
Alternating Nominal Automata with Name

Allocation

07th January 2025

Florian Frank, Daniel Hausmann, Stefan Milius, Lutz Schröder and Henning Urbat

Oberseminar WS2024/25

Lehrstuhl für Theoretische Informatik 8

Friedrich-Alexander-Universität Erlangen-Nürnberg

Motivation

Motivation

∠∠∠ Consider sequences of user logins within
a given time period on a server.

∠∠∠ Behaviour patterns can be modelled as

data languages over A:

∠∠∠ Now: Model these patterns with explicit ‘name binding’ (bar languages)

Forming finite data words a1 · · · an ∈ A? A: admissible user IDs for
a server (infinite set)

L1 =
{
a1 · · · an ∈ A?

: ai = aj for some i 6= j
}

L2 =

{
a1 · · · an ∈ A?

:

(
a1 = an−1 ∧ a2 = an ∧

∀2 6 i < n − 1. a1 6= ai ∧ a2 6= ai+1

)}

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 1 / 24

Motivation

∠∠∠ Consider sequences of user logins within
a given time period on a server.

∠∠∠ Behaviour patterns can be modelled as

data languages over A:

∠∠∠ Now: Model these patterns with explicit ‘name binding’ (bar languages)

Forming finite data words a1 · · · an ∈ A? A: admissible user IDs for
a server (infinite set)

L1 =
{
a1 · · · an ∈ A?

: ai = aj for some i 6= j
}

L2 =

{
a1 · · · an ∈ A?

:

(
a1 = an−1 ∧ a2 = an ∧

∀2 6 i < n − 1. a1 6= ai ∧ a2 6= ai+1

)}

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 1 / 24

Motivation

∠∠∠ Consider sequences of user logins within
a given time period on a server.

∠∠∠ Behaviour patterns can be modelled as

data languages over A:

∠∠∠ Now: Model these patterns with explicit ‘name binding’ (bar languages)

Forming finite data words a1 · · · an ∈ A? A: admissible user IDs for
a server (infinite set)

L1 =
{
a1 · · · an ∈ A?

: ai = aj for some i 6= j
}

L2 =

{
a1 · · · an ∈ A?

:

(
a1 = an−1 ∧ a2 = an ∧

∀2 6 i < n − 1. a1 6= ai ∧ a2 6= ai+1

)}

‘some user has logged in twice’

‘first pair of users is equal to last pair
with only different users in between’

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 1 / 24

Motivation

∠∠∠ Consider sequences of user logins within
a given time period on a server.

∠∠∠ Behaviour patterns can be modelled as

data languages over A:

∠∠∠ Now: Model these patterns with explicit ‘name binding’ (bar languages)

Forming finite data words a1 · · · an ∈ A? A: admissible user IDs for
a server (infinite set)

L1 =
{
a1 · · · an ∈ A?

: ai = aj for some i 6= j
}

L2 =

{
a1 · · · an ∈ A?

:

(
a1 = an−1 ∧ a2 = an ∧

∀2 6 i < n − 1. a1 6= ai ∧ a2 6= ai+1

)}

‘some user has logged in twice’

‘first pair of users is equal to last pair
with only different users in between’

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 1 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’

introduces ‘variable’
with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a
(over A?) (over A

?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a

a

b d

b a
(over A?) (over A

?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a
(over A?) (over A

?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a
(over A?) (over A

?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a
(over A?) (over A

?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b

b

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a

a

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a a

a

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a a

a

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a a

a

b d

b a
(over A?) (over A

?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α

c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a a

a

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α

c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a a

a

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α

c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a a

a

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a a

a

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a a

a

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a a

a

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6

‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a a

a

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈
Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 2 / 24

Nominal Sets (Talking about Infinite Data with Finite Means)

 Fix a (countably infinite) set A of ‘names’ Data Values.

Definition (Nominal Sets) Gabbay, Pitts ’99

A nominal set is a set whose elements depend on a finite number of these names.

→ supp(x)

 We can change the names of an element using permutations π : A
'−→ A

which act upon these elements. (Group Actions . : Perm(A)× X → X)

<book id="bk007">
<author lstname="Doe"

fstname="John"/>
<title value="Biggy"/>
<price cur="USD"

amount="12.95"/>
</book>

∠∠∠ ‘Freshness’: A 3 a#x iff a /∈ supp(x).

∠∠∠ Proper ‘finiteness’ is now replaced

by finiteness up to such permuta-

tions. Orbit-Finiteness

∠∠∠ Nominal Sets and action-preser-

ving maps form a category Nom.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 3 / 24

Nominal Sets (Talking about Infinite Data with Finite Means)

 Fix a (countably infinite) set A of ‘names’ Data Values.

Definition (Nominal Sets) Gabbay, Pitts ’99

A nominal set is a set whose elements depend on a finite number of these names.

→ supp(x)

 We can change the names of an element using permutations π : A
'−→ A

which act upon these elements. (Group Actions . : Perm(A)× X → X)

<book id="bk007">
<author lstname="Doe"

fstname="John"/>
<title value="Biggy"/>
<price cur="USD"

amount="12.95"/>
</book>

Support

∠∠∠ ‘Freshness’: A 3 a#x iff a /∈ supp(x).

