Non-expansive Fuzzy \mathcal{ALC}

28th January 2025

Stefan Gebhart, Lutz Schröder, Paul Wild and Philipp Hermes

Oberseminar WS2024/25

Lehrstuhl für Theoretische Informatik 8 Friedrich-Alexander-Universität Erlangen-Nürnberg

Friedrich-Alexander-Universität Faculty of Engineering

Fuzzy description languages

Friedrich-Alexander-Universität Faculty of Engineering

 \gg A signature consists of a set N_C of atomic concepts and a set N_R of role names

- \gg A signature consists of a set N_C of atomic concepts and a set N_R of role names
- » Concepts are generated by:

$$C, D ::= \bot \mid p \mid \neg C \mid C \land D \mid \exists R.C$$

where $p \in N_C$ and $R \in N_R$

- \circledast A signature consists of a set N_C of atomic concepts and a set N_R of role names
- » Concepts are generated by:

$$C, D ::= \bot \mid p \mid \neg C \mid C \land D \mid \exists R.C$$

where $p \in N_C$ and $R \in N_R$

» An *interpretation* \mathcal{I} consists of a set $\Delta^{\mathcal{I}}$ of *individuals*, a set $p^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for all $p \in N_{\mathsf{C}}$ and a set $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for all $R \in \mathsf{N}_{\mathsf{R}}$

» The *extension* $(\cdot)^{\mathcal{I}}$ of concepts is defined by:

$$\mathcal{L}^{\mathcal{I}} = \emptyset \qquad (\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \qquad (C \land D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$$
$$(\exists R.C)^{\mathcal{I}} = \{ x \in \Delta^{\mathcal{I}} \mid \exists y \in C^{\mathcal{I}}.(x, y) \in R^{\mathcal{I}} \}$$

 $\ensuremath{\mathfrak{W}}$ The $\ensuremath{\textit{extension}}\,(\cdot)^{\mathcal{I}}$ of concepts is defined by:

$$\mathcal{L}^{\mathcal{I}} = \emptyset \qquad (\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \qquad (C \land D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$$
$$(\exists R.C)^{\mathcal{I}} = \{ x \in \Delta^{\mathcal{I}} \mid \exists y \in C^{\mathcal{I}}.(x, y) \in R^{\mathcal{I}} \}$$

≫ A concept *C* is called *satisfiable* if there exists an interpretation
$$\mathcal{I}$$
 such that $C^{\mathcal{I}} \neq \emptyset$

 $\ensuremath{\mathfrak{W}}$ The $\ensuremath{\textit{extension}}\,(\cdot)^{\mathcal{I}}$ of concepts is defined by:

$$\perp^{\mathcal{I}} = \emptyset \qquad (\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \qquad (C \land D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$$

$$(\exists R.C)^{\mathcal{I}} = \{ x \in \Delta^{\mathcal{I}} \mid \exists y \in C^{\mathcal{I}}.(x,y) \in R^{\mathcal{I}} \}$$

- ≫ A concept *C* is called *satisfiable* if there exists an interpretation \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$
- \Rightarrow Equivalent to modal logic, where concepts correspond to formulas, atomic concepts to atoms, relations to modalities and interpretations to models

\gg A general concept inclusion (gci) is a global axiom of the form $C \subseteq D$

» A general concept inclusion (gci) is a global axiom of the form $C \subseteq D$ » An interpretation satisfies $C \subseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

» A general concept inclusion (gci) is a global axiom of the form $C \subseteq D$ » An interpretation satisfies $C \subseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

 \Rightarrow A *TBox* is a set of general concept inclusions

TBoxes

- » A general concept inclusion (gci) is a global axiom of the form $C \subseteq D$ » An interpretation satisfies $C \subseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- » A TBox is a set of general concept inclusions
- » Reasoning under TBoxes becomes more involved as the complexity jumps from PSPACE-completeness to EXPTIME-completeness

 \gg Instead of just \perp and \top we have rational truth values in the unit interval

 \gg Instead of just \perp and \top we have rational truth values in the unit interval \gg Signatures are the same as in the classical case

 \mathcal{T} .CS

- >> Instead of just \perp and \top we have rational truth values in the unit interval
- » Signatures are the same as in the classical case
- » Concepts are now generated by:

$$C, D ::= c \mid p \mid \neg C \mid C \sqcap D \mid \exists R.C$$

- \gg Instead of just \perp and op we have rational truth values in the unit interval
- » Signatures are the same as in the classical case
- » Concepts are now generated by:

$$C, D ::= c \mid p \mid \neg C \mid C \sqcap D \mid \exists R.C$$

where $\boldsymbol{c} \in [0,1]$, $\boldsymbol{\rho} \in \mathsf{N}_{\mathsf{C}}$ and $\boldsymbol{R} \in \mathsf{N}_{\mathsf{R}}$

» Interpretations now have maps $p^{\mathcal{I}} : \Delta^{\mathcal{I}} \to [0, 1]$ and $R^{\mathcal{I}} : \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \to [0, 1]$ for all $p \in N_{\mathsf{C}}$ and $R \in \mathsf{N}_{\mathsf{R}}$

