
The 𝜆̄𝜇 ̃𝜇-Calculus as a Setting for (Formalist)
Argumentation

Max Rapp

November 13, 2024

About me

I am a PhD student/scientific research assistant in the
KWARC-group (aka Professur für Wissensrepräsentation u.
-verarbeitung) under the supervision of Michael Kohlhase.

▶ Originally came on board for the ALMANAC-project funded
by the RATIO-SPP (Robust Argumentation Machines);

▶ Background in Philosophy of Science (M.Sc.) and Logic
(M.Sc.);

▶ My interests are in knowledge representation for formal
argumentation and legal AI .̇.

▶ as well as what I call “formalist argumentation” (this talk).
▶ Currently, I am working with Merlin on the DIREGA-project.
▶ Find me at my desk (11.125), or via email, Matrix etc.

(myfirstname.mylastname[at]fau.de)

What even is an Argument (Computationally Speaking)?

According to the Stanford Encyclopedia of Philosophy “[formalism
in mathematics] is a position which it is fair to say most
philosophers of mathematics still think is hopeless.” (Weir 2024)

▶ So let’s be much more formalist, not just about mathematics
but about everything else!

▶ In Curry-Howard formalism, proofs can be understood as
programs.

▶ Can we come up with a similar correspondence for arguments?
Intuitively, an (sound) argument provides evidence for its
conclusion using certain commonly accepted inference rules to
progress from assumptions (to be disambiguated) to a conclusion
(like a proof). But arguments are ampliative (unlike proofs) and
defeasible, in that they may be challenged by other arguments
(unlike proofs).

Four Requirements for a Formalist Notion of Argument

This intuition gives rise to a list of requirements for a
CH-formalist/computational interpretation of arguments:

▶ A model of gaps (enthymemes and defaults);
▶ A model of conflict (what is “attack” between arguments?
▶ A model of defeasibility (when should an argument be

retracted and what does this means?)
▶ A model of dialogue (how can arguments be exchanged and

interact with each other?)

The 𝜆̄𝜇 ̃𝜇-Calculus (Curien and Herbelin 2000) - My Flavor

𝑣 ∶∶= 𝑥 | 𝜆𝑥 ∶ 𝜎𝜎.𝑣 | 𝑣 ∘ 𝐸 | 𝜇𝛼 ∶ 𝜎𝜎.𝑐 Terms
𝐸 ∶∶= 𝛼 | 𝛼 ∶ 𝜎𝜎𝜆.𝐸 | 𝑣 ∘ 𝐸 | ̃𝜇𝑥 ∶ 𝜎𝜎.𝑐 Environments
𝑐 ∶∶= ⟨𝑣 ≺ 𝐸⟩ Commands
𝜎, 𝛿𝜎, 𝛿 ∶∶= 𝑎𝑎 | 𝜎 → 𝛿𝜎 → 𝛿 | 𝜎 − 𝛿𝜎 − 𝛿 Programms
𝜎𝜎,𝛿𝛿 ∶∶= 𝑎𝑎 | 𝜎 → 𝛿𝜎 → 𝛿 | 𝜎 − 𝛿𝜎 − 𝛿 Continuations
𝜎𝜎, 𝛿𝛿 ∶∶= 𝑎𝑎 | 𝜎 → 𝛿𝜎 → 𝛿 | 𝜎 − 𝛿𝜎 − 𝛿 Halt

Grammar: Language of the 𝜆̄𝜇 ̃𝜇-Calculus (adapted from Curien and
Herbelin 2000)

Intuition I: Terms and Environments

▶ Terms are expressions with outer holes representing a
environment to which they can be passed. The type of the
term determines which environments it can be passed to.

▶ Environments are expressions with inner holes representing a
term which can be passed to them. The type of the
environment determines which terms can be passed to it.

▶ Commands non-deterministically assign terms to
environments.

▶ The 𝜇 and ̃𝜇-operators bind and name a term/environment
respectively to continue with a different term/environment in
the environment and (possibly) return to the original
term/environment later .