∠∠∠ Proper ‘finiteness’ is now replaced

by finiteness up to such permuta-

tions. Orbit-Finiteness

∠∠∠ Nominal Sets and action-preser-

ving maps form a category Nom.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 3 / 24

Nominal Sets (Talking about Infinite Data with Finite Means)

 Fix a (countably infinite) set A of ‘names’ Data Values.

Definition (Nominal Sets) Gabbay, Pitts ’99

A nominal set is a set whose elements depend on a finite number of these names.

→ supp(x)

 We can change the names of an element using permutations π : A
'−→ A

which act upon these elements. (Group Actions . : Perm(A)× X → X)

<book id="bk007">
<author lstname="Doe"

fstname="John"/>
<title value="Biggy"/>
<price cur="USD"

amount="12.95"/>
</book>

Support

Example: Let π =

(
John Jane

)
◦
(
Doe Biggy

)
act on the document.

∠∠∠ ‘Freshness’: A 3 a#x iff a /∈ supp(x).

∠∠∠ Proper ‘finiteness’ is now replaced

by finiteness up to such permuta-

tions. Orbit-Finiteness

∠∠∠ Nominal Sets and action-preser-

ving maps form a category Nom.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 3 / 24

Nominal Sets (Talking about Infinite Data with Finite Means)

 Fix a (countably infinite) set A of ‘names’ Data Values.

Definition (Nominal Sets) Gabbay, Pitts ’99

A nominal set is a set whose elements depend on a finite number of these names.

→ supp(x)

 We can change the names of an element using permutations π : A
'−→ A

which act upon these elements. (Group Actions . : Perm(A)× X → X)

<book id="bk007">
<author lstname="Biggy"

fstname="Jane"/>
<title value="Doe"/>
<price cur="USD"

amount="12.95"/>
</book>

Support

Example: Let π =

(
John Jane

)
◦
(
Doe Biggy

)
act on the document.

∠∠∠ ‘Freshness’: A 3 a#x iff a /∈ supp(x).

∠∠∠ Proper ‘finiteness’ is now replaced

by finiteness up to such permuta-

tions. Orbit-Finiteness

∠∠∠ Nominal Sets and action-preser-

ving maps form a category Nom.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 3 / 24

Nominal Sets (Talking about Infinite Data with Finite Means)

 Fix a (countably infinite) set A of ‘names’ Data Values.

Definition (Nominal Sets) Gabbay, Pitts ’99

A nominal set is a set whose elements depend on a finite number of these names.

→ supp(x)

 We can change the names of an element using permutations π : A
'−→ A

which act upon these elements. (Group Actions . : Perm(A)× X → X)

<book id="bk007">
<author lstname="Biggy"

fstname="Jane"/>
<title value="Doe"/>
<price cur="USD"

amount="12.95"/>
</book>

∠∠∠ ‘Freshness’: A 3 a#x iff a /∈ supp(x).

∠∠∠ Proper ‘finiteness’ is now replaced

by finiteness up to such permuta-

tions. Orbit-Finiteness

∠∠∠ Nominal Sets and action-preser-

ving maps form a category Nom.

∀π. ∀x . f (π . x) = π . f (x)

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 3 / 24

Bound Data Values (Name Abstraction)

Definition (Abstraction) Gabbay, Pitts ’99

Given a nominal set X , define the equivalence relation ≈α onA× X as follows:

(a, x) ≈α (b, y) iff ∃c # (a, b, x , y). (a c) . x = (b c) . y . (1)

With this, define the nominal set [A]X as the quotient (A× X)/ ≈α, and denote

the equivalence classes by 〈a〉x .

∠∠∠ [A]X extends to a endofunctor [A]− on Nom.

∠∠∠ This results in an ‘easier’ definition of α-equivalence:
Substitution is pushed back to the definition of the nominal set.

Definition (≡α on Bar Strings) Schröder, Kozen, Milius, Wißmann ’17

≡α is the equivalence generated by w av ≡α w bu if 〈a〉v = 〈b〉u holds in [A]A
?

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 4 / 24

Bound Data Values (Name Abstraction)

Definition (Abstraction) Gabbay, Pitts ’99

Given a nominal set X , define the equivalence relation ≈α onA× X as follows:

(a, x) ≈α (b, y) iff ∃c # (a, b, x , y). (a c) . x = (b c) . y . (1)

With this, define the nominal set [A]X as the quotient (A× X)/ ≈α, and denote

the equivalence classes by 〈a〉x .

∠∠∠ [A]X extends to a endofunctor [A]− on Nom.

∠∠∠ This results in an ‘easier’ definition of α-equivalence:
Substitution is pushed back to the definition of the nominal set.

Definition (≡α on Bar Strings) Schröder, Kozen, Milius, Wißmann ’17

≡α is the equivalence generated by w av ≡α w bu if 〈a〉v = 〈b〉u holds in [A]A
?

Behaves similarly to ‘λa. x ’, i.e. binds

the name a in the ‘term’ x .