- \gg Instead of just \perp and \top we have rational truth values in the unit interval
- » Signatures are the same as in the classical case
- » Concepts are now generated by:

$$C, D ::= c \mid p \mid \neg C \mid C \sqcap D \mid \exists R.C$$

- » Interpretations now have maps $p^{\mathcal{I}} : \Delta^{\mathcal{I}} \to [0, 1]$ and $R^{\mathcal{I}} : \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \to [0, 1]$ for all $p \in N_{\mathsf{C}}$ and $R \in \mathsf{N}_{\mathsf{R}}$
- $\ensuremath{\mathfrak{W}}$ The $\ensuremath{\textit{valuation}}\left(\cdot\right)^{\ensuremath{\mathcal{I}}}:\Delta^{\ensuremath{\mathcal{I}}}\to [0,1]$ of concepts is defined by:

 \mathcal{T} .CS

- >> Instead of just \perp and \top we have rational truth values in the unit interval
- » Signatures are the same as in the classical case
- » Concepts are now generated by:

$$C, D ::= c \mid p \mid \neg C \mid C \sqcap D \mid \exists R.C$$

- » Interpretations now have maps $p^{\mathcal{I}} : \Delta^{\mathcal{I}} \to [0, 1]$ and $R^{\mathcal{I}} : \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \to [0, 1]$ for all $p \in N_{\mathsf{C}}$ and $R \in \mathsf{N}_{\mathsf{R}}$
- $\ensuremath{\gg}$ The $\textit{valuation}\ (\cdot)^{\mathcal{I}}:\Delta^{\mathcal{I}}\rightarrow [0,1]$ of concepts is defined by:

$$c^{\mathcal{I}}(x) = c$$
 $(\neg C)^{\mathcal{I}}(x) = 1 - C^{\mathcal{I}}(x)$

 \mathcal{T} .CS

- \gg Instead of just \perp and \top we have rational truth values in the unit interval
- » Signatures are the same as in the classical case
- » Concepts are now generated by:

$$C, D ::= c \mid p \mid \neg C \mid C \sqcap D \mid \exists R.C$$

- » Interpretations now have maps $p^{\mathcal{I}} : \Delta^{\mathcal{I}} \to [0, 1]$ and $R^{\mathcal{I}} : \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \to [0, 1]$ for all $\rho \in \mathsf{N}_{\mathsf{C}}$ and $R \in \mathsf{N}_{\mathsf{R}}$
- $\ensuremath{\gg}$ The $\textit{valuation}\ (\cdot)^{\mathcal{I}}:\Delta^{\mathcal{I}}\rightarrow [0,1]$ of concepts is defined by:

$$c^{\mathcal{I}}(\mathbf{x}) = c$$
 $(\neg C)^{\mathcal{I}}(\mathbf{x}) = 1 - C^{\mathcal{I}}(\mathbf{x})$

$$(\exists R.C)^{\mathcal{I}}(\mathbf{x}) = \max\{\min\{R^{\mathcal{I}}(\mathbf{x}, \mathbf{y}), C^{\mathcal{I}}(\mathbf{y})\} \mid \mathbf{y} \in \Delta^{\mathcal{I}}\}$$

 \mathcal{T} .cs

- \gg Instead of just \perp and op we have rational truth values in the unit interval
- » Signatures are the same as in the classical case
- » Concepts are now generated by:

$$C, D ::= c \mid p \mid \neg C \mid C \sqcap D \mid \exists R.C$$

- » Interpretations now have maps $p^{\mathcal{I}} : \Delta^{\mathcal{I}} \to [0, 1]$ and $R^{\mathcal{I}} : \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \to [0, 1]$ for all $p \in N_{\mathsf{C}}$ and $R \in \mathsf{N}_{\mathsf{R}}$
- $\ensuremath{\gg}$ The $\textit{valuation}\ (\cdot)^{\mathcal{I}}:\Delta^{\mathcal{I}}\rightarrow [0,1]$ of concepts is defined by:

$$c^{\mathcal{I}}(\mathbf{x}) = c$$
 $(\neg C)^{\mathcal{I}}(\mathbf{x}) = 1 - C^{\mathcal{I}}(\mathbf{x})$

$$(\exists R.C)^{\mathcal{I}}(x) = \max\{\min\{R^{\mathcal{I}}(x, y), C^{\mathcal{I}}(y)\} \mid y \in \Delta^{\mathcal{I}}\}$$
$$(C \sqcap D)^{\mathcal{I}}(x) = ?$$

 \mathcal{T} .CS

- >> Instead of just \perp and \top we have rational truth values in the unit interval
- » Signatures are the same as in the classical case
- » Concepts are now generated by:

$$C, D ::= c \mid p \mid \neg C \mid C \sqcap D \mid \exists R.C$$

where $\boldsymbol{c} \in [0,1]$, $\boldsymbol{p} \in N_{\mathsf{C}}$ and $\boldsymbol{R} \in N_{\mathsf{R}}$