Intuition I: Rendering Semantics

To capture this intuition we can define natural language rendering
semantics:

J𝑥K ∶= x J𝛼K ∶= to 𝛼J𝜆𝑥 ∶ 𝜎.𝑣K ∶= Given 𝜎(𝑥)J𝑣K J𝑣 ∘ 𝐸K ∶= with J𝑣KJ𝜇𝛼 ∶ 𝛿𝛿.𝑐K ∶= with current continuation 𝛼 ∶ 𝛿 J𝐸KJ𝑐K J⟨𝑣 ≺ 𝐸⟩K ∶= return J𝑣KJ ̃𝜇𝑥 ∶ 𝜎𝜎.𝑐K ∶= with current term 𝑥 ∶ J𝐸KJ𝑐K

Example: Application

Function application is recovered via the expression
𝜆𝑥 ∶ 𝜎.𝜆𝑦 ∶ 𝜎 → 𝛿.𝜇𝛼 ∶ 𝛿𝛿.⟨𝑦 ≺ 𝑥 ∘ 𝛼⟩ which is rendered as:

Rendering
Given 𝑥 ∶ 𝜎
Given 𝑦 ∶ 𝜎 → 𝛿
With current continuation 𝛼 ∶ 𝛿

return 𝑦 with 𝑥
to 𝛼

Peirce’s Law rendered computationally
The 𝜆̄𝜇 ̃𝜇-Calculus Curry-Howard corresponds to classical logic.
This can be seen through the following expression corresponding to
a proof of Peirce’s law (((𝜎 → 𝛿) → 𝜎) → 𝜎):

𝜆𝑓 ∶ (𝜎 → 𝛿)(𝜎 → 𝛿) → 𝜎.𝜇𝛼 ∶ 𝜎𝜎.⟨𝑓 ≺ 𝜆𝑥 ∶ 𝜎𝜎.𝜇𝛽 ∶ 𝛿𝛿.⟨𝑐 ≺ 𝛼⟩ ∘ 𝛼⟩

Computationally speaking, Peirce’s law corresponds to Call/CC:

Computational Rendering of Peirce’s Law
Given 𝑓 ∶ (𝜎 → 𝛿) → 𝜎(𝜎 → 𝛿) → 𝜎
with current continuation 𝛼 ∶ 𝜎

return f
with given 𝑥 ∶ 𝜎𝜎
with current continuation 𝛽 ∶ 𝛿

return x to 𝛼.
to 𝛼.

Intuition II: From Programs to Proofs.

Via the proofs-as-programs correspondence, we can think of
▶ a term (in a term variable context 𝐴1, … , 𝐴𝑛) of type 𝑇 as a

proof of 𝑇 from hypotheses 𝐴1, … , 𝐴𝑛;
▶ Dually, a environment of type 𝑇 can be thought of as a proof

of a given thesis from 𝑇 .
Note the asymmetry in this intuition: multiple hypotheses, only
one thesis.

Intuitionistic Rendering Semantics (Sacerdoti Coen 2006)

This intuition can be captured by the following rendering
semantics, restricting the set of environment variables to a
singleton {⋆} (Sacerdoti-Coen 2006):

J𝑥K ∶= by x J𝛼K ∶=J𝜆𝑥 ∶ 𝜎.𝑣K ∶= Assume 𝜎(𝑥) doneJ𝑣K J𝑣 ∘ 𝐸K ∶= andJ𝑣KJ𝜇⋆ ∶ 𝛿𝛿.𝑐K ∶= we need to prove 𝛿 J𝐸KJ𝑐K J ̃𝜇𝑥 ∶ 𝜎𝜎.𝑐K ∶= we have proved 𝜎(𝑥)J⟨𝑣 ≺ 𝐸⟩K ∶=J𝑣K J𝐸K J𝑐K

Example: Application

The application example (𝜆𝑥 ∶ 𝜎.𝜆𝑦 ∶ 𝜎 → 𝛿.𝜇𝛼 ∶ 𝛿𝛿.⟨𝑦 ≺ 𝑥 ∘ 𝛼⟩)
becomes:

Application/Implication Elimination: Intuitionistic Rendering
Assume 𝑥 ∶ 𝜎
Assume 𝑦 ∶ 𝜎 → 𝛿
We need to prove 𝛿

By 𝑦 and by 𝑥
done

Example: Peirce’s Law

But intuitionistic rendering semantics fail for the classical case as
can be seen in the following rendering of Peirce’s Law:

𝜆𝑓 ∶ (𝜎 → 𝛿)(𝜎 → 𝛿) → 𝜎.𝜇𝛼 ∶ 𝜎𝜎.⟨𝑓 ≺ 𝜆𝑥 ∶ 𝜎𝜎.𝜇𝛽 ∶ 𝛿𝛿.⟨𝑐 ≺ 𝛼⟩ ∘ 𝛼⟩

Peirce’s Law: Failed Intuitionistic Rendering
Assume (𝜎 → 𝛿) → 𝜎(𝜎 → 𝛿) → 𝜎 (f)
we need to prove 𝜎

by f and assume 𝜎𝜎 (x)
we need to prove 𝛿

by x
done (???)

done

The 𝜆̄𝜇 ̃𝜇-Calculus Natural Deduction Style
To remedy this problem, we will provide a third intuition. First we
define a notational variant of the calculus.

