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Fuzzy description languages



Classical description languages

∠∠∠ A signature consists of a set NC of atomic concepts and a set NR of role

names

∠∠∠ Concepts are generated by:

C ,D ::= ⊥ | p | ¬C | C ∧ D | ∃R .C

where p ∈ NC and R ∈ NR

∠∠∠ An interpretation I consists of a set ∆I of individuals, a set pI ⊆ ∆I for

all p ∈ NC and a set RI ⊆ ∆I ×∆I for all R ∈ NR
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Classical description languages

∠∠∠ The extension (·)I of concepts is defined by:

⊥I = ∅ (¬C )I = ∆I \ CI (C ∧ D)I = CI ∩ DI

(∃R .C )I = {x ∈ ∆I | ∃y ∈ CI .(x , y ) ∈ RI}

∠∠∠ A concept C is called satisfiable if there exists an interpretation I such

that CI 6= ∅
⇒ Equivalent to modal logic, where concepts correspond to formulas,

atomic concepts to atoms, relations to modalities and interpretations to

models
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TBoxes

∠∠∠ A general concept inclusion (gci) is a global axiom of the form C ⊆ D

∠∠∠ An interpretation satisfies C ⊆ D iff CI ⊆ DI

∠∠∠ A TBox is a set of general concept inclusions

∠∠∠ Reasoning under TBoxes becomes more involved as the complexity

jumps from PSpace-completeness to ExpTime-completeness

Gebhart et al. | INF8 (Oberseminar) | Non-expansive FuzzyALC (Fuzzy description languages) 3 / 17



TBoxes

∠∠∠ A general concept inclusion (gci) is a global axiom of the form C ⊆ D

∠∠∠ An interpretation satisfies C ⊆ D iff CI ⊆ DI

∠∠∠ A TBox is a set of general concept inclusions

∠∠∠ Reasoning under TBoxes becomes more involved as the complexity

jumps from PSpace-completeness to ExpTime-completeness

Gebhart et al. | INF8 (Oberseminar) | Non-expansive FuzzyALC (Fuzzy description languages) 3 / 17



TBoxes

∠∠∠ A general concept inclusion (gci) is a global axiom of the form C ⊆ D

∠∠∠ An interpretation satisfies C ⊆ D iff CI ⊆ DI

∠∠∠ A TBox is a set of general concept inclusions

∠∠∠ Reasoning under TBoxes becomes more involved as the complexity

jumps from PSpace-completeness to ExpTime-completeness

Gebhart et al. | INF8 (Oberseminar) | Non-expansive FuzzyALC (Fuzzy description languages) 3 / 17



TBoxes

∠∠∠ A general concept inclusion (gci) is a global axiom of the form C ⊆ D

∠∠∠ An interpretation satisfies C ⊆ D iff CI ⊆ DI

∠∠∠ A TBox is a set of general concept inclusions

∠∠∠ Reasoning under TBoxes becomes more involved as the complexity

jumps from PSpace-completeness to ExpTime-completeness

Gebhart et al. | INF8 (Oberseminar) | Non-expansive FuzzyALC (Fuzzy description languages) 3 / 17



Fuzzy description languages

∠∠∠ Instead of just ⊥ and > we have rational truth values in the unit interval

∠∠∠ Signatures are the same as in the classical case

∠∠∠ Concepts are now generated by:

C ,D ::= c | p | ¬C | C u D | ∃R .C

where c ∈ [0, 1], p ∈ NC and R ∈ NR

∠∠∠ Interpretations now have maps pI : ∆I → [0, 1] and
RI : ∆I ×∆I → [0, 1] for all p ∈ NC and R ∈ NR

∠∠∠ The valuation (·)I : ∆I → [0, 1] of concepts is defined by:

cI(x) = c (¬C )I(x) = 1− CI(x)

(∃R .C )I(x) = max{min{RI(x , y ),CI(y )} | y ∈ ∆I}

(C u D)I(x) = ?

⇒ To define the semantics of u we need to choose a connective
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Fuzzy connectives

∠∠∠ (C u D)I(x) = min{CI(x),DI(x)} is called the Zadeh connective

∠∠∠ Most obvious choice, however little to no change to the classical case

∠∠∠ (C u D)I(x) = max{0,CI(x) + DI(x)− 1} is called the Łukasiewicz

connective

∠∠∠ Preferable properties and more expressive, however computationally

hard or even undecidable

⇒We want a middle ground between these extremes
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Fuzzy Reasoning

∠∠∠ Satisfiability is now expressed as concept assertions C ./ c

∠∠∠ We call C ./ c satisfiable if there exists an interpretation I and

individual x ∈ ∆I with CI(x) ./ c

∠∠∠ General concept inclusions are now of the form C v D

∠∠∠ C v D is satisfied in an interpretation iff CI(x) ≤ DI(x) for all x ∈ ∆I

∠∠∠ Reasoning under TBoxes in Zadeh ALC is ExpTime-complete

∠∠∠ Reasoning under TBoxes in Łukasiewicz ALC is undecidable
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Non-expansive fuzzy ALC