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 4 / 24

Bound Data Values (Name Abstraction)

Definition (Abstraction) Gabbay, Pitts ’99

Given a nominal set X , define the equivalence relation ≈α onA× X as follows:

(a, x) ≈α (b, y) iff ∃c # (a, b, x , y). (a c) . x = (b c) . y . (1)

With this, define the nominal set [A]X as the quotient (A× X)/ ≈α, and denote

the equivalence classes by 〈a〉x .

∠∠∠ [A]X extends to a endofunctor [A]− on Nom.

∠∠∠ This results in an ‘easier’ definition of α-equivalence:
Substitution is pushed back to the definition of the nominal set.

Definition (≡α on Bar Strings) Schröder, Kozen, Milius, Wißmann ’17

≡α is the equivalence generated by w av ≡α w bu if 〈a〉v = 〈b〉u holds in [A]A
?

Behaves similarly to ‘λa. x ’, i.e. binds

the name a in the ‘term’ x .

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 4 / 24

Bound Data Values (Name Abstraction)

Definition (Abstraction) Gabbay, Pitts ’99

Given a nominal set X , define the equivalence relation ≈α onA× X as follows:

(a, x) ≈α (b, y) iff ∃c # (a, b, x , y). (a c) . x = (b c) . y . (1)

With this, define the nominal set [A]X as the quotient (A× X)/ ≈α, and denote

the equivalence classes by 〈a〉x .

∠∠∠ [A]X extends to a endofunctor [A]− on Nom.

∠∠∠ This results in an ‘easier’ definition of α-equivalence:
Substitution is pushed back to the definition of the nominal set.

Definition (≡α on Bar Strings) Schröder, Kozen, Milius, Wißmann ’17

≡α is the equivalence generated by w av ≡α w bu if 〈a〉v = 〈b〉u holds in [A]A
?

Behaves similarly to ‘λa. x ’, i.e. binds

the name a in the ‘term’ x .

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 4 / 24

Bound Data Values (Name Abstraction)

Definition (Abstraction) Gabbay, Pitts ’99

Given a nominal set X , define the equivalence relation ≈α onA× X as follows:

(a, x) ≈α (b, y) iff ∃c # (a, b, x , y). (a c) . x = (b c) . y . (1)

With this, define the nominal set [A]X as the quotient (A× X)/ ≈α, and denote

the equivalence classes by 〈a〉x .

∠∠∠ [A]X extends to a endofunctor [A]− on Nom.

∠∠∠ This results in an ‘easier’ definition of α-equivalence:
Substitution is pushed back to the definition of the nominal set.

Definition (≡α on Bar Strings) Schröder, Kozen, Milius, Wißmann ’17

≡α is the equivalence generated by w av ≡α w bu if 〈a〉v = 〈b〉u holds in [A]A
?

Behaves similarly to ‘λa. x ’, i.e. binds

the name a in the ‘term’ x .

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 4 / 24

Bar Languages (With corresponding Data Languages)

A := A ∪ { d : d ∈ A} ∼= A+A

∠∠∠ A name a is free in a bar string w ∈ A?
, if a occurs to the left of any

occurence of a.

∠∠∠ A bar string w ∈ A?
is clean if its bound letters a are mutually distinct

and distinct from all its free names.

∠∠∠ Bar Languages (L ⊆ A?
/≡α) may also be understood as data

languages via two conversions:

Global Freshness: GF(L) = {ub(w) : w clean, w ≡α w ′ ∈ L}

Local Freshness: LF(L) = {ub(w) : w ≡α w ′ ∈ L}ub(w) removes all
‘|’s in w by replacing
all a in w with a.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 5 / 24

Bar Languages (With corresponding Data Languages)

A := A ∪ { d : d ∈ A} ∼= A+A

∠∠∠ A name a is free in a bar string w ∈ A?
, if a occurs to the left of any

occurence of a.

∠∠∠ A bar string w ∈ A?
is clean if its bound letters a are mutually distinct

and distinct from all its free names.

∠∠∠ Bar Languages (L ⊆ A?
/≡α) may also be understood as data

languages via two conversions:

Global Freshness: GF(L) = {ub(w) : w clean, w ≡α w ′ ∈ L}

Local Freshness: LF(L) = {ub(w) : w ≡α w ′ ∈ L}ub(w) removes all
‘|’s in w by replacing
all a in w with a.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 5 / 24

Bar Languages (With corresponding Data Languages)

A := A ∪ { d : d ∈ A} ∼= A+A

∠∠∠ A name a is free in a bar string w ∈ A?
, if a occurs to the left of any

occurence of a.

∠∠∠ A bar string w ∈ A?
is clean if its bound letters a are mutually distinct

and distinct from all its free names.

∠∠∠ Bar Languages (L ⊆ A?
/≡α) may also be understood as data

languages via two conversions:

Global Freshness: GF(L) = {ub(w) : w clean, w ≡α w ′ ∈ L}

Local Freshness: LF(L) = {ub(w) : w ≡α w ′ ∈ L}ub(w) removes all
‘|’s in w by replacing
all a in w with a.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 5 / 24

Bar Languages (With corresponding Data Languages)

A := A ∪ { d : d ∈ A} ∼= A+A

∠∠∠ A name a is free in a bar string w ∈ A?
, if a occurs to the left of any

occurence of a.