▶ The typing system of the calculus can be transposed into a
natural deduction system using the method due to Lovas and
Crary 2006.

▶ Recall that antecedents are conjunctive whereas succedents
are disjunctive in sequent calculus. Transpose the calculus like
so:

▶ Add a dedicated type for continuations (denoted by
greek-letter shaped holes).

▶ Mirror the succedent to the left side of the turnstyle (it
becomes a conjunctive cedent of continuation-typed
environments).

▶ The formulae in the stoups become the single-conclusion
succedent which can either hold a term or an environment
(corresponding to a right-hand and left-hand stoup
correspondingly).

The 𝜆̄𝜇 ̃𝜇-Calculus: Typing rules

ΣΣ, 𝑥 ∶ 𝜎𝜎; ΔΔ ⊢ 𝑥 ∶ 𝜎𝜎 Σ; ΔΔ, 𝛼 ∶ 𝛿𝛿 ⊢ 𝛼 ∶ 𝛿𝛿
ΣΣ, 𝑥 ∶ 𝜎𝜎; ΔΔ ⊢ 𝑣 ∶ 𝛿𝛿

ΣΣ; ΔΔ ⊢ 𝜆𝑥 ∶ 𝜎.𝑣 ∶ 𝜎 → 𝛿𝜎 → 𝛿
ΣΣ; ΔΔ, 𝛼 ∶ 𝜎𝜎 ⊢ 𝐹 ∶ 𝛿𝛿

ΣΣ; ΔΔ ⊢ 𝛼𝜆.𝐹 ∶ 𝜎 − 𝛿𝜎 − 𝛿
ΣΣ; ΔΔ ⊢ 𝐸 ∶ 𝛿𝛿 ΣΣ; ΔΔ ⊢ 𝑣 ∶ 𝜎𝜎

ΣΣ; ΔΔ ⊢ 𝐸 ∘ 𝑣 ∶ 𝜎 − 𝛿𝜎 − 𝛿
ΣΣ; ΔΔ ⊢ 𝑣 ∶ 𝜎𝜎 ΣΣ; ΔΔ ⊢ 𝐸 ∶ 𝛿𝛿

ΣΣ; ΔΔ ⊢ 𝑣 ∘ 𝐸 ∶ 𝜎 → 𝛿𝜎 → 𝛿
ΣΣ; ΔΔ, 𝛼 ∶ 𝛿𝛿 ⊢ 𝑐 ∶ ⊥⊥
ΣΣ; ΔΔ ⊢ 𝜇𝛼 ∶ 𝛿𝛿.𝑐 ∶ 𝛿𝛿

ΣΣ, 𝑥 ∶ 𝜎𝜎; ΔΔ ⊢ 𝑐 ∶ ⊥⊥
ΣΣ; ΔΔ ⊢ ̃𝜇𝑥 ∶ 𝜎𝜎.𝑐 ∶ 𝜎𝜎

ΣΣ; ΔΔ ⊢ 𝑣 ∶ 𝜎𝜎 ΣΣ; ΔΔ ⊢ 𝐸 ∶ 𝜎𝜎
ΣΣ; ΔΔ ⊢ ⟨𝑣 ≺ 𝐸⟩ ∶ 𝜎𝜎

Intuition III: Proofs and Refutations

Logically speaking …

▶ …terms can be thought of as (conditional) proofs;
▶ …environments can be thought of as (conditional) refutations;
▶ …commands can be thought of as contradictions.

We obtain a dialectical (proof-by-contradiction driven) natural
deduction system.

Dialectical Rendering Semantics

J𝑥K ∶= proved by x J𝛼K ∶=but refuted by 𝛼J𝜆𝑥 ∶ 𝜎.𝑣K ∶= Assume 𝑥 ∶ 𝜎 contradictionJ𝑣K J𝑣 ∘ 𝐸K ∶= and J𝑣KJ𝜇𝛼 ∶ 𝛿𝛿.𝑐K ∶=then 𝛿 ∶ J𝐸K
for assume a ref. 𝛼 ∶ 𝛿J𝑐K J⟨𝑣 ≺ 𝐸⟩K ∶= return J𝑣K J𝐸KJ ̃𝜇𝑥 ∶ 𝜎𝜎.𝑐K ∶=then not 𝜎 ∶
for assume a proof 𝑥 ∶ 𝜎J𝑐K

Application Rendered Dialectically

Application (or implication elimination) becomes the following
somewhat more indirect proof
(𝜆𝑥 ∶ 𝜎.𝜆𝑦 ∶ 𝜎 → 𝛿.𝜇𝛼 ∶ 𝛿𝛿.⟨𝑦 ≺ 𝑥 ∘ 𝛼⟩):