Idea

∠∠∠ One problem of Łukasiewicz connectives is that a small change in the

interpretation can lead to massive changes in behaviour

∠∠∠ This is because there are concepts with an expansive evaluation with

regards to logical and behavioural distance

∠∠∠ For instance p t p = ¬(¬p u ¬p) would evaluate to min{1, 2p}
∠∠∠ We try to eliminate this problem by restricting to non-expansive

operators

∠∠∠ Namely, we restrict one side of the Łukasiewicz connectives to constants

∠∠∠ As connective we take the minimum and maximum operators
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Definition

∠∠∠ The concepts of non-expansive fuzzy ALC are given by

C ,D ::= p | c | ¬C | C 	 c | C u D | ∃R .C

where p ∈ NC, c ∈ [0, 1] and R ∈ NR

∠∠∠ The valuation is given by:

cI(x) = c (¬C )I(x) = 1− CI(x)

(∃R .C )I(x) = max{min{RI(x , y ),CI(y )} | y ∈ ∆I}

(C uD)I(x) = min{CI(x),DI(x)} (C 	c)I(x) = max{0,CI(x)−c}

∠∠∠ Valuations of concepts are now non-expansive
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Difference to Zadeh ALC

∠∠∠ Non-expansive fuzzy ALC is strictly more expressive than Zadeh ALC

∠∠∠ For example we can model dampened inheritance of properties:

Rich v ∀hasChild.Rich⊕ 0.1

where we define C ⊕ c = ¬(¬C 	 c)

∠∠∠ Every non-expansive operation on the unit interval can be approximated

by the valuation of a concept of non-expansive fuzzy ALC
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Tableau calculi

∠∠∠ Tableau calculi are used to decide satisfiability in logical systems

∠∠∠ The idea is to attempt to build an interpretation for the given formulas

by breaking them into simpler components

∠∠∠ We start with the formulas we are trying to prove or disprove

satisfiability of and apply rules to break them into simpler formulas

∠∠∠ For disjunctions or non-deterministic rules, we create branches to

explore all possible cases

∠∠∠ We enforce consistency via axiom rules, i.e. we close a branch if we can

determine that it is unsatisfiable

∠∠∠ We stop if no rules can be applied to leaves

∠∠∠ If we still have an open branch, this branch corresponds to a model that

satisfies the formulas

∠∠∠ In our case, we need to deal with concept assertions instead of formulas

and with existential and universal restrictions, i.e. concept assertions of

the form ∃R .C . c and ∃R .C / c respectively
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A tableau calculus for non-expansive fuzzy ALC

(Ax 1)
S ,p . c

⊥
(if c . 1,p ∈ NC) (Ax 0)

S ,p / c

⊥
(if c / 0,p ∈ NC)

(Ax p)
S ,p / c ,p . d

⊥
(if d /(/,.)c ,p ∈ NC) (Ax c)

S , c / d

⊥
(if c /◦ d )

(u.) S ,C u D . c

S ,C . c ,D . c
(u/) S ,C u D / c

S ,C / c S ,D / c
(¬ ./)

S ,¬C ./ c

S ,C ./◦ 1− c

(	/)
S ,C 	 c / d

S ,C / d + c ,d /◦ 0
(	.)

S ,C 	 c . d

S ,C . d + c
(if d . 0)

(∃R)
S , {∃R .Dj /j dj | 1 ≤ j ≤ n},∃R .C . c

{Dj /j dj | dj /(/j ,.) c , j ∈ {1, . . . ,n}},C . c

(if c . 0 and S does not contain any ∃R .D / d )
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A tableau calculus for non-expansive fuzzy ALC

∠∠∠ We additionally require that the exists rule (∃R)may only be applied if

no other rule is applicable

∠∠∠ We label the nodes of the tableau as open if they are a leaf and do not

have ⊥ as its label or if the node has a (or all if the applied rule was the

exists rule) child node labelled as open

∠∠∠ This tableau calculus is sound and complete, i.e. the root node of a

tableau can be labelled as open iff the concept assertions in its label are

satisfiable

∠∠∠ The algorithm to construct a tableau terminates and is

PSpace-complete

∠∠∠ However this tableau algorithm cannot deal with TBoxes

⇒We need a suitable characterization of a TBox as a concept assertion to

check and stopping conditions to ensure termination
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Reducing TBoxes to concept assertions

∠∠∠ Instead of checking CI(x) ≤ DI(x) for a gci C v D for every individual,

we equivalently check if there exists a constant c such that CI(x) ≤ c

and c ≤ DI(x)

∠∠∠ If we want to prove or disprove satisfiability of a set of concept

assertions Γ under a TBox T , we can reduce the choices for c to only

finitely many values that can be obtained from Γ and T
∠∠∠ More specificially if Z ′ is the additive group of the constants in Γ and T

intersected with the unit interval, then checking the values of

Z := Z ′ ∪ {z + ε | z ∈ Z ′ \ {1}} for small enough ε suffices

∠∠∠ The idea is that any interpretation can be transformed into an

interpretation with only values of Z that is indistuingishable by concept

assertions that can be obtained from Γ and T from the original

interpretation
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Reducing TBoxes to concept assertions

