Spec.
- 7.

Big-Step Rules, Abstractly

$$\mathsf{Syntax}\ \Sigma\colon\thinspace\mathbb{C}\to\mathbb{C}\quad+\quad\mathsf{Behaviour}\ B\colon\thinspace\mathbb{C}^\mathsf{op}\times\mathbb{C}\to\mathbb{C}$$

An Abstract Big-Step Specification (ABSS) is a morphism

$$\varrho\colon \Sigma B^\infty(\Lambda,\Lambda)\to B(\Lambda,\Sigma^*\Lambda)$$

- Λ: initial Σ-algebra
- $\Sigma^*\Lambda$: free Σ -algebra on Λ ('terms over terms')
- $B^{\infty}(\Lambda, \Lambda)$: cofree $B(\Lambda, -)$ -coalgebra on Λ ('iterated behaviours')

$$C \xrightarrow{\gamma} B(\Lambda, C) \xrightarrow{B(\Lambda, \gamma)} B(\Lambda, B(\Lambda, C)) \xrightarrow{B(\Lambda, B(\Lambda, \gamma))} \cdots$$

Big-Step Rules, Abstractly

$$\mathsf{Syntax}\; \Sigma \colon\thinspace \mathbb{C} \to \mathbb{C} \quad + \quad \mathsf{Behaviour}\; B \colon\thinspace \mathbb{C}^\mathsf{op} \times \mathbb{C} \to \mathbb{C}$$

An Abstract Big-Step Specification (ABSS) is a morphism

$$\varrho \colon \Sigma B^{\infty}(\Lambda, \Lambda) \to B(\Lambda, \Sigma^*\Lambda)$$

Intuition: ϱ encodes big-step operational rules into a function.

$$\frac{t \Downarrow \lambda x.t' \quad t'[s/x] \Downarrow \lambda x.t''}{t \; s \; \Downarrow \; \lambda x.t''}$$

Big-Step Rules, Abstractly

$$\mathsf{Syntax}\ \Sigma\colon\thinspace\mathbb{C}\to\mathbb{C}\quad+\quad\mathsf{Behaviour}\ B\colon\thinspace\mathbb{C}^\mathsf{op}\times\mathbb{C}\to\mathbb{C}$$

An Abstract Big-Step Specification (ABSS) is a morphism

$$\varrho\colon \mathbf{\Sigma} B^\infty(\Lambda,\Lambda) \to B(\Lambda,\Sigma^*\Lambda)$$

Intuition: ϱ encodes big-step operational rules into a function.

$$\frac{t \Downarrow \lambda x.t' \quad t'[s/x] \Downarrow \lambda x.t''}{t \quad s \Downarrow \lambda x.t''}$$

Big-Step Rules, Abstractly

$$\mathsf{Syntax}\; \Sigma \colon\thinspace \mathbb{C} \to \mathbb{C} \quad + \quad \mathsf{Behaviour}\; B \colon\thinspace \mathbb{C}^\mathsf{op} \times \mathbb{C} \to \mathbb{C}$$

An Abstract Big-Step Specification (ABSS) is a morphism

$$\varrho \colon \Sigma B^{\infty}(\Lambda, \Lambda) \to B(\Lambda, \Sigma^*\Lambda)$$

Intuition: ϱ encodes big-step operational rules into a function.

$$\frac{t \Downarrow \lambda x.t' \quad t'[s/x] \Downarrow \lambda x.t''}{t s \Downarrow \lambda x.t''}$$

Big-Step Rules, Abstractly

$$\mathsf{Syntax}\; \Sigma \colon\thinspace \mathbb{C} \to \mathbb{C} \quad + \quad \mathsf{Behaviour}\; B \colon\thinspace \mathbb{C}^\mathsf{op} \times \mathbb{C} \to \mathbb{C}$$

An Abstract Big-Step Specification (ABSS) is a morphism

$$\varrho \colon \Sigma B^{\infty}(\Lambda, \Lambda) \to B(\Lambda, \Sigma^*\Lambda)$$