Rendering
Assume 𝑥 ∶ 𝜎
Assume 𝑦 ∶ 𝜎 → 𝛿
then 𝛿: for assume a refutation 𝛼 ∶ 𝛿

proved by 𝑦 and 𝑥
but refuted by 𝛼, contradiction

Peirce’s Law Rendered Dialectically

But crucially, the new rendering semantics can handle Peirce’s law:

𝜆𝑓 ∶ (𝜎 → 𝛿)(𝜎 → 𝛿) → 𝜎.𝜇𝛼 ∶ 𝜎𝜎.⟨𝑓 ≺ 𝜆𝑥 ∶ 𝜎𝜎.𝜇𝛽 ∶ 𝛿𝛿.⟨𝑐 ≺ 𝛼⟩ ∘ 𝛼⟩

Classical Rendering
Assume 𝑓 ∶ (𝜎 → 𝛿) → 𝜎(𝜎 → 𝛿) → 𝜎
then 𝜎: for assume a refutation 𝛼 ∶ 𝜎

proved by f and assume 𝑥 ∶ 𝜎𝜎
then 𝛿: for assume a refutation of 𝛿 (𝛽)

proved by x but refuted by 𝛼, contradiction.
but refuted by 𝛼, contradiction.

What even is an Argument - First Approximation

An argument is simply an open 𝜆̄𝜇 ̃𝜇-expression:

▶ its type corresponds to the argument’s conclusion and
determines its polarity (for against the thesis);

▶ its free variables correspond to its assumptions (not
hypotheses!);

▶ its body corresponds to its chain of reasoning.

Why this Model of Argument? The Reasons so Far.
So far we have seen that the 𝜆̄𝜇 ̃𝜇-Calculus (rendered as a natural
deduction system) provides the following advantages:

▶ Single conclusion system that preserves the nice
proof-theoretical properties of the sequent-calculus (see Lovas
and Crary 2006)

▶ Term language provides structure to abstract arguments
(sequent-based argumentation identifies all sequents with
same typing judgments! But argumentation is highly
proof-relevant!)

▶ Compact representation of arguments in terms of expressions.
▶ Natural deduction captures human reasoning well.
▶ Rendering semantics enable natural language explanations.

But crucially, arguments are exchanged in argumentation
processes. Therefore it is necessary to capture the fundamental
relations between arguments.

From Arguments to Argumentation: Three Modes of
Attack

In most approaches to formal argumentation the fundamental
relation between argument is attack.

▶ Rebut (or sometimes Rebuttal): Two arguments reach
contrary conclusions.

▶ Undermine (unfortunately, in logical argumentation this is a
type of undercut): The attacking argument’s conclusion is
contrary to an assumption of the attacked argument.

▶ Undercut: The attacking argument’s conclusion indicates the
inapplicability of a defeasible inference rule (weak implication)
used in the attacked argument’s body.

From Arguments to Argumentation: Support

Another relation between arguments is one of support.
For our purposes, an argument 𝐴 supports another argument 𝐵 if
𝐴’s conclusion is an assumption of 𝐵. (There are also other kinds
of support relations which we omit for now).

A Striking Correspondence: Rebut and Cut

Compare the (compact) rebuttal rule from sequent-based
argumentation (Arieli and Straßer 2015) with the Cut-rule of the
𝜆̄𝜇 ̃𝜇-Calculus:

Γ1 ⊢ 𝜑 Γ2 ⊢ ¬𝜑
Γ2�⊢𝜑

ΣΣ; ΔΔ ⊢ 𝑣 ∶ 𝜎𝜎 ΣΣ; ΔΔ ⊢ 𝐸 ∶ 𝜎𝜎
ΣΣ; ΔΔ ⊢ ⟨𝑣 ≺ 𝐸⟩ ∶ 𝜎𝜎

▶ If we identify ¬𝜑 with a refutation of 𝜑 the conditions of the
rules are isomorphic!

▶ Thus given a classical base logic, either cut or rebuttal could
be applied.

“Discharging” Derivations

▶ In logic, a contradiction is handled by (non-deterministically)
discharging and negating an assumption.

▶ Argumentation is more conservative: since we don’t know
which assumption (or set of assumptions) is the culprit, we
merely quarantine one side of the offending contradiction.

▶ Idea: capture rebuttal in the 𝜆̄𝜇 ̃𝜇-Calculus by restricting the
contradiction elimination rule (or computationally, restrict
non-deterministic choice).

The Power of the Command Syntax

▶ At a state ⟨𝑣 ≺ 𝐸⟩ ∶ 𝜎𝜎 both opposing arguments are recorded
in the proof term.