- » Interpretations now have maps $p^{\mathcal{I}} : \Delta^{\mathcal{I}} \to [0, 1]$ and $R^{\mathcal{I}} : \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \to [0, 1]$ for all $p \in N_{\mathsf{C}}$ and $R \in \mathsf{N}_{\mathsf{R}}$
- $\ensuremath{\gg}$ The $\textit{valuation}\ (\cdot)^{\mathcal{I}}:\Delta^{\mathcal{I}}\rightarrow [0,1]$ of concepts is defined by:

$$c^{\mathcal{I}}(\mathbf{x}) = c$$
 $(\neg C)^{\mathcal{I}}(\mathbf{x}) = 1 - C^{\mathcal{I}}(\mathbf{x})$

$$(\exists \mathbf{R}.\mathbf{C})^{\mathcal{I}}(\mathbf{x}) = \max\{\min\{\mathbf{R}^{\mathcal{I}}(\mathbf{x},\mathbf{y}),\mathbf{C}^{\mathcal{I}}(\mathbf{y})\} \mid \mathbf{y} \in \Delta^{\mathcal{I}}\}$$

$$(C \sqcap D)^{\mathcal{I}}(x) = ?$$

\Rightarrow To define the semantics of \sqcap we need to choose a connective

 $\gg (C \sqcap D)^{\mathcal{I}}(x) = \min\{C^{\mathcal{I}}(x), D^{\mathcal{I}}(x)\}$ is called the *Zadeh* connective

 $\gg (C \sqcap D)^{\mathcal{I}}(x) = \min\{C^{\mathcal{I}}(x), D^{\mathcal{I}}(x)\}$ is called the *Zadeh* connective

» Most obvious choice, however little to no change to the classical case

Fuzzy connectives

T.CS

≫ $(C \sqcap D)^{\mathcal{I}}(x) = \min\{C^{\mathcal{I}}(x), D^{\mathcal{I}}(x)\}$ is called the *Zadeh* connective ≫ Most obvious choice, however little to no change to the classical case ≫ $(C \sqcap D)^{\mathcal{I}}(x) = \max\{0, C^{\mathcal{I}}(x) + D^{\mathcal{I}}(x) - 1\}$ is called the *Łukasiewicz* connective

Fuzzy connectives

- $\gg (C \sqcap D)^{\mathcal{I}}(x) = \min\{C^{\mathcal{I}}(x), D^{\mathcal{I}}(x)\}$ is called the *Zadeh* connective
- » Most obvious choice, however little to no change to the classical case
- $\gg (C \sqcap D)^{\mathcal{I}}(x) = \max\{0, C^{\mathcal{I}}(x) + D^{\mathcal{I}}(x) 1\}$ is called the *Łukasiewicz* connective
- » Preferable properties and more expressive, however computationally hard or even undecidable

Fuzzy connectives

- $\gg (C \sqcap D)^{\mathcal{I}}(x) = \min\{C^{\mathcal{I}}(x), D^{\mathcal{I}}(x)\}$ is called the Zadeh connective
- » Most obvious choice, however little to no change to the classical case
- ≫ $(C \sqcap D)^{\mathcal{I}}(x) = \max\{0, C^{\mathcal{I}}(x) + D^{\mathcal{I}}(x) 1\}$ is called the *Łukasiewicz* connective
- » Preferable properties and more expressive, however computationally hard or even undecidable
- \Rightarrow We want a middle ground between these extremes

» Satisfiability is now expressed as concept assertions $C \bowtie c$

- » Satisfiability is now expressed as concept assertions $C \bowtie c$
- ≫ We call $C \bowtie c$ satisfiable if there exists an interpretation \mathcal{I} and individual $x \in \Delta^{\mathcal{I}}$ with $C^{\mathcal{I}}(x) \bowtie c$

- » Satisfiability is now expressed as concept assertions $C \bowtie c$
- ≫ We call $C \bowtie c$ satisfiable if there exists an interpretation \mathcal{I} and individual $x \in \Delta^{\mathcal{I}}$ with $C^{\mathcal{I}}(x) \bowtie c$
- \gg General concept inclusions are now of the form $C \sqsubseteq D$

Fuzzy Reasoning

- » Satisfiability is now expressed as concept assertions $C \bowtie c$
- ≫ We call $C \bowtie c$ satisfiable if there exists an interpretation \mathcal{I} and individual $x \in \Delta^{\mathcal{I}}$ with $C^{\mathcal{I}}(x) \bowtie c$
- \gg General concept inclusions are now of the form $C \sqsubseteq D$
- $\circledast C \sqsubseteq D$ is satisfied in an interpretation iff $C^{\mathcal{I}}(x) \le D^{\mathcal{I}}(x)$ for all $x \in \Delta^{\mathcal{I}}$

Fuzzy Reasoning

- » Satisfiability is now expressed as concept assertions $C \bowtie c$
- ≫ We call $C \bowtie c$ satisfiable if there exists an interpretation \mathcal{I} and individual $x \in \Delta^{\mathcal{I}}$ with $C^{\mathcal{I}}(x) \bowtie c$
- \gg General concept inclusions are now of the form $C \sqsubseteq D$
- $\circledast C \sqsubseteq D$ is satisfied in an interpretation iff $C^{\mathcal{I}}(x) \le D^{\mathcal{I}}(x)$ for all $x \in \Delta^{\mathcal{I}}$
- $\ensuremath{\circledast}$ Reasoning under TBoxes in Zadeh \mathcal{ALC} is $\operatorname{ExpTime}$ -complete