Intuition: ϱ encodes big-step operational rules into a function.

$$\frac{t \Downarrow \lambda x.t' \quad t'[s/x] \Downarrow \lambda x.t''}{t \; s \; \Downarrow \; \lambda x.t''}$$

Big-Step Rules, Abstractly

$$\mathsf{Syntax}\; \Sigma \colon\thinspace \mathbb{C} \to \mathbb{C} \quad + \quad \mathsf{Behaviour}\; B \colon\thinspace \mathbb{C}^\mathsf{op} \times \mathbb{C} \to \mathbb{C}$$

An Abstract Big-Step Specification (ABSS) is a morphism

$$\varrho\colon \Sigma B^\infty(\Lambda,\Lambda)\to B(\Lambda,\Sigma^*\Lambda)$$

Intuition: ϱ encodes big-step operational rules into a function.

$$\frac{t \Downarrow \lambda x.t' \quad t'[s/x] \Downarrow \lambda x.t''}{t \; s \; \Downarrow \; \lambda x.t''}$$

Related: Abstract GSOS [Turi & Plotkin, LICS '97], HO Abstract GSOS

Abstract Modelling of Higher-Order Languages

Concrete/Abstract

- 1. Syntax
- 2. Program terms
- 3. Congruence
- 4. Behaviour type
- 5. Bisimulation metric
- 6. Big-step rules
- 7. Operational model

- 1. $\Sigma \colon \mathbb{C} \to \mathbb{C}$
- 2. Initial Σ -algebra Λ
- 3. $\overline{\Sigma}$ -congruence
- 4. $B: \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{C}$
- 5. B-bisimulation metric
- 6. Abstract Big-Step Spec.
- 7. $\gamma = \bigvee_{n} \gamma_{n} : \Lambda \to B(\Lambda, \Lambda)$

ABSS
$$\varrho \colon \Sigma B^{\infty}(\Lambda, \Lambda) \to B(\Lambda, \Sigma^* \Lambda)$$

Higher-order coalgebra $\gamma \colon \Lambda \to B(\Lambda, \Lambda)$

ABSS
$$\varrho \colon \Sigma B^{\infty}(\Lambda, \Lambda) \to B(\Lambda, \Sigma^*\Lambda)$$

$$\Lambda \xrightarrow{\gamma_0} B(\Lambda, \Lambda)$$

$$\perp = \gamma_0$$

- γ_0 : no information e.g. $\gamma_0: \Lambda \to \mathcal{S}(\Lambda^{\Lambda}), t \mapsto 0$.
- •

ABSS
$$\varrho \colon \Sigma B^{\infty}(\Lambda, \Lambda) \to B(\Lambda, \Sigma^*\Lambda)$$

$$\begin{array}{cccc} \Sigma \Lambda & \xrightarrow{\iota} & \lambda & \xrightarrow{\gamma_1} & B(\Lambda, \Lambda) \\ \Sigma \hat{\gamma_0} & & & & \uparrow B(\Lambda, \hat{\iota}) \\ \Sigma B^{\infty}(\Lambda, \Lambda) & \xrightarrow{\varrho} & & B(\Lambda, \Sigma^* \Lambda) \end{array}$$

$$\perp = \gamma_0 \leq \gamma_1$$

- γ_1 : all $t \Downarrow \varphi$ provable from the rules with a proof tree of height 1.
- •

ABSS
$$\varrho \colon \Sigma B^{\infty}(\Lambda, \Lambda) \to B(\Lambda, \Sigma^*\Lambda)$$

$$\begin{array}{cccc} \Sigma \Lambda & \xrightarrow{\iota} & \Lambda & \xrightarrow{\gamma_2} & B(\Lambda, \Lambda) \\ \Sigma \hat{\gamma}_1 & & & \uparrow B(\Lambda, \hat{\iota}) \\ \Sigma B^{\infty}(\Lambda, \Lambda) & \xrightarrow{\varrho} & & B(\Lambda, \Sigma^*\Lambda) \end{array}$$

$$\perp = \gamma_0 \leq \gamma_1 \leq \gamma_2$$

- γ_2 : all $t \Downarrow \varphi$ provable from the rules with a proof tree of height 2.
- •