▶ Decide (non-deterministically) which argument wins (say 𝑣).
▶ Allow the reinstatement of 𝑣 …

Using the command syntax, we can encode rebut with the
following term:

𝑟𝑒𝑏𝑢𝑡𝑙𝑒𝑓𝑡(𝑡1, 𝑡2) = 𝜇∗ ∶ 𝜎𝜎.⟨𝜇_ ∶ 𝜎𝜎.⟨𝑡1 ∶ 𝜎 ≺ ∗ ∶ 𝜎𝜎⟩ ≺ ̃𝜇⋆ ∶ 𝜎.⟨⋆ ∶ 𝜎 ≺ 𝑡2 ∶ 𝜎𝜎⟩⟩

Computational Rendering of Rebut

Note that the affine continuation _ never gets returned to, instead
𝑡1 is returned to the outer continuation. Meanwhile, 𝑡2 is stored
using a dummy value aborting the programm if the right hand side
is evaluated before the left-hand side (call-by-name).
Rebut
With current continuation ∗ ∶ 𝜎𝜎

return With current continuation _ ∶ 𝜎𝜎
return 𝑡1 ∶ 𝜎 to ∗

With current term ⋆ ∶ 𝜎𝜎
return ⋆ ∶ 𝜎 to 𝑡2

Argumentative Rendering Semantics for Rebut

For an argumentative rendering of rebut we just add a case for the
rebut pattern (which we make sure is syntactically unique by
availing ourselves of a reserved continuation assumption “rebut”:

J𝑟𝑒𝑏𝑢𝑡𝑙𝑒𝑓𝑡(𝑡1, 𝑡2)K = Rebutting 𝑡2 with 𝑡1

Undermine

Recall the compact direct defeat rule from sequent-based
argumentation

Σ1 ⊢ ¬𝜑 Σ2, 𝜑 ⊢ 𝜓
Σ2�⊢𝜓

Unlike in the cut rule, here the assumption, not the consequent is
attacked.

ΣΣ; ΔΔ ⊢ 𝑣 ∶ 𝜎𝜎 ΣΣ; ΔΔ ⊢ 𝐸 ∶ 𝜎𝜎
ΣΣ; ΔΔ ⊢ ⟨𝑣 ≺ 𝐸⟩ ∶ 𝜎𝜎

How to Return to an Earlier Proof State: Proposed Type
for a Stash/Pop-Operator

In order to capture undermine, we have to somehow return to the
assumption of the attacked argument. The type of such an
operator would be given by the following tautology:

𝜎 → (𝜎 → 𝛿) → 𝜎
This bears a certain similarity to Peirce’s law but can easily be
seen to be an intuitionistic tautology.

Stash/Pop in the 𝜆̄𝜇 ̃𝜇-Calculus

We can use the command syntax to return to an earlier proof state
while “stashing” the present proof state as a continuation for the
earlier state:

ΣΣ, 𝑥 ∶ 𝜎𝜎, _ ∶ 𝛿𝛿; ΔΔ, stash ∶ 𝜎𝜎 ⊢ 𝑥 ∶ 𝜎𝜎 ΣΣ, 𝑥 ∶ 𝜎𝜎, _ ∶ 𝛿𝛿; ΔΔ, stash ∶ 𝜎𝜎 ⊢ stash ∶ 𝜎𝜎
ΣΣ, 𝑥 ∶ 𝜎𝜎, _ ∶ 𝛿𝛿; ΔΔ, stash ∶ 𝜎𝜎 ⊢ ⟨𝑥 ≺ stash⟩ ∶ 𝜎𝜎
ΣΣ, 𝑥 ∶ 𝜎𝜎; ΔΔ, stash ∶ 𝜎𝜎 ⊢ ̃𝜇_ ∶ 𝛿𝛿.⟨𝑥 ≺ stash⟩ ∶ 𝛿𝛿 ΣΣ, 𝑥 ∶ 𝜎𝜎; ΔΔ, stash ∶ 𝜎𝜎 ⊢ 𝑥 ∶ 𝜎𝜎

ΣΣ, 𝑥 ∶ 𝜎𝜎; ΔΔ, stash ∶ 𝜎𝜎 ⊢ 𝑥 ∘ ̃𝜇_ ∶ 𝛿𝛿.⟨𝑥 ≺ stash⟩ ∶ 𝜎 → 𝛿𝜎 → 𝛿
ΣΣ, 𝑥 ∶ 𝜎𝜎; ΔΔ ⊢ 𝑡 ∶ 𝛿𝛿