∠∠∠ A bar string w ∈ A?
is clean if its bound letters a are mutually distinct

and distinct from all its free names.

∠∠∠ Bar Languages (L ⊆ A?
/≡α) may also be understood as data

languages via two conversions:

Global Freshness: GF(L) = {ub(w) : w clean, w ≡α w ′ ∈ L}

Local Freshness: LF(L) = {ub(w) : w ≡α w ′ ∈ L}

ub(w) removes all
‘|’s in w by replacing
all a in w with a.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 5 / 24

Bar Languages (With corresponding Data Languages)

A := A ∪ { d : d ∈ A} ∼= A+A

∠∠∠ A name a is free in a bar string w ∈ A?
, if a occurs to the left of any

occurence of a.

∠∠∠ A bar string w ∈ A?
is clean if its bound letters a are mutually distinct

and distinct from all its free names.

∠∠∠ Bar Languages (L ⊆ A?
/≡α) may also be understood as data

languages via two conversions:

Global Freshness: GF(L) = {ub(w) : w clean, w ≡α w ′ ∈ L}

Local Freshness: LF(L) = {ub(w) : w ≡α w ′ ∈ L}ub(w) removes all
‘|’s in w by replacing
all a in w with a.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 5 / 24

Bar Languages (With corresponding Data Languages)

A := A ∪ { d : d ∈ A} ∼= A+A

∠∠∠ A name a is free in a bar string w ∈ A?
, if a occurs to the left of any

occurence of a.

∠∠∠ A bar string w ∈ A?
is clean if its bound letters a are mutually distinct

and distinct from all its free names.

∠∠∠ Bar Languages (L ⊆ A?
/≡α) may also be understood as data

languages via two conversions:

Global Freshness: GF(L) = {ub(w) : w clean, w ≡α w ′ ∈ L}

Local Freshness: LF(L) = {ub(w) : w ≡α w ′ ∈ L}ub(w) removes all
‘|’s in w by replacing
all a in w with a.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 5 / 24

Motivation

∠∠∠ Behaviour patterns can be modelled as

data languages over A (or as bar lan-

guages): A: admissible user IDs for
a server (infinite set)

LF(L1) =
{
a1 · · · an ∈ A?

: ai = aj for some i 6= j
}

L1 = [(b)∗ a(b)∗a(b)∗]α

LF(L2) =

{
a1 · · · an ∈ A?

:

(
a1 = an−1 ∧ a2 = an ∧

∀2 6 i < n − 1. a1 6= ai ∧ a2 6= ai+1

)}

L2 = [a b(c)∗ab]α

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 6 / 24

Motivation

∠∠∠ Behaviour patterns can be modelled as

data languages over A (or as bar lan-

guages): A: admissible user IDs for
a server (infinite set)

LF(L1) =
{
a1 · · · an ∈ A?

: ai = aj for some i 6= j
}

L1 = [(b)∗ a(b)∗a(b)∗]α

LF(L2) =

{
a1 · · · an ∈ A?

:

(
a1 = an−1 ∧ a2 = an ∧

∀2 6 i < n − 1. a1 6= ai ∧ a2 6= ai+1

)}

L2 = [a b(c)∗ab]α

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 6 / 24

Motivation

∠∠∠ Behaviour patterns can be modelled as

data languages over A (or as bar lan-

guages): A: admissible user IDs for
a server (infinite set)

LF(L1) =
{
a1 · · · an ∈ A?

: ai = aj for some i 6= j
}

L1 = [(b)∗ a(b)∗a(b)∗]α

LF(L2) =

{
a1 · · · an ∈ A?

:

(
a1 = an−1 ∧ a2 = an ∧

∀2 6 i < n − 1. a1 6= ai ∧ a2 6= ai+1

)}

L2 = [a b(c)∗ab]α

‘some user has logged in twice’

‘first pair of users is equal to last pair
with only different users in between’

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 6 / 24

Alternation

RANA (Alternating Nominal Automata w/Name Binding)

Motivation

Model checking with fixed-point/temporal logics over (in-)finite words usually

uses alternating automata.

∠∠∠ Goal: Introduce alternation using transition formulae.

Definition (Boolean Formulae)

Let X be a set of atoms. Then, Bn(X) denotes the set of Boolean formulae over

X defined by the grammar

ϕ,ψ ::= > | ⊥ | x | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ. (x ∈ X)

Denote by B+(X) the subset of positive Boolean formulae over X , i.e. formulae

that do not contain any negation.

∠∠∠ If X is a nominal set, then we regard Bn(X) and B+(X) also as nominal

sets with the obvious group action.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Alternation) 7 / 24

RANA (Alternating Nominal Automata w/Name Binding)

Motivation

Model checking with fixed-point/temporal logics over (in-)finite words usually

uses alternating automata.

∠∠∠ Goal: Introduce alternation using transition formulae.