- » Satisfiability is now expressed as concept assertions $C \bowtie c$
- ≫ We call $C \bowtie c$ satisfiable if there exists an interpretation \mathcal{I} and individual $x \in \Delta^{\mathcal{I}}$ with $C^{\mathcal{I}}(x) \bowtie c$
- \gg General concept inclusions are now of the form $C \sqsubseteq D$
- $\circledast C \sqsubseteq D$ is satisfied in an interpretation iff $C^{\mathcal{I}}(x) \le D^{\mathcal{I}}(x)$ for all $x \in \Delta^{\mathcal{I}}$
- \gg Reasoning under TBoxes in Zadeh \mathcal{ALC} is ExpTIME-complete
- \gg Reasoning under TBoxes in Łukasiewicz \mathcal{ALC} is undecidable

Non-expansive fuzzy ALC

Friedrich-Alexander-Universität Faculty of Engineering

» One problem of Łukasiewicz connectives is that a small change in the interpretation can lead to massive changes in behaviour

- » This is because there are concepts with an expansive evaluation with regards to logical and behavioural distance

- This is because there are concepts with an expansive evaluation with regards to logical and behavioural distance
- **»** For instance $p \sqcup p = \neg(\neg p \sqcap \neg p)$ would evaluate to $\min\{1, 2p\}$
Idea

- This is because there are concepts with an expansive evaluation with regards to logical and behavioural distance
- **»** For instance $p \sqcup p = \neg(\neg p \sqcap \neg p)$ would evaluate to $\min\{1, 2p\}$
- >>> We try to eliminate this problem by restricting to non-expansive operators

Idea

- This is because there are concepts with an expansive evaluation with regards to logical and behavioural distance
- **»** For instance $p \sqcup p = \neg(\neg p \sqcap \neg p)$ would evaluate to $\min\{1, 2p\}$
- >>>> We try to eliminate this problem by restricting to non-expansive operators
- » Namely, we restrict one side of the Łukasiewicz connectives to constants

Idea

- This is because there are concepts with an expansive evaluation with regards to logical and behavioural distance
- **»** For instance $p \sqcup p = \neg(\neg p \sqcap \neg p)$ would evaluate to $\min\{1, 2p\}$
- >>> We try to eliminate this problem by restricting to non-expansive operators
- » Namely, we restrict one side of the Łukasiewicz connectives to constants
- » As connective we take the minimum and maximum operators

Definition

» The concepts of non-expansive fuzzy ALC are given by

 $C, D ::= \rho \mid c \mid \neg C \mid C \ominus c \mid C \sqcap D \mid \exists R.C$

where $p \in N_{C}$, $c \in [0, 1]$ and $R \in N_{R}$

Definition

» The concepts of non-expansive fuzzy ALC are given by

 $C, D ::= \rho \mid c \mid \neg C \mid C \ominus c \mid C \sqcap D \mid \exists R.C$

where $p \in N_{C}$, $c \in [0, 1]$ and $R \in N_{R}$

» The valuation is given by:

$$c^{\mathcal{I}}(x) = c \qquad (\neg C)^{\mathcal{I}}(x) = 1 - C^{\mathcal{I}}(x)$$
$$(\exists R. C)^{\mathcal{I}}(x) = \max\{\min\{R^{\mathcal{I}}(x, y), C^{\mathcal{I}}(y)\} \mid y \in \Delta^{\mathcal{I}}\}$$
$$(C \sqcap D)^{\mathcal{I}}(x) = \min\{C^{\mathcal{I}}(x), D^{\mathcal{I}}(x)\} \qquad (C \ominus c)^{\mathcal{I}}(x) = \max\{0, C^{\mathcal{I}}(x) - c\}$$

Definition

» The concepts of non-expansive fuzzy ALC are given by

 $C, D ::= p \mid c \mid \neg C \mid C \ominus c \mid C \sqcap D \mid \exists R.C$

where $p \in N_{\mathsf{C}}$, $c \in [0,1]$ and $R \in N_{\mathsf{R}}$

» The valuation is given by:

$$c^{\mathcal{I}}(x) = c \qquad (\neg C)^{\mathcal{I}}(x) = 1 - C^{\mathcal{I}}(x)$$
$$(\exists R.C)^{\mathcal{I}}(x) = \max\{\min\{R^{\mathcal{I}}(x, y), C^{\mathcal{I}}(y)\} \mid y \in \Delta^{\mathcal{I}}\}$$
$$(C \sqcap D)^{\mathcal{I}}(x) = \min\{C^{\mathcal{I}}(x), D^{\mathcal{I}}(x)\} \qquad (C \ominus c)^{\mathcal{I}}(x) = \max\{0, C^{\mathcal{I}}(x) - c\}$$

» Valuations of concepts are now non-expansive

\gg Non-expansive fuzzy \mathcal{ALC} is strictly more expressive than Zadeh \mathcal{ALC}

» Non-expansive fuzzy ALC is strictly more expressive than Zadeh ALC
» For example we can model dampened inheritance of properties:

 $\mathsf{Rich} \sqsubseteq \forall \mathsf{hasChild}.\mathsf{Rich} \oplus 0.1$

where we define $C \oplus c = \neg(\neg C \ominus c)$

>>> Non-expansive fuzzy ALC is strictly more expressive than Zadeh ALC>>> For example we can model dampened inheritance of properties:

 $\mathsf{Rich} \sqsubseteq \forall \mathsf{hasChild}.\mathsf{Rich} \oplus 0.1$

where we define $C \oplus c = \neg(\neg C \ominus c)$

 \circledast Every non-expansive operation on the unit interval can be approximated by the valuation of a concept of non-expansive fuzzy \mathcal{ALC}

» Tableau calculi are used to decide satisfiability in logical systems

- » Tableau calculi are used to decide satisfiability in logical systems
- The idea is to attempt to build an interpretation for the given formulas by breaking them into simpler components

- » Tableau calculi are used to decide satisfiability in logical systems
- The idea is to attempt to build an interpretation for the given formulas by breaking them into simpler components
- >>> We start with the formulas we are trying to prove or disprove satisfiability of and apply *rules* to break them into simpler formulas

- » Tableau calculi are used to decide satisfiability in logical systems
- The idea is to attempt to build an interpretation for the given formulas by breaking them into simpler components
- >>>> We start with the formulas we are trying to prove or disprove satisfiability of and apply *rules* to break them into simpler formulas
- » For disjunctions or non-deterministic rules, we create branches to explore all possible cases

- » Tableau calculi are used to decide satisfiability in logical systems
- The idea is to attempt to build an interpretation for the given formulas by breaking them into simpler components
- >>>> We start with the formulas we are trying to prove or disprove satisfiability of and apply *rules* to break them into simpler formulas
- » For disjunctions or non-deterministic rules, we create branches to explore all possible cases
- » We enforce consistency via axiom rules, i.e. we close a branch if we can determine that it is unsatisfiable

- T.CS
- » Tableau calculi are used to decide satisfiability in logical systems
- The idea is to attempt to build an interpretation for the given formulas by breaking them into simpler components
- >>>> We start with the formulas we are trying to prove or disprove satisfiability of and apply *rules* to break them into simpler formulas
- » For disjunctions or non-deterministic rules, we create branches to explore all possible cases
- » We enforce consistency via axiom rules, i.e. we close a branch if we can determine that it is unsatisfiable
- » We stop if no rules can be applied to leaves

- \mathcal{T} .CS
- » Tableau calculi are used to decide satisfiability in logical systems
- The idea is to attempt to build an interpretation for the given formulas by breaking them into simpler components
- >>>> We start with the formulas we are trying to prove or disprove satisfiability of and apply *rules* to break them into simpler formulas
- » For disjunctions or non-deterministic rules, we create branches to explore all possible cases
- » We enforce consistency via axiom rules, i.e. we close a branch if we can determine that it is unsatisfiable
- » We stop if no rules can be applied to leaves
- » If we still have an open branch, this branch corresponds to a model that satisfies the formulas

- \mathcal{T} .CS
- » Tableau calculi are used to decide satisfiability in logical systems
- The idea is to attempt to build an interpretation for the given formulas by breaking them into simpler components
- >>>> We start with the formulas we are trying to prove or disprove satisfiability of and apply *rules* to break them into simpler formulas
- » For disjunctions or non-deterministic rules, we create branches to explore all possible cases
- » We enforce consistency via axiom rules, i.e. we close a branch if we can determine that it is unsatisfiable
- » We stop if no rules can be applied to leaves
- » If we still have an open branch, this branch corresponds to a model that satisfies the formulas
- ≫ In our case, we need to deal with concept assertions instead of formulas and with existential and universal restrictions, i.e. concept assertions of the form $\exists R.C \triangleright c$ and $\exists R.C \triangleleft c$ respectively

$$(\mathsf{Ax}\ 1)\ \frac{\mathsf{S}, \boldsymbol{p} \triangleright \boldsymbol{c}}{\bot} \quad (\mathsf{if}\ \boldsymbol{c} \,\overline{\triangleright} \, 1, \boldsymbol{p} \in \mathsf{N}_{\mathsf{C}}) \qquad (\mathsf{Ax}\ 0)\ \frac{\mathsf{S}, \boldsymbol{p} \triangleleft \boldsymbol{c}}{\bot} \quad (\mathsf{if}\ \boldsymbol{c} \,\overline{\triangleleft} \, 0, \boldsymbol{p} \in \mathsf{N}_{\mathsf{C}})$$

$$(Ax 1) \frac{S, p \triangleleft c}{\bot} \quad (\text{if } c \bowtie 1, p \in N_{C}) \qquad (Ax 0) \frac{S, p \triangleleft c}{\bot} \quad (\text{if } c \triangleleft 0, p \in N_{C})$$
$$(Ax p) \frac{S, p \triangleleft c, p \triangleright d}{\bot} \quad (\text{if } d \triangleleft_{(\triangleleft, \bowtie)} c, p \in N_{C}) \qquad (Ax c) \frac{S, c \triangleleft d}{\bot} \quad (\text{if } c \triangleleft^{\circ} d)$$

$$(\mathsf{Ax}\ 1)\ \frac{\mathsf{S}, \boldsymbol{p} \triangleright \boldsymbol{c}}{\bot} \quad (\mathsf{if}\ \boldsymbol{c} \overline{\triangleright} 1, \boldsymbol{p} \in \mathsf{N}_{\mathsf{C}}) \qquad (\mathsf{Ax}\ 0)\ \frac{\mathsf{S}, \boldsymbol{p} \triangleleft \boldsymbol{c}}{\bot} \quad (\mathsf{if}\ \boldsymbol{c} \overline{\triangleleft} 0, \boldsymbol{p} \in \mathsf{N}_{\mathsf{C}})$$