ΣΣ; ΔΔ ⊢ 𝜆𝑥.𝑡 ∶ 𝜎 → 𝛿𝜎 → 𝛿
ΣΣ, 𝑥 ∶ 𝜎𝜎; ΔΔ, stash ∶ 𝜎𝜎 ⊢ ⟨𝜆𝑥 ∶ 𝜎𝜎.𝑡 ≺ 𝑥 ∘ ̃𝜇_ ∶ 𝛿𝛿.⟨𝑥 ≺ stash⟩⟩ ∶ 𝜎 → 𝛿𝜎 → 𝛿

ΣΣ, 𝑥 ∶ 𝜎𝜎; ΔΔ ⊢ 𝜇 stash ∶ 𝜎𝜎.⟨𝜆𝑥 ∶ 𝜎𝜎.𝑡 ≺ 𝑥 ∘ ̃𝜇_ ∶ 𝛿𝛿.⟨𝑥 ≺ stash⟩⟩ ∶ 𝜎𝜎

We will call 𝑡 the stashed term, 𝜆𝑥 ∶ 𝜎.𝑡 the stashed sequent, 𝜎 the
return state and the entire term starting with 𝜇 stash …a stash
term. Further we will use ⟨𝑡′ ∶ 𝜑⟩ as a shorthand for
⟨𝜆𝑥 ∶ 𝜎.𝑡′ ≺ 𝑥 ∘ ̃𝜇_ ∶ 𝜑.⟨𝑥 ≺ stash⟩⟩.

Computational Rendering of Stash/Pop

The Stash tactic binds the current continuation, calls it with a
given value x but then immediately binds and throws away the
resulting term t and returns x instead.
Computational Rendering of Stash (Tactic form)
With current continuation 𝑠𝑡𝑎𝑠ℎ ∶ 𝜎

return given 𝑥 ∶ 𝜎𝜎
t
with x with current term _ ∶ 𝛿

return x to 𝑠𝑡𝑎𝑠ℎ.
Or if one reverses the flow of computation and thinks of 𝑥 as a
default term: the continuation 𝜆𝑥.𝑡 is allowed to make use of 𝑥
until another overriding (outer) continuation demands x. Then the
computation done by 𝜆𝑥.𝑡 is rewound and 𝑥 is passed to the outer
continuation.

Undermine via Cut and Stash

Given this we can treat Compact Direct Defeat as a special case of
cut where the right-hand argument is a stash term.

ΣΣ; ΔΔ ⊢ 𝑡 ∶ 𝜎𝜎 ΣΣ, 𝑥 ∶ 𝜎; ΔΔ ⊢ 𝜇 stash ∶ 𝜎𝜎.⟨𝑡′ ∶ 𝜑⟩ ∶ 𝜎
ΣΣ, 𝑥 ∶ 𝜎; ΔΔ ⊢ ⟨𝜇 stash ∶ 𝜎𝜎.⟨𝑡′ ∶ 𝜑⟩ ≺ 𝑡⟩ ∶ 𝜎𝜎

corresponds to the introduction part of:
Σ1 ⊢ ¬𝜎 Σ2, 𝜎 ⊢ 𝜑

Σ2�⊢𝜑
while preserving the concrete argument term corresponding to the
sequent Σ2, 𝜎 ⊢ 𝜑.

Eliminating Undermine

Instead of a single sequent elimination rule, we split Compact
Direct Defeat into an introduction and an elimination form so as
to not break the continuity of the derivation.

▶ Using the normal cut elimination form unrestrictedly would
yield the “wrong” result: there should not be nondeterminism
about which assumption to reject.

▶ So we use another restricted version of cut elimination:
ΣΣ, 𝑥 ∶ 𝜎𝜎; ΔΔ ⊢ ⟨𝜇 stash ∶ 𝜎𝜎.𝑐 ≺ 𝑡⟩ ∶ ⊥⊥
ΣΣ; ΔΔ ⊢ ̃𝜇𝑥 ∶ 𝜎𝜎.⟨𝜇 stash ∶ 𝜎𝜎.𝑐 ≺ 𝑡⟩ ∶ 𝜎𝜎

Undermine: Computational Interpretation

Following our earlier interpretation of the free variable 𝑥 as a
default, we can interpret undermine computationally as follows:

▶ 𝑡 is an outer continuation for 𝜎;
▶ the stashed term is a an inner continuation for 𝜎 which may

locally use 𝑥;
▶ Undermine takes the current term 𝑥 and extracts it from the

stashed term, undoing any computation carried out using 𝑥;
▶ it then passes 𝑥 to 𝑡 and we are left with another continuation

for 𝑥.
You might ask: “Why would one ever compute something only to
undo it later?” but think of the stashed term as a computation
that is only safe in certain environments and should fail if passed
to others. And that is exactly what happens when arguments are
exchanged.

Encoding Support: Why not Function Application?