Definition (Boolean Formulae)

Let X be a set of atoms. Then, Bn(X) denotes the set of Boolean formulae over

X defined by the grammar

ϕ,ψ ::= > | ⊥ | x | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ. (x ∈ X)

Denote by B+(X) the subset of positive Boolean formulae over X , i.e. formulae

that do not contain any negation.

∠∠∠ If X is a nominal set, then we regard Bn(X) and B+(X) also as nominal

sets with the obvious group action.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Alternation) 7 / 24

RANA (Alternating Nominal Automata w/Name Binding)

Motivation

Model checking with fixed-point/temporal logics over (in-)finite words usually

uses alternating automata.

∠∠∠ Goal: Introduce alternation using transition formulae.

Definition (Boolean Formulae)

Let X be a set of atoms. Then, Bn(X) denotes the set of Boolean formulae over

X defined by the grammar

ϕ,ψ ::= > | ⊥ | x | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ. (x ∈ X)

Denote by B+(X) the subset of positive Boolean formulae over X , i.e. formulae

that do not contain any negation.

∠∠∠ If X is a nominal set, then we regard Bn(X) and B+(X) also as nominal

sets with the obvious group action.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Alternation) 7 / 24

RANA (Alternating Nominal Automata w/Name Binding)

Motivation

Model checking with fixed-point/temporal logics over (in-)finite words usually

uses alternating automata.

∠∠∠ Goal: Introduce alternation using transition formulae.

Definition (Boolean Formulae)

Let X be a set of atoms. Then, Bn(X) denotes the set of Boolean formulae over

X defined by the grammar

ϕ,ψ ::= > | ⊥ | x | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ. (x ∈ X)

Denote by B+(X) the subset of positive Boolean formulae over X , i.e. formulae

that do not contain any negation.

∠∠∠ If X is a nominal set, then we regard Bn(X) and B+(X) also as nominal

sets with the obvious group action.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Alternation) 7 / 24

RANA (Definition)

Definition (RANA)

A regular alternating nominal automaton (RANA) A = (Q, δ, q0) consists of:

∠∠∠ an orbit-finite set Q specifying states;

∠∠∠ an equivariant initial state q0 ∈ Q; and

∠∠∠ an equivariant transition function δ : Q → Bn(1 +A× Q + [A]Q).

Definition (Positive RANA)

A RANA is positive if the transition function corestricts to B+(1+A×Q + [A]Q).

An extended regular nondeterministic nominal automaton (ERNNA) is a positive

RANA in which non of the transition formulae uses a conjunction (∧).

Notation

∠∠∠ Denote the unique atom in 1 by ε.

∠∠∠ Denote the atoms (a, q) and 〈a〉q by ♦aq and ♦ aq , respectively.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Alternation) 8 / 24

RANA (Definition)

Definition (RANA)

A regular alternating nominal automaton (RANA) A = (Q, δ, q0) consists of:

∠∠∠ an orbit-finite set Q specifying states;

∠∠∠ an equivariant initial state q0 ∈ Q; and

∠∠∠ an equivariant transition function δ : Q → Bn(1 +A× Q + [A]Q).

Definition (Positive RANA)

A RANA is positive if the transition function corestricts to B+(1+A×Q + [A]Q).

An extended regular nondeterministic nominal automaton (ERNNA) is a positive

RANA in which non of the transition formulae uses a conjunction (∧).

Notation

∠∠∠ Denote the unique atom in 1 by ε.

∠∠∠ Denote the atoms (a, q) and 〈a〉q by ♦aq and ♦ aq , respectively.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Alternation) 8 / 24

RANA (Definition)

Definition (RANA)

A regular alternating nominal automaton (RANA) A = (Q, δ, q0) consists of:

∠∠∠ an orbit-finite set Q specifying states;

∠∠∠ an equivariant initial state q0 ∈ Q; and

∠∠∠ an equivariant transition function δ : Q → Bn(1 +A× Q + [A]Q).

Definition (Positive RANA)

A RANA is positive if the transition function corestricts to B+(1+A×Q + [A]Q).

An extended regular nondeterministic nominal automaton (ERNNA) is a positive

RANA in which non of the transition formulae uses a conjunction (∧).

Notation

∠∠∠ Denote the unique atom in 1 by ε.

∠∠∠ Denote the atoms (a, q) and 〈a〉q by ♦aq and ♦ aq , respectively.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Alternation) 8 / 24

RANA (Semantics)

Definition (Semantics)

Define w |= ϕ for w ∈ A?
, and ϕ ∈ Bn(1 +A× Q + [A]Q) recursively by:

∠∠∠ ∨, ∧, ¬, >, and ⊥ have the conventional interpretation.

∠∠∠ The interpretation of atoms x ∈ A×Q+[A]Q is given by the following clauses:

w |= ε :⇐⇒ w = ε

w |= ♦aq :⇐⇒ ∃v ∈ A?
. w = av and v |= δ(q)

w |= ♦ aq :⇐⇒ ∃v , v ′ ∈ A?
, b, c ∈ A, q ′ ∈ Q. w = bv ≡α cv

′,

〈a〉q = 〈c〉q ′, and v
′ |= δ(q ′)

Define the accepted languages as follows:

∠∠∠ Literal Language: L0(A) :=
{
w ∈ A?