$$(\operatorname{Ax} p) \frac{S, p \triangleleft c, p \triangleright d}{\bot} \quad (\operatorname{if} d \triangleleft_{(\triangleleft, \triangleright)} c, p \in \mathsf{N}_{\mathsf{C}}) \qquad (\operatorname{Ax} c) \frac{S, c \triangleleft d}{\bot} \quad (\operatorname{if} c \triangleleft^{\circ} d)$$

$$(\sqcap \triangleright) \frac{S, C \sqcap D \triangleright c}{S, C \triangleright c, D \triangleright c} \qquad (\sqcap \triangleleft) \frac{S, C \sqcap D \triangleleft c}{S, C \triangleleft c \quad S, D \triangleleft c} \qquad (\neg \bowtie) \frac{S, \neg C \bowtie c}{S, C \bowtie^{\circ} 1 - c}$$

$$(\mathsf{Ax}\ 1)\ \frac{\mathsf{S}, \boldsymbol{p} \triangleright \boldsymbol{c}}{\bot} \quad (\mathsf{if}\ \boldsymbol{c} \overline{\triangleright} 1, \boldsymbol{p} \in \mathsf{N}_{\mathsf{C}}) \qquad (\mathsf{Ax}\ 0)\ \frac{\mathsf{S}, \boldsymbol{p} \triangleleft \boldsymbol{c}}{\bot} \quad (\mathsf{if}\ \boldsymbol{c} \overline{\triangleleft} 0, \boldsymbol{p} \in \mathsf{N}_{\mathsf{C}})$$

$$(\mathsf{Ax} \ p) \ \frac{\mathsf{S}, p \triangleleft c, p \triangleright d}{\bot} \quad (\mathsf{if} \ d \triangleleft_{(\triangleleft, \triangleright)} c, p \in \mathsf{N}_{\mathsf{C}}) \qquad (\mathsf{Ax} \ c) \ \frac{\mathsf{S}, c \triangleleft d}{\bot} \quad (\mathsf{if} \ c \triangleleft^{\circ} d)$$

$$(\sqcap \triangleright) \frac{S, C \sqcap D \triangleright c}{S, C \triangleright c, D \triangleright c} \qquad (\sqcap \triangleleft) \frac{S, C \sqcap D \triangleleft c}{S, C \triangleleft c \quad S, D \triangleleft c} \qquad (\neg \bowtie) \frac{S, \neg C \bowtie c}{S, C \bowtie^{\circ} 1 - c}$$

$$(\ominus \triangleleft) \frac{S, C \ominus c \triangleleft d}{S, C \triangleleft d + c, d \triangleleft^{\circ} 0} \qquad (\ominus \triangleright) \frac{S, C \ominus c \triangleright d}{S, C \triangleright d + c} \quad (\text{if } d \triangleright 0)$$

$$(\mathsf{Ax}\ 1)\ \frac{\mathsf{S}, \boldsymbol{\rho} \triangleright \boldsymbol{c}}{\bot} \quad (\mathsf{if}\ \boldsymbol{c} \overline{\triangleright} 1, \boldsymbol{\rho} \in \mathsf{N}_{\mathsf{C}}) \qquad (\mathsf{Ax}\ 0)\ \frac{\mathsf{S}, \boldsymbol{\rho} \triangleleft \boldsymbol{c}}{\bot} \quad (\mathsf{if}\ \boldsymbol{c} \overline{\triangleleft} 0, \boldsymbol{\rho} \in \mathsf{N}_{\mathsf{C}})$$

$$(\mathsf{Ax} \ p) \ \frac{\mathsf{S}, p \triangleleft c, p \triangleright d}{\bot} \quad (\mathsf{if} \ d \triangleleft_{(\triangleleft, \triangleright)} c, p \in \mathsf{N}_{\mathsf{C}}) \qquad (\mathsf{Ax} \ c) \ \frac{\mathsf{S}, c \triangleleft d}{\bot} \quad (\mathsf{if} \ c \triangleleft^{\circ} d)$$

$$(\sqcap \triangleright) \frac{S, C \sqcap D \triangleright c}{S, C \triangleright c, D \triangleright c} \qquad (\sqcap \triangleleft) \frac{S, C \sqcap D \triangleleft c}{S, C \triangleleft c \quad S, D \triangleleft c} \qquad (\neg \bowtie) \frac{S, \neg C \bowtie c}{S, C \bowtie^{\circ} 1 - c}$$

$$(\ominus \triangleleft) \frac{S, C \ominus c \triangleleft d}{S, C \triangleleft d + c, d \triangleleft^{\circ} 0} \qquad (\ominus \triangleright) \frac{S, C \ominus c \triangleright d}{S, C \triangleright d + c} \quad (\text{if } d \triangleright 0)$$

$$(\exists R) \frac{S, \{\exists R.D_j \triangleleft_j d_j \mid 1 \leq j \leq n\}, \exists R.C \triangleright c}{\{D_j \triangleleft_j d_j \mid d_j \triangleleft_{(\triangleleft_j, \triangleright)} c, j \in \{1, \dots, n\}\}, C \triangleright c}$$