ABSS
$$\varrho \colon \Sigma B^{\infty}(\Lambda, \Lambda) \to B(\Lambda, \Sigma^*\Lambda)$$

$$\begin{array}{cccc} \Sigma \Lambda & \xrightarrow{\quad \iota \quad \quad } \Lambda & \xrightarrow{\quad \gamma_{n+1} \quad \quad } B(\Lambda, \Lambda) \\ \Sigma \hat{\gamma}_n & & & & \uparrow B(\Lambda, \hat{\iota}) \\ \Sigma B^{\infty}(\Lambda, \Lambda) & \xrightarrow{\quad \varrho \quad \quad } B(\Lambda, \Sigma^* \Lambda) \end{array}$$

$$\perp = \gamma_0 \leq \gamma_1 \leq \gamma_2 \leq \cdots \leq \gamma_n \leq \gamma_{n+1}$$

- γ_n : all $t \Downarrow \varphi$ provable from the rules with a proof tree of height n.
- •

ABSS
$$\varrho \colon \Sigma B^{\infty}(\Lambda, \Lambda) \to B(\Lambda, \Sigma^*\Lambda)$$

$$\begin{array}{ccc} \Sigma \Lambda & \xrightarrow{\iota} & \lambda & \xrightarrow{\gamma} & B(\Lambda, \Lambda) \\ \Sigma \hat{\gamma} \downarrow & & & \uparrow B(\Lambda, \hat{z}) \\ \Sigma B^{\infty}(\Lambda, \Lambda) & \xrightarrow{\varrho} & & B(\Lambda, \Sigma^* \Lambda) \end{array}$$

$$\bot = \gamma_0 \leq \gamma_1 \leq \gamma_2 \leq \cdots \leq \gamma_n \leq \gamma_{n+1} \leq \cdots \leq \gamma = \bigvee_n \gamma_n$$

- γ_n : all $t \Downarrow \varphi$ provable from the rules with a proof tree of height n.
- γ : all $t \Downarrow \varphi$ provable from the rules.

Abstract Modelling of Higher-Order Languages

Concrete/Abstract

- 1. Syntax
- 2. Program terms
- 3. Congruence
- 4. Behaviour type
- 5. Bisimulation metric
- 6. Big-step rules
- 7. Operational model

- 1. $\Sigma \colon \mathbb{C} \to \mathbb{C}$
- 2. Initial Σ -algebra Λ
- 3. $\overline{\Sigma}$ -congruence
- 4. $B: \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{C}$
- 5. B-bisimulation metric
- 6. Abstract Big-Step Spec.
- 7. $\gamma = \bigvee_{n} \gamma_{n} : \Lambda \to B(\Lambda, \Lambda)$

Towards a General Compositionality Theorem

Goal: A general, abstract, unifying

Compositionality Theorem for Higher-Order Coalgebras

Suppose that we are given:

- a 'nice' higher-order language (syntax + big-step operational rules);
- the induced higher-order coalgebra $\gamma \colon \Lambda \to B(\Lambda, \Lambda)$ on program terms.

Then the bisimulation metric d_{Λ} on (Λ, γ) is a congruence.

Compositionality Theorem for Bisimulation Metrics

Compositionality Theorem for Higher-Order Coalgebras

The \overline{B} -bisimulation metric on $\gamma \colon \Lambda \to B(\Lambda, \Lambda)$ is a $\overline{\Sigma}$ -congruence if

a few mild conditions on $\overline{\Sigma}$, \overline{B} , \leq & the ABSS ϱ is liftable.

Liftable ABSS

ABSS ϱ liftable: For **every** fuzzy relation $d: \Lambda \times \Lambda \rightarrow [0,1]$,

$$\varrho\colon \overline{\Sigma}\,\overline{B}^\infty((\Lambda,d),(\Lambda,d))\to \overline{B}((\Lambda,d),\overline{\Sigma}^*(\Lambda,d))\qquad \text{ is nonexpansive}.$$

Intuition: Rules are nonexpansive.