The “obvious” way to capture undercut would seem to just use
function application, but this yields the wrong result:

▶ Using function application, the original argument is lost and
replaced by an argument with different assumptions;

▶ If the supporting argument rests on several assumptions itself,
the “attack surface” of the original argument actually
increases (but support should make the supported argument
stronger!)

Luckily, we can use the command syntax to implement a better
way.

Support and Alternative Proofs
Autexier and Sacerdoti Coen 2006 use the affine fragment of the
𝜆̄𝜇 ̃𝜇-calculus to gain a representation of alternative proofs of a
proposition:

𝑎𝑙𝑡𝑇 (𝑡1, 𝑡2) ∶= 𝜇⋆ ∶ 𝑇 .⟨𝜇_ ∶ 𝑇 .⟨𝑡1 ≺ ⋆⟩ ≺ ̃𝜇_ ∶ 𝑇 .⟨𝑡2 ≺ ⋆⟩⟩

Support can be characterized recursively as follows:

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑇 (𝑡1, 𝑎) if 𝑎𝑙𝑡𝑇 (𝑡1, 𝑎) where 𝑎 is an assumption.

𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑇 (𝑡1, 𝑡2) if 𝑡2 = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑇 (𝑡3, 𝑡4)
This notion of support captures the crucial property, that an
argument 𝐴 which is supported on some assumption 𝑎 by some
argument 𝐵 can still be attacked on 𝑎. 𝐵 can however be used as
a defender of 𝐴 meaning that any argument attacking 𝐴 on 𝑎
must defeat 𝐵.

Ongoing work: Extending Fellowship

Fellowship (Kirchner 2007) is the (afaik) only existing interactive
theorem prover for the 𝜆̄𝜇 ̃𝜇-calculus.

▶ I wrote a wrapper for Fellowship (with a lot of help from
ChatGPT);

▶ so far ∼1500 lines of (horrible) Python code;
▶ implements arguments, support, undermine,

reinstatement/pop (so far);
▶ enables interactive construction of arguments, attacks/support

and scrutable explanations in natural language.
Future Work: an actual interactive argumentation assistant.

Ongoing Work: Labelling

When an assumption/argument has been defeated, argumentation
semantics demand that it cannot be used anymore (and hence, in
particular, the assumptions/arguments it in turn defeated become
usable again).

▶ Label assumptions in a given 𝜆̄𝜇 ̃𝜇 derivation (argument) as
IN, OUT or UNDEC (following Wu and Caminada 2010).

▶ Adapt the algorithm from Arieli and Straßer 2019.
▶ Can this be done within the rewriting system of the calculus

itself?

Ongoing Work: Proper Default Assumptions

Currently free variables do double duty as hypotheses and (default)
assumptions. This is how it is done in logical argumentation but
obviously not ideal (need to define some subset of variables that
count as assumptions, ...).

▶ Adapt work by Borg et al. on integrating assumptions in
sequent-based argumentation.

▶ Assumptions behave much like prover goals:
▶ Arguments become expressions with open goals instead of free

variables (that is already how it is implemented in the
Fellowship extension).

Future Work: Rewriting

The 𝜆̄𝜇 ̃𝜇 comes with a weakly normalizing rewriting system (Lovas
and Crary 2006).

▶ What is a normal form for arguments?
▶ What is the role of different orders-of-execution

(Call-by-name, Call-by-value, Call-by-X)?

Future Work: Undercut and Subaltern Calculi

We have not covered the undercut attack scheme here. The reason
is that this requires something weaker than contrary:
Example
One can infer that an object is red if it appears red. But an
undercutter to this is the information that the room is currently lid
by red light.
The undercutter does not permit to infer that the object is not red
but only that one cannot conclude that it is. So
�⊢𝑎𝑝𝑝𝑒𝑎𝑟𝑠_𝑟𝑒𝑑 → 𝑟𝑒𝑑 instead of ⊢ 𝑎𝑝𝑝𝑒𝑎𝑟𝑠_𝑟𝑒𝑑 → 𝑟𝑒𝑑𝑎𝑝𝑝𝑒𝑎𝑟𝑠_𝑟𝑒𝑑 → 𝑟𝑒𝑑
Future Work: Integrate a non-provability calculus in the vein of
Bonatti and Olivetti 2002 to model undercut and enable
completeness in decidable domains.

Future Work: Categorical Semantics

Melliès 2016:
In this paper, we consider a two-sided notion of dialogue
category which we call dialogue chirality and which we for-
mulate as an adjunc tion between a monoidal category 𝒜
of proofs and a monoidal cate gory ℬ of counter-proofs
equivalent to its opposite category 𝒜𝑜𝑝(01). The two-sided
formulation of dialogue categories is compared to the orig-
inal one-sided formulation by exhibiting a 2-dimensional
equiva lence between a 2-category of dialogue categories
and a 2-category of dialogue chiralities. The resulting co-
herence theorem clarifies in what sense every dialogue chi-
rality may be strictified to an equivalent dialogue category.

