Iterations and their Topology

Stefan Milius and Halimeh Moghbeli

The Chair of Theoretical Computer Science (INF8)

11 February 2025

11 February 2025

1/26

Stefan Milius and Halimeh Moghbeli (Th

• Different views of objects make Mathematical Theories rich.

A topological space is a pair (X, τ) , where X is a set and τ (called a topology on X) is a family of subsets of X such that:

- au is closed under finite intersections;
- τ is closed under arbitrary unions.

Definition

- Each element of *τ* is called open. A subset of *X* is called closed, if its complement is open.
- If both A and A^c are open, then A is called clopen.

Let (X, τ) be a topological space and $A \subseteq X$. The interior of A (denoted A°) is defined to be the largest open subset of X contained in A.

Another view of Topological spaces

This induces a map

$$I: \mathscr{P}(X) \longrightarrow \mathscr{P}(X)$$

 $A \mapsto A^o.$

based on the theorem

 $A \in \tau$ iff $A^o = A$

we have

 $\mathsf{Img}(\mathsf{I}) = \tau.$

So:

 $A \in \text{Img}(I)$ iff I(A) = A

Consequently:

for all $A \subseteq X$, I(I(A)) = I(A).

A topological space is a set X with a function $I: \mathscr{P}(X) \to \mathscr{P}(X)$ which for all $A, B \subseteq X$ satisfies the following axioms:

- $I(A \cap B) = I(A) \cap I(B);$
- $I(A) \subseteq A$;

•
$$I^2(A) = I(A);$$

•
$$I(X) = X$$
.

Let $f: X \to X$ be a function. Then we have the direct image mapping on $\mathscr{P}(X)$ which is:

$$f[-]: \mathscr{P}(X) \to \mathscr{P}(X), A \mapsto f[A],$$
$$f[A] = \{f(a) \mid a \in A\}.$$

Image: A matrix

э

To have this, we need

for all
$$A \subseteq X$$
, $f[A] \stackrel{?}{\subseteq} A$

Let $f: X \to X$ be a function on a set X. A subset A of X is called invariant under f, if $f(A) \subseteq A$.

• The set of all invariant subsets of X under f, will be denoted by $\mathfrak{L}(X, f)$.

Image: Image:

For any set X and each function $f: X \to X$, $\mathfrak{L}(X, f)$ is an Alexandroff topology on X.

3

10/26

3 K K 3 K

11 February 2025

< #1

Stefan Milius and Halimeh Moghbeli (Th

Let $f: X \to X$ be a function and $x \in X$. The sequence $\{f^n(x)\}_{n \ge 0}$ is called an orbit of f at x. This set will be denoted by U_x , for each $x \in X$.

11 February 2025

11/26

Stefan Milius and Halimeh Moghbeli (Th

Let $f: X \to X$ be a function, then the set of all orbits of f forms a basis for $\mathfrak{L}(X, f)$. Moreover, it is the smallest basis for $\mathfrak{L}(X, f)$.

< 3 > < 3 > <

For each non-surjective $f : X \to X$, $\mathfrak{L}(X, f) \neq \{\emptyset, X\}$. In other words, the indiscrete topology on a set X never induced by non-surjective functions.

For a function $f: X \rightarrow X$, the followings are equivalent:

- f is identity;
- $\mathfrak{L}(X, f) = \mathscr{P}(X);$
- $\mathfrak{L}(X, f)$ is Hausdorff.

3

(B)

- ∢ /⊐ ►

Let $f: X \to X$ be a function. Then f is bijective if and only if for each $A \subseteq X$,

 $A \in \mathfrak{L}(X, f)$ if and only if $A^c \in \mathfrak{L}(X, f)$.

Theorem

If $f: X \to X$ is a bijective function (which is not the identity function), then $\mathfrak{L}(X, f)$ is not T_0 .

Let $f: X \rightarrow X$ be a function. Then the following statements are equivalent:

- 1. f(x) = x,
- 2. $\{x\}$ is open,

Moreover, if f is bijective, then they are equivalent with

3. $\{x\}$ is closed.

Let $h: X \to Y$, $f: X \to X$ and $g: Y \to Y$ be functions such that $vg \circ h = h \circ f$ (or equivalently, the following diagram is commutative). Then $h: X \to Y$ is continuous with respect to the topologies $\mathfrak{L}(X, f)$ and $\mathfrak{L}(Y, g)$ considered on X and Y, respectively.

<u>Theorem</u>

Let $f: X \to X$ be a function, then f is continuous with respect to the $\mathfrak{L}(X,f)$.

Image: Image:

If $h: X \to Y$ is a continuous function with respect to the topologies $\mathfrak{L}(X, f)$ and $\mathfrak{L}(Y, g)$ on X and Y, respectively, and moreover, $g \circ h = h$. Then $h \circ f = h = g \circ h$.

Let $f: X \to X$ be a continuous function, where $g: X \to X$ is an arbitrary function on X and the topologies $\mathfrak{L}(X,g)$ and $\mathfrak{L}(X,f)$ are those ones considered on the domain and co-domain of f, respectively. Then $\mathfrak{L}(X,f) \subseteq \mathfrak{L}(X,f \circ g)$.

Let $f: X \to X$ be a function and $B \in \mathfrak{L}(X, f)$. Then the subspace topology on B, induced by $\mathfrak{L}(X, f)$ coincides $\mathfrak{L}(B, f |_B)$, where $f |_B: B \to B$ denotes the restriction function of f to B.

Image: Image:

Consider the topological space $(X, \mathfrak{L}(X, f))$. Then, X is compact if and only if $X \setminus f(X)$ is finite and f(X) is compact.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you!

Stefan Milius and Halimeh Moghbeli (Th

글 ▶ : < 글 ▶

æ