: w is closed and q0 accepts w
}
.

∠∠∠ Bar Language: Lα(A) := L0(A)/≡α.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Alternation) 9 / 24

RANA (Small Remarks)

∠∠∠ Our choice for transitions functions is deliberate:

(δ : Q → Bn(1 +A× Q + [A]Q) instead of final states & δ : Q × A → Bn(Q))

∠∠ Encoding transition ‘letters’ into formulae makes proofs and

constructions easier later on. Additionally, there’d be multiple extra

conditions on δ.

∠∠ Encoding ‘finality’ into formulae makes transition formulae more

align to their logical counterpart Bar-µTL and our modalities match

more closely to their logical counterparts.

 Otherwise, diamonds would need to accept ε depending on finality.

∠∠∠ Why do we need a possibility of α-renaming bar strings for

‘bar-modalities’ ♦ a?

w |= ♦ aq :⇐⇒ ∃v , v ′ ∈ A?
, b, c ∈ A, q ′ ∈ Q. w = bv ≡α cv

′,

〈a〉q = 〈c〉q ′, and v
′ |= δ(q ′)

∠∠ Otherwise, negation is not α-invariant! (Example at blackboard)

∠∠ This would contradict the expected complementation procedure!

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Alternation) 10 / 24

RANA (Small Remarks)

∠∠∠ Our choice for transitions functions is deliberate:

(δ : Q → Bn(1 +A× Q + [A]Q) instead of final states & δ : Q × A → Bn(Q))

∠∠ Encoding transition ‘letters’ into formulae makes proofs and

constructions easier later on. Additionally, there’d be multiple extra

conditions on δ.

∠∠ Encoding ‘finality’ into formulae makes transition formulae more

align to their logical counterpart Bar-µTL and our modalities match

more closely to their logical counterparts.

 Otherwise, diamonds would need to accept ε depending on finality.

∠∠∠ Why do we need a possibility of α-renaming bar strings for

‘bar-modalities’ ♦ a?

w |= ♦ aq :⇐⇒ ∃v , v ′ ∈ A?
, b, c ∈ A, q ′ ∈ Q. w = bv ≡α cv

′,

〈a〉q = 〈c〉q ′, and v
′ |= δ(q ′)

∠∠ Otherwise, negation is not α-invariant! (Example at blackboard)

∠∠ This would contradict the expected complementation procedure!

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Alternation) 10 / 24

RANA (Small Remarks)

∠∠∠ Our choice for transitions functions is deliberate:

(δ : Q → Bn(1 +A× Q + [A]Q) instead of final states & δ : Q × A → Bn(Q))

∠∠ Encoding transition ‘letters’ into formulae makes proofs and

constructions easier later on. Additionally, there’d be multiple extra

conditions on δ.

∠∠ Encoding ‘finality’ into formulae makes transition formulae more

align to their logical counterpart Bar-µTL and our modalities match

more closely to their logical counterparts.

 Otherwise, diamonds would need to accept ε depending on finality.

∠∠∠ Why do we need a possibility of α-renaming bar strings for

‘bar-modalities’ ♦ a?

w |= ♦ aq :⇐⇒ ∃v , v ′ ∈ A?
, b, c ∈ A, q ′ ∈ Q. w = bv ≡α cv

′,

〈a〉q = 〈c〉q ′, and v
′ |= δ(q ′)

∠∠ Otherwise, negation is not α-invariant! (Example at blackboard)

∠∠ This would contradict the expected complementation procedure!

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Alternation) 10 / 24

Results I: Equivalence of Models

Equivalence of Models

We showed that negation does not matter for expresivity of RANAs, in

more detail:

Theorem (Equivalence)

Positive RANAs accept the same bar languages as ordinary RANAs do.

Hence, also the same languages under the local/global freshness semantics.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 11 / 24

Explicit-Dual RANAs

∠∠∠ To untangle the proof and for the later equivalence to Bar-µTL, we
introduce another variant of RANAs:

Definition (Dualizable Boolean Formulae)

Let X be a (nominal) set of atoms.

Put Bd(X) := B+(X ∪ Xd) with Xd =
{
xd : x ∈ X

}
as a copy of X .

Definition (Explicit-Dual RANA)

An explicit-dual RANA A = (Q, δ, q0) is defined like a RANA but with an equivari-

ant transition function δ : Q → Bd(1 +A× Q + [A]Q).
We denote the copy (♦αq)

d
of atoms by �αq.

The additional atoms are interpreted as follows:

w |= εd :⇐⇒ w 6= ε

w |= �aq :⇐⇒ ∀v ∈ A?
. w = av =⇒ v |= δ(q)

w |= � aq :⇐⇒ ∀b ∈ A, v ∈ A?
.w = bv =⇒ w |= ♦ aq.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 12 / 24

Explicit-Dual RANAs

∠∠∠ To untangle the proof and for the later equivalence to Bar-µTL, we
introduce another variant of RANAs:

Definition (Dualizable Boolean Formulae)

Let X be a (nominal) set of atoms.