Conclusion

With the goal of finding a formalist interpretation of argument, we
have investigated the 𝜆̄𝜇 ̃𝜇-Calculus as a setting for argumentation.

▶ The calculus can be interpreted as a system of proofs and
refutations modelling conflict

▶ We can use the command syntax to encode common
argument relations inclusing rebuttal, undermine and support
and gain computational interpretations of the same.

▶ The command syntax also enables the interaction of
arguments all in the same formal language

▶ Future Work: Address gaps using proper assumptions and
defeasibility using labelling semantics.

References I

Arieli, Ofer and Christian Straßer (2015). “Sequent-based
logical argumentation”. In: Argument & Computation 6.1,
pp. 73–99. doi: 10.1080/19462166.2014.1002536. eprint:
https://doi.org/10.1080/19462166.2014.1002536. url:
https://doi.org/10.1080/19462166.2014.1002536.
— (2019). “Logical argumentation by dynamic proof systems”.
In: Theoretical Computer Science 781. Logical and Semantic
Frameworks with Applications, pp. 63–91. issn: 0304-3975.
doi: https://doi.org/10.1016/j.tcs.2019.02.019. url:
https://www.sciencedirect.com/science/article/pii/
S0304397519301252.
Autexier, Serge and Claudio Sacerdoti Coen (Aug. 2006). “A
Formal Correspondence Between OMDoc with Alternative
Proofs and the lambdaµµ-Calculus.”. In: pp. 67–81. isbn:
978-3-540-37104-5. doi: 10.1007/11812289_7.

https://doi.org/10.1080/19462166.2014.1002536
https://doi.org/10.1080/19462166.2014.1002536
https://doi.org/10.1080/19462166.2014.1002536
https://doi.org/https://doi.org/10.1016/j.tcs.2019.02.019
https://www.sciencedirect.com/science/article/pii/S0304397519301252
https://www.sciencedirect.com/science/article/pii/S0304397519301252
https://doi.org/10.1007/11812289_7

References II
Bonatti, Piero Andrea and Nicola Olivetti (Apr. 2002).
“Sequent calculi for propositional nonmonotonic logics”. In:
ACM Trans. Comput. Logic 3.2, pp. 226–278. issn: 1529-3785.
doi: 10.1145/505372.505374. url:
https://doi.org/10.1145/505372.505374.
Curien, Pierre-Louis and Hugo Herbelin (2000). “The duality of
computation”. In: Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming. ICFP
’00. New York, NY, USA: Association for Computing
Machinery, pp. 233–243. isbn: 1581132026. doi:
10.1145/351240.351262. url:
https://doi.org/10.1145/351240.351262.
Kirchner, Florent (2007). “Systèmes de preuve interopérables.
(Interoperable proof systems)”. PhD thesis. École
Polytechnique, Palaiseau, France. url:
https://tel.archives-ouvertes.fr/pastel-00003192.

https://doi.org/10.1145/505372.505374
https://doi.org/10.1145/505372.505374
https://doi.org/10.1145/351240.351262
https://doi.org/10.1145/351240.351262
https://tel.archives-ouvertes.fr/pastel-00003192

References III
Lovas, William and Karl Crary (Jan. 2006). “Structural
normalization for classical natural deduction”. In: url:
https://www.cs.cmu.edu/~wlovas/papers/clnorm.pdf.
Melliès, Paul-André (Nov. 2016). “Dialogue Categories and
Chiralities”. In: Publications of the Research Institute for
Mathematical Sciences 52. doi: 10.4171/PRIMS/185.
Sacerdoti Coen, Claudio (2006). “Explanation in Natural
Language of �̄���-Terms”. In: Mathematical knowledge
management: 4th international conference, MKM 2005,
Bremen, Germany, July 15-17, 2005: revised selected papers,
pp. 234–249. isbn: 978-3-540-31430-1. doi:
10.1007/11618027_16.
Weir, Alan (2024). “Formalism in the Philosophy of
Mathematics”. In: The Stanford Encyclopedia of Philosophy.
Ed. by Edward N. Zalta and Uri Nodelman. Spring 2024.
Metaphysics Research Lab, Stanford University.

https://www.cs.cmu.edu/~wlovas/papers/clnorm.pdf
https://doi.org/10.4171/PRIMS/185
https://doi.org/10.1007/11618027_16

References IV

Wu, Yining and Martin Caminada (Jan. 2010). “A labelling
based justification status of arguments”. In: Studies in Logic 3,
pp. 12–29.

	References