(if $c \triangleright 0$ and S does not contain any $\exists R.D \triangleleft d$)

 \mathcal{T} .cs

>>> We additionally require that the exists rule $(\exists R)$ may only be applied if no other rule is applicable

- \mathcal{T} .CS
- >>> We additionally require that the exists rule $(\exists R)$ may only be applied if no other rule is applicable
- >>> We label the nodes of the tableau as open if they are a leaf and do not have \perp as its label or if the node has a (or all if the applied rule was the exists rule) child node labelled as open

- >>> We additionally require that the exists rule $(\exists R)$ may only be applied if no other rule is applicable
- >>> We label the nodes of the tableau as open if they are a leaf and do not have \perp as its label or if the node has a (or all if the applied rule was the exists rule) child node labelled as open
- This tableau calculus is sound and complete, i.e. the root node of a tableau can be labelled as open iff the concept assertions in its label are satisfiable

- \mathcal{T} .CS
- >>> We additionally require that the exists rule $(\exists R)$ may only be applied if no other rule is applicable
- >>> We label the nodes of the tableau as open if they are a leaf and do not have \perp as its label or if the node has a (or all if the applied rule was the exists rule) child node labelled as open
- This tableau calculus is sound and complete, i.e. the root node of a tableau can be labelled as open iff the concept assertions in its label are satisfiable
- $>\!\!>$ The algorithm to construct a tableau terminates and is $\operatorname{PSPACE}\text{-}\mathsf{complete}$

- » We additionally require that the exists rule $(\exists R)$ may only be applied if no other rule is applicable
- >>> We label the nodes of the tableau as open if they are a leaf and do not have \perp as its label or if the node has a (or all if the applied rule was the exists rule) child node labelled as open
- This tableau calculus is sound and complete, i.e. the root node of a tableau can be labelled as open iff the concept assertions in its label are satisfiable
- $>\!\!>$ The algorithm to construct a tableau terminates and is $\operatorname{PSPACE}\text{-}\mathsf{complete}$
- » However this tableau algorithm cannot deal with TBoxes

- » We additionally require that the exists rule $(\exists R)$ may only be applied if no other rule is applicable
- >>> We label the nodes of the tableau as open if they are a leaf and do not have \perp as its label or if the node has a (or all if the applied rule was the exists rule) child node labelled as open
- This tableau calculus is sound and complete, i.e. the root node of a tableau can be labelled as open iff the concept assertions in its label are satisfiable
- $>\!\!>$ The algorithm to construct a tableau terminates and is $\operatorname{PSPACE}\text{-}\mathsf{complete}$
- » However this tableau algorithm cannot deal with TBoxes
- \Rightarrow We need a suitable characterization of a TBox as a concept assertion to check and stopping conditions to ensure termination

 \mathcal{T} .CS

» Instead of checking $C^{\mathcal{I}}(x) \leq D^{\mathcal{I}}(x)$ for a gci $C \sqsubseteq D$ for every individual, we equivalently check if there exists a constant c such that $C^{\mathcal{I}}(x) \leq c$ and $c \leq D^{\mathcal{I}}(x)$

- » Instead of checking $C^{\mathcal{I}}(x) \leq D^{\mathcal{I}}(x)$ for a gci $C \sqsubseteq D$ for every individual, we equivalently check if there exists a constant c such that $C^{\mathcal{I}}(x) \leq c$ and $c \leq D^{\mathcal{I}}(x)$
- » If we want to prove or disprove satisfiability of a set of concept assertions Γ under a TBox \mathcal{T} , we can reduce the choices for c to only finitely many values that can be obtained from Γ and \mathcal{T}

- » Instead of checking $C^{\mathcal{I}}(x) \leq D^{\mathcal{I}}(x)$ for a gci $C \sqsubseteq D$ for every individual, we equivalently check if there exists a constant c such that $C^{\mathcal{I}}(x) \leq c$ and $c \leq D^{\mathcal{I}}(x)$
- » If we want to prove or disprove satisfiability of a set of concept assertions Γ under a TBox \mathcal{T} , we can reduce the choices for c to only finitely many values that can be obtained from Γ and \mathcal{T}
- » More specificially if Z' is the additive group of the constants in Γ and \mathcal{T} intersected with the unit interval, then checking the values of $Z := Z' \cup \{z + \varepsilon \mid z \in Z' \setminus \{1\}\}$ for small enough ε suffices

- » Instead of checking $C^{\mathcal{I}}(x) \leq D^{\mathcal{I}}(x)$ for a gci $C \sqsubseteq D$ for every individual, we equivalently check if there exists a constant c such that $C^{\mathcal{I}}(x) \leq c$ and $c \leq D^{\mathcal{I}}(x)$
- » If we want to prove or disprove satisfiability of a set of concept assertions Γ under a TBox \mathcal{T} , we can reduce the choices for c to only finitely many values that can be obtained from Γ and \mathcal{T}
- » More specificially if Z' is the additive group of the constants in Γ and \mathcal{T} intersected with the unit interval, then checking the values of $Z := Z' \cup \{z + \varepsilon \mid z \in Z' \setminus \{1\}\}$ for small enough ε suffices
- » The idea is that any interpretation can be transformed into an interpretation with only values of Z that is indistuingishable by concept assertions that can be obtained from Γ and \mathcal{T} from the original interpretation