Put Bd(X) := B+(X ∪ Xd) with Xd =
{
xd : x ∈ X

}
as a copy of X .

Definition (Explicit-Dual RANA)

An explicit-dual RANA A = (Q, δ, q0) is defined like a RANA but with an equivari-

ant transition function δ : Q → Bd(1 +A× Q + [A]Q).
We denote the copy (♦αq)

d
of atoms by �αq.

The additional atoms are interpreted as follows:

w |= εd :⇐⇒ w 6= ε

w |= �aq :⇐⇒ ∀v ∈ A?
. w = av =⇒ v |= δ(q)

w |= � aq :⇐⇒ ∀b ∈ A, v ∈ A?
.w = bv =⇒ w |= ♦ aq.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 12 / 24

Explicit-Dual RANAs

∠∠∠ To untangle the proof and for the later equivalence to Bar-µTL, we
introduce another variant of RANAs:

Definition (Dualizable Boolean Formulae)

Let X be a (nominal) set of atoms.

Put Bd(X) := B+(X ∪ Xd) with Xd =
{
xd : x ∈ X

}
as a copy of X .

Definition (Explicit-Dual RANA)

An explicit-dual RANA A = (Q, δ, q0) is defined like a RANA but with an equivari-

ant transition function δ : Q → Bd(1 +A× Q + [A]Q).
We denote the copy (♦αq)

d
of atoms by �αq.

The additional atoms are interpreted as follows:

w |= εd :⇐⇒ w 6= ε

w |= �aq :⇐⇒ ∀v ∈ A?
. w = av =⇒ v |= δ(q)

w |= � aq :⇐⇒ ∀b ∈ A, v ∈ A?
.w = bv =⇒ w |= ♦ aq.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 12 / 24

Equivalence (Ordinary to Explicit-Dual)

Proposition (Ordinary to Explicit-Dual)

For every ordinary RANA A, there is an explicit-dual RANA Ad that accepts the

same literal language, has twice as many orbits and the same degree as A.

∠∠∠ The resulting RANA Ad has two states q,qn for each state q in A.

∠∠∠ q in Ad accepts the same literal language as in A:

∠∠ For transitions, only ‘negations’ change:
¬♦αq with α ∈ A becomes �αqn.

∠∠ The ‘negated epsilon’ (¬ε) is replaced by εd.

∠∠∠ qn in Ad accepts the complement of q. Herefore, we ‘negate’ the

transition formula and convert it as above.

∠∠∠ Acceptance is then shown easily by double induction (word length and

size of transition formulae in NNF).

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 13 / 24

Equivalence (Ordinary to Explicit-Dual)

Proposition (Ordinary to Explicit-Dual)

For every ordinary RANA A, there is an explicit-dual RANA Ad that accepts the

same literal language, has twice as many orbits and the same degree as A.

∠∠∠ The resulting RANA Ad has two states q,qn for each state q in A.

∠∠∠ q in Ad accepts the same literal language as in A:

∠∠ For transitions, only ‘negations’ change:
¬♦αq with α ∈ A becomes �αqn.

∠∠ The ‘negated epsilon’ (¬ε) is replaced by εd.

∠∠∠ qn in Ad accepts the complement of q. Herefore, we ‘negate’ the

transition formula and convert it as above.

∠∠∠ Acceptance is then shown easily by double induction (word length and

size of transition formulae in NNF).

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 13 / 24

Equivalence (Ordinary to Explicit-Dual)

Proposition (Ordinary to Explicit-Dual)

For every ordinary RANA A, there is an explicit-dual RANA Ad that accepts the

same literal language, has twice as many orbits and the same degree as A.

∠∠∠ The resulting RANA Ad has two states q,qn for each state q in A.

∠∠∠ q in Ad accepts the same literal language as in A:

∠∠ For transitions, only ‘negations’ change:
¬♦αq with α ∈ A becomes �αqn.

∠∠ The ‘negated epsilon’ (¬ε) is replaced by εd.

∠∠∠ qn in Ad accepts the complement of q. Herefore, we ‘negate’ the

transition formula and convert it as above.

∠∠∠ Acceptance is then shown easily by double induction (word length and

size of transition formulae in NNF).

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 13 / 24

Equivalence (Ordinary to Explicit-Dual)

Proposition (Ordinary to Explicit-Dual)

For every ordinary RANA A, there is an explicit-dual RANA Ad that accepts the

same literal language, has twice as many orbits and the same degree as A.

∠∠∠ The resulting RANA Ad has two states q,qn for each state q in A.

∠∠∠ q in Ad accepts the same literal language as in A:

∠∠ For transitions, only ‘negations’ change:
¬♦αq with α ∈ A becomes �αqn.

∠∠ The ‘negated epsilon’ (¬ε) is replaced by εd.

∠∠∠ qn in Ad accepts the complement of q. Herefore, we ‘negate’ the

transition formula and convert it as above.

∠∠∠ Acceptance is then shown easily by double induction (word length and

size of transition formulae in NNF).