∠∠∠ The satisfiability of T is then equivalent to checking if there is z ∈ Z

such that CI(x) ≤ z and z ≤ DI(x) for every individual x

∠∠∠ We can express this as a concept in the following way:

T :=
l

CvD∈T

⊔
z∈Z

(¬C ⊕ z) u (D ⊕ (1− z))

∠∠∠ Then any interpretation that satisfies Γ satisfies T iff T ≥ 1 is satisfied in

every individual

⇒ Adding T ≥ 1 to the root node and every child node of the exists rule

allows us to check this condition
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Global caching

∠∠∠ However the algorithm to construct a tableau may not terminate

∠∠∠ For instance the gci 1 v ∃R .1 leads to an infinite path

∠∠∠ To fix this, we require that nodes have unique labels

∠∠∠ More specifically, we cache labels and only create new nodes with labels

that are not already cached yet
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ExpTime-completeness

∠∠∠ The tableau calculus is complete and sound

∠∠∠ Completeness is established by constructing an interpretation from an

open tableau

∠∠∠ Soundness is established by showing that the rules preserve satsfiability

under the TBox

∠∠∠ The algorithm constructing a tableau and checking if it is open or not is

ExpTime
∠∠∠ The ExpTime proof works by finding a suitable bound for the labels

∠∠∠ One can prove hardness of the problem by reduction to classical ALC

Gebhart et al. | INF8 (Oberseminar) | Non-expansive FuzzyALC (Non-expansive fuzzyALC) 16 / 17



ExpTime-completeness

∠∠∠ The tableau calculus is complete and sound

∠∠∠ Completeness is established by constructing an interpretation from an

open tableau

∠∠∠ Soundness is established by showing that the rules preserve satsfiability

under the TBox

∠∠∠ The algorithm constructing a tableau and checking if it is open or not is

ExpTime
∠∠∠ The ExpTime proof works by finding a suitable bound for the labels

∠∠∠ One can prove hardness of the problem by reduction to classical ALC

Gebhart et al. | INF8 (Oberseminar) | Non-expansive FuzzyALC (Non-expansive fuzzyALC) 16 / 17



ExpTime-completeness

∠∠∠ The tableau calculus is complete and sound

∠∠∠ Completeness is established by constructing an interpretation from an

open tableau

∠∠∠ Soundness is established by showing that the rules preserve satsfiability

under the TBox

∠∠∠ The algorithm constructing a tableau and checking if it is open or not is

ExpTime
∠∠∠ The ExpTime proof works by finding a suitable bound for the labels

∠∠∠ One can prove hardness of the problem by reduction to classical ALC

Gebhart et al. | INF8 (Oberseminar) | Non-expansive FuzzyALC (Non-expansive fuzzyALC) 16 / 17



ExpTime-completeness

∠∠∠ The tableau calculus is complete and sound

∠∠∠ Completeness is established by constructing an interpretation from an

open tableau

∠∠∠ Soundness is established by showing that the rules preserve satsfiability

under the TBox

∠∠∠ The algorithm constructing a tableau and checking if it is open or not is

ExpTime

∠∠∠ The ExpTime proof works by finding a suitable bound for the labels

∠∠∠ One can prove hardness of the problem by reduction to classical ALC

Gebhart et al. | INF8 (Oberseminar) | Non-expansive FuzzyALC (Non-expansive fuzzyALC) 16 / 17



ExpTime-completeness

∠∠∠ The tableau calculus is complete and sound

∠∠∠ Completeness is established by constructing an interpretation from an

open tableau

∠∠∠ Soundness is established by showing that the rules preserve satsfiability

under the TBox

∠∠∠ The algorithm constructing a tableau and checking if it is open or not is

ExpTime
∠∠∠ The ExpTime proof works by finding a suitable bound for the labels

∠∠∠ One can prove hardness of the problem by reduction to classical ALC

Gebhart et al. | INF8 (Oberseminar) | Non-expansive FuzzyALC (Non-expansive fuzzyALC) 16 / 17



ExpTime-completeness

∠∠∠ The tableau calculus is complete and sound

∠∠∠ Completeness is established by constructing an interpretation from an

open tableau

∠∠∠ Soundness is established by showing that the rules preserve satsfiability

under the TBox

∠∠∠ The algorithm constructing a tableau and checking if it is open or not is

ExpTime
∠∠∠ The ExpTime proof works by finding a suitable bound for the labels

∠∠∠ One can prove hardness of the problem by reduction to classical ALC

Gebhart et al. | INF8 (Oberseminar) | Non-expansive FuzzyALC (Non-expansive fuzzyALC) 16 / 17



Conclusion & Future Work

∠∠∠ We provided a complete and sound tableau calculus for satisfiability

under a TBox in non-expansive fuzzy ALC

∠∠∠ We provided an ExpTime algorithm for deciding this problem and

proved ExpTime-completeness

∠∠∠ There are still a few notable extensions to non-expansive fuzzy ALC
which warrant attention, namely transitive roles, role inclusions and

nominals
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Questions?
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