≫ The satisfiability of \mathcal{T} is then equivalent to checking if there is $z \in Z$ such that $C^{\mathcal{I}}(x) \leq z$ and $z \leq D^{\mathcal{I}}(x)$ for every individual x ≫ The satisfiability of T is then equivalent to checking if there is $z \in Z$ such that $C^{\mathcal{I}}(x) \leq z$ and $z \leq D^{\mathcal{I}}(x)$ for every individual x

» We can express this as a concept in the following way:

$$T := \prod_{C \sqsubseteq D \in \mathcal{T}} \bigsqcup_{z \in Z} (\neg C \oplus z) \sqcap (D \oplus (1 - z))$$

≫ The satisfiability of T is then equivalent to checking if there is $z \in Z$ such that $C^{\mathcal{I}}(x) \leq z$ and $z \leq D^{\mathcal{I}}(x)$ for every individual x

» We can express this as a concept in the following way:

$$T := \prod_{C \sqsubseteq D \in \mathcal{T}} \bigsqcup_{z \in Z} (\neg C \oplus z) \sqcap (D \oplus (1 - z))$$

» Then any interpretation that satisfies Γ satisfies ${\cal T}$ iff ${\cal T} \ge 1$ is satisfied in every individual

≫ The satisfiability of T is then equivalent to checking if there is $z \in Z$ such that $C^{\mathcal{I}}(x) \leq z$ and $z \leq D^{\mathcal{I}}(x)$ for every individual x

» We can express this as a concept in the following way:

$$T := \prod_{C \sqsubseteq D \in \mathcal{T}} \bigsqcup_{z \in Z} (\neg C \oplus z) \sqcap (D \oplus (1 - z))$$

» Then any interpretation that satisfies Γ satisfies ${\cal T}$ iff ${\cal T} \ge 1$ is satisfied in every individual

 \Rightarrow Adding $\mathcal{T} \geq 1$ to the root node and every child node of the exists rule allows us to check this condition

» However the algorithm to construct a tableau may not terminate

» However the algorithm to construct a tableau may not terminate » For instance the gci $1 \sqsubseteq \exists R.1$ leads to an infinite path

» However the algorithm to construct a tableau may not terminate » For instance the gci $1 \sqsubseteq \exists R.1$ leads to an infinite path » To fix this, we require that nodes have unique labels

Global caching

- » However the algorithm to construct a tableau may not terminate
- » For instance the gci $1 \subseteq \exists R.1$ leads to an infinite path
- » To fix this, we require that nodes have unique labels
- » More specifically, we cache labels and only create new nodes with labels that are not already cached yet

» The tableau calculus is complete and sound

- » The tableau calculus is complete and sound
- » Completeness is established by constructing an interpretation from an open tableau

$\mathbf{ExpTime}$ -completeness

 \mathcal{T} .CS

- » The tableau calculus is complete and sound
- » Completeness is established by constructing an interpretation from an open tableau
- Soundness is established by showing that the rules preserve satsfiability under the TBox

$\mathbf{ExpTime}$ -completeness

 \mathcal{T} .CS

- » The tableau calculus is complete and sound
- » Completeness is established by constructing an interpretation from an open tableau
- Soundness is established by showing that the rules preserve satsfiability under the TBox
- $>\!\!>$ The algorithm constructing a tableau and checking if it is open or not is ${\rm ExpTIME}$

- » The tableau calculus is complete and sound
- » Completeness is established by constructing an interpretation from an open tableau
- Soundness is established by showing that the rules preserve satsfiability under the TBox
- $>\!\!>$ The algorithm constructing a tableau and checking if it is open or not is ${\rm ExpTIME}$
- ${\ensuremath{\mathfrak{I}}}$ The $\operatorname{ExpTime}$ proof works by finding a suitable bound for the labels

- » The tableau calculus is complete and sound
- » Completeness is established by constructing an interpretation from an open tableau
- Soundness is established by showing that the rules preserve satsfiability under the TBox
- $>\!\!>$ The algorithm constructing a tableau and checking if it is open or not is ${\rm ExpTIME}$
- ${\ensuremath{\mathfrak{I}}}$ The $\operatorname{ExpTime}$ proof works by finding a suitable bound for the labels
- \gg One can prove hardness of the problem by reduction to classical \mathcal{ALC}

>>> We provided a complete and sound tableau calculus for satisfiability under a TBox in non-expansive fuzzy ALC

- $>\!\!>$ We provided a complete and sound tableau calculus for satisfiability under a TBox in non-expansive fuzzy \mathcal{ALC}
- >>> We provided an EXPTIME algorithm for deciding this problem and proved EXPTIME-completeness

- $>\!\!>$ We provided a complete and sound tableau calculus for satisfiability under a TBox in non-expansive fuzzy \mathcal{ALC}
- $>\!\!>>$ We provided an ${\rm ExpTIME}$ algorithm for deciding this problem and proved ${\rm ExpTIME}\text{-}completeness$
- There are still a few notable extensions to non-expansive fuzzy ALC which warrant attention, namely transitive roles, role inclusions and nominals

Friedrich-Alexander-Universität Faculty of Engineering