Compositionality Theorem for Bisimulation Metrics

Compositionality Theorem for Higher-Order Coalgebras

The \overline{B} -bisimulation metric on $\gamma \colon \Lambda \to B(\Lambda, \Lambda)$ is a $\overline{\Sigma}$ -congruence

if

a few mild conditions on $\overline{\Sigma}$, \overline{B} , \leq & the ABSS ϱ is liftable.

- © Liftability isolates the language-specific core of compositionality!
- (9) In applications: not difficult to verify!

Compositionality Theorem for Fibrational Bisimulations

The Compositionality Theorem generalizes

InQtI-fibration: every fiber \mathbb{E}_X is an involutive unital quantale

$$(\mathbb{E}_X, \sqsubseteq, \cdot, 1, (-)^{\circ})$$

abstracting composition \cdot and reversal $(-)^{\circ}$ of fuzzy relations.

Compositionality Theorem for Fibrational Bisimulations

Compositionality Theorem for Higher-Order Coalgebras

The \overline{B} -bisimilarity object on $\gamma \colon \Lambda \to B(\Lambda, \Lambda)$ is a $\overline{\Sigma}$ -congruence if

Proof: Fibrational generalization of Howe's method.

- Deterministic λ -calculus [Abramsky '90]
- Probabilistic λ -calculus [Crubillé & Dal Lago, LICS' 15]

- Deterministic λ -calculus [Abramsky '90]
- Probabilistic λ -calculus [Crubillé & Dal Lago, LICS' 15]
- Nondeterministic λ -calculus
 - $\mathcal{S} \rightsquigarrow \mathcal{P}$ (power set monad with Hausdorff lifting $\overline{\mathcal{P}}$ to **FRel**)

- Deterministic λ -calculus [Abramsky '90]
- Probabilistic λ -calculus [Crubillé & Dal Lago, LICS' 15]
- Nondeterministic λ -calculus
 - $\mathcal{S} \rightsquigarrow \mathcal{P}$ (power set monad with Hausdorff lifting $\overline{\mathcal{P}}$ to **FRel**)
- ullet Nondeterministic probabilistic λ -calculus
 - $\mathcal{S} \leadsto \mathcal{C}$ (convex sets of distributions monad)

- Deterministic λ -calculus [Abramsky '90]
- Probabilistic λ -calculus [Crubillé & Dal Lago, LICS' 15]
- Nondeterministic λ -calculus
 - $\mathcal{S} \rightsquigarrow \mathcal{P}$ (power set monad with Hausdorff lifting $\overline{\mathcal{P}}$ to **FRel**)
- Nondeterministic probabilistic λ -calculus
 - $\mathcal{S} \ \leadsto \ \mathcal{C}$ (convex sets of distributions monad)
- Effectful λ -calculus (?)
 - $\mathcal{S} \leadsto \mathbb{T}$ (monad on **Set** with a lifting $\overline{\mathbb{T}}$ to **FRel**)

- Deterministic λ -calculus [Abramsky '90]
- Probabilistic λ-calculus [Crubillé & Dal Lago, LICS' 15]
- Nondeterministic λ -calculus
 - $\mathcal{S} \rightsquigarrow \mathcal{P}$ (power set monad with Hausdorff lifting $\overline{\mathcal{P}}$ to **FRel**)
- Nondeterministic probabilistic λ -calculus
 - $\mathcal{S} \ \leadsto \ \mathcal{C}$ (convex sets of distributions monad)
- Effectful λ -calculus (?)
 - $\mathcal{S} \leadsto \mathbb{T}$ (monad on **Set** with a lifting $\overline{\mathbb{T}}$ to **FRel**)
- Continuous probabilistic λ -calculus (??)
 - $\mathcal{S} \rightsquigarrow \mathcal{G}$ (Giry monad on nice measurable spaces)

Big Picture

