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Coalgebraic Modal Logic

Syntax
Vel Xevar

S
Y,o:=L|T|YAG V|0 [X|pX.tp[vX ¢

Semantics

Models represented as functor coalgebras. assigns structure
worlds —C,§: C — F(C))
Interpret next-step modalities via predicate liffings
[Vlu(y: P(U)): PF(U)

[
natural transformation P = PF
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Semantics
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worlds —C,§: C — F(C))
Interpret next-step modalities via predicate liffings

[Clu(Y: P)): PF(U)
[
natural transformation P = PF
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Fixpoints in Coalgebraic ML
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Fixpoint Theory Recap

Fixpoints

A fixpoint of a function f: L — Lis a /| € L where | = f(/).

Knaster-Tarski

If (L, <) is a complete laffice and f: L — L is monotone then the
set F of fixpoints of f forms a complete lattfice.
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Approximation Fixpoint Theory

Idea
Go from crisp values fo pairs of lower and upper bound.

Approximator

Given an operator O: L — L on (complete) lattice L.
A:LxL— L xL approximates O when

= Alx,x) = (0(x), 0(x))
- (X’Y) S/A(Xay)
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P-Bilattice I

Information order <;

(Sl,Pl) (SQ,PQ) iff S1 € Sy and P; D Py
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P-Bilattice II

Truth order <;

(Sl,Pl) Sr (SQ,PQ) iff 51 Q 32 and P1 g P2

{a,b},{a,b}

— 7/ N\ T
{a},{a,b} {b}.{a,b} {a,b},{a} {a,b},{b}
\ < >< >/
0,{a,b} {a},{a} {b}.,{b} {a,b},0
I X< > >
0,{a}  0,{b} {a},0 {b},0
\\Q) @//
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P-Bilattice III

Lattice

If the underlying lattice was complete the bilattice inherits a
complete lattice structure w.rt. <;.

3/4-valued view

Given (S, P) we can read off a 4-valued fruth degree.
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Argumentation in AFT

Abstract Dialectical Framework
Abstract dialectical framework (ADF) is a tuple (S,C = {Cs}ses)
= Sis a set of nodes

C is a set of prop. formulas with atoms S encoding
acceptance conditions
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= S is the set of (abstract) arguments
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Argumentation in AFT

Abstract Dialectical Framework
Abstract dialectical framework (ADF) is a tuple (S,C = {Cs}ses)
= Sis a set of nodes

= C is a set of prop. formulas with atoms S encoding
acceptance conditions

Intuition

= S is the set of (abstract) arguments

= positive/negive occurrence in acceptance condition encodes
support/attack

Reasoning Task

Finding model: Set M C S st.forallse€ S, s e Miff M E Cs

9/17



Argumentation in AFT

Semantic Operator
GM):={seS|MECs}
Approximator

aGS,P):=( () &), |J &)

SCXCP SCXCP
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Logic Programming in AFT

Logic Program

A logic programm L is a set of horn clauses of the form
dil,...,0n, dnt1, ... dm — do.
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Logic Programming in AFT

Logic Program

A logic programm L is a set of horn clauses of the form

dil,...,0n, dnt1, ... dm — do.
Semantics
L(S) :={ap |a1,-..,an, Anyt1,...Gm —> o € P,

{ai,...,an} C S,
{Gn+1,...,am}mS:®}
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Logic Programming in AFT

Logic Program

A logic programm L is a set of horn clauses of the form

di,y...,dn,dni1, ... dm — do.
Semantics
L(S) :={ao |a1,--.,an, "An+1,...2Gm — Ao € P,

{ai,...,an} C S,
{Gn+1,...,am}mS:®}

Approximator
al’(S,P) :={ag |a1,--.,an, ~An41, ... —Am — Ao € P,
{01,...,0,7} QS,
{al’l-i-la""am}npz q)}
aL(S,P) := (al'(S,P),al’(P,S))
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Autoepistemic ML 1

Syntax
Y, o:=L[p|YAd|Ky

Semantics

W,wp L
W,wEpiffpew
W.,wEYAiff WwEY and W,w E ¢
W,w E Kt iff W,v 1 for all v e W
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Autoepistemic ML II

Theories

An autoepistemic model of a set of formulas T is a set W st.
W={w|W,wE¢forany ¢ € T}.
Given a model W, the theory of W

Th(W) :={o | W,w E ¢ for all w € W}.

Reasoning Task

Given setfs of formulas T, E, decide if E is a consistent stable
expansion of T i.e. whether there exists an autoepistemic model
W of T such that E = Th(W)
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Alternative Autoepistemic ML

3-valued pair semantics

Move to 3-valued inferpretation and lower and upper bound on
worlds in the model.

t ifforallveP, [Y]spv)=t

[Ké]spy=wr qf ifforanyves, [W’]](sy)(V) =i
u otherwise
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Alternative Autoepistemic ML

3-valued pair semantics

Move to 3-valued inferpretation and lower and upper bound on
worlds in the model.

t ifforallveP, [Y]spv)=t

[Ké]spy=wr qf ifforanyves, [[1/;]](3’,;) (v)=F
u otherwise

Derivation Operator

Given a set of formulas T

Dr(S,P) := ({w | [¢](sp)(w) = tfor any ¢ € T},
{w | [¢](s,p)(w) #f for any ¢ € T})
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Approximation Coalgebraic Modal Logic

Semantics

Models represented as functor coalgebras. assigns structure
worlds —C,§: C — F(C))
Interpret next-step modalities via approximate predicate liffings
[C]: PxP=PFxPF
[O9] = (€7 x € D[]
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Approximation Coalgebraic Modal Logic

Semantics

Models represented as functor coalgebras. assigns structure
worlds —C,§: C — F(C))
Interpret next-step modalities via approximate predicate liffings
[O]: PxP=PFxPF
[O9] = (€7 x € D[]

Satisfaction
M,w E ¢ iff [¢], = (S,P) and w € Sand w € P

MW}=¢|ﬁ‘[[¢]]M—( P) and w € P
M,w i ¢ iff [],, = (S,P) and w ¢ S and w & P
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Coalgebraic Autoepistemic ML

Lifting AEL
Identity functor Z

K1 (Sf, Pr) := (Sr N Pr, S¢ U Pf)
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Coalgebraic Autoepistemic ML

Lifting AEL
Identity functor Z

K1 (Sf, Pr) := (Sr N Pr, S¢ U Pf)

Probabilistic AEL
Subdistribution functor Dy

[Konlw (S, Pr) = ({pe | p(Sr N Pr) > 0}, {pn | w(Sr U Pr) > n})
por %)

pX) =D wex X)
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= From ‘P-lattice to P-bilattice
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* From P-lattice o P-bilattice
= C monotonicity requirement relaxed to <; monotonicity

17/17



* From P-lattice o P-bilattice
= C monotonicity requirement relaxed to <; monotonicity

= 3/4-valued semantics
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From P-lattice to P-bilattice
C monotonicity requirement relaxed to <; monotonicity
3/4-valued semantics

Do you know any logics that can be supported by this
change?
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