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 13 / 24

Equivalence (Ordinary to Explicit-Dual)

Proposition (Ordinary to Explicit-Dual)

For every ordinary RANA A, there is an explicit-dual RANA Ad that accepts the

same literal language, has twice as many orbits and the same degree as A.

∠∠∠ The resulting RANA Ad has two states q,qn for each state q in A.

∠∠∠ q in Ad accepts the same literal language as in A:

∠∠ For transitions, only ‘negations’ change:
¬♦αq with α ∈ A becomes �αqn.

∠∠ The ‘negated epsilon’ (¬ε) is replaced by εd.

∠∠∠ qn in Ad accepts the complement of q. Herefore, we ‘negate’ the

transition formula and convert it as above.

∠∠∠ Acceptance is then shown easily by double induction (word length and

size of transition formulae in NNF).

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 13 / 24

Equivalence (Explicit-Dual to Positive)

Proposition (Explicit-Dual to Positive)

For every explicit-dual RANA A of degree k and with n orbits, there is a positive

RANA A+ that accepts the same literal language, has degree 2k + 1, and at most

n · (k + 2) · (2k + 1)2k+1 + 1 orbits.

∠∠∠ The idea is to make use of the following logical equivalence:

�αϕ ≡ ♦αϕ ∨
∨
σ 6=α

♦σ>.

∠∠∠ The > is easily managed by a single additional >-state q> with

transition formula >.
∠∠∠ Problem: The disjunction

∨
σ 6=α ♦σ> is infinite!

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 14 / 24

Equivalence (Explicit-Dual to Positive)

Proposition (Explicit-Dual to Positive)

For every explicit-dual RANA A of degree k and with n orbits, there is a positive

RANA A+ that accepts the same literal language, has degree 2k + 1, and at most

n · (k + 2) · (2k + 1)2k+1 + 1 orbits.

∠∠∠ The idea is to make use of the following logical equivalence:

�αϕ ≡ ♦αϕ ∨
∨
σ 6=α

♦σ>.

∠∠∠ The > is easily managed by a single additional >-state q> with

transition formula >.
∠∠∠ Problem: The disjunction

∨
σ 6=α ♦σ> is infinite!

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 14 / 24

Equivalence (Explicit-Dual to Positive)

Proposition (Explicit-Dual to Positive)

For every explicit-dual RANA A of degree k and with n orbits, there is a positive

RANA A+ that accepts the same literal language, has degree 2k + 1, and at most

n · (k + 2) · (2k + 1)2k+1 + 1 orbits.

∠∠∠ The idea is to make use of the following logical equivalence:

�αϕ ≡ ♦αϕ ∨
∨
σ 6=α

♦σ>.

∠∠∠ The > is easily managed by a single additional >-state q> with

transition formula >.

∠∠∠ Problem: The disjunction
∨

σ 6=α ♦σ> is infinite!

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 14 / 24

Equivalence (Explicit-Dual to Positive)

Proposition (Explicit-Dual to Positive)

For every explicit-dual RANA A of degree k and with n orbits, there is a positive

RANA A+ that accepts the same literal language, has degree 2k + 1, and at most

n · (k + 2) · (2k + 1)2k+1 + 1 orbits.

∠∠∠ The idea is to make use of the following logical equivalence:

�αϕ ≡ ♦αϕ ∨
∨
σ 6=α

♦σ>.

∠∠∠ The > is easily managed by a single additional >-state q> with

transition formula >.
∠∠∠ Problem: The disjunction

∨
σ 6=α ♦σ> is infinite!

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 14 / 24

Equivalence (Explicit-Dual to Positive)

Proposition (Explicit-Dual to Positive)

For every explicit-dual RANA A of degree k and with n orbits, there is a positive

RANA A+ that accepts the same literal language, has degree as 2k + 1, and at

most n · (k + 2) · (2k + 1)2k+1 + 1 orbits.

∠∠∠ Problem: The disjunction
∨

σ 6=α ♦σ> is infinite!

Definition (Escape Letters)

Given a bar string w ∈ A?
and a formula ϕ ∈ Bd(1+A×Q+[A]Q), a free name

a ∈ FN(w) is an escape letter for w at ϕ if the satisfaction w |= ϕ ‘can end’ at

∠∠∠ some av |= εd or

∠∠∠ av |= �αq (then α 6= a). (precise definition uses evaluation DAGs)

∠∠∠ Intuition: Processing of the input word ends immediately!

…but input is still accepted!

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 15 / 24

Equivalence (Explicit-Dual to Positive)

Proposition (Explicit-Dual to Positive)

For every explicit-dual RANA A of degree k and with n orbits, there is a positive

RANA A+ that accepts the same literal language, has degree as 2k + 1, and at

most n · (k + 2) · (2k + 1)2k+1 + 1 orbits.

∠∠∠ Problem: The disjunction
∨

σ 6=α ♦σ> is infinite!

Definition (Escape Letters)

Given a bar string w ∈ A?
and a formula ϕ ∈ Bd(1+A×Q+[A]Q), a free name

a ∈ FN(w) is an escape letter for w at ϕ if the satisfaction w |= ϕ ‘can end’ at

∠∠∠ some av |= εd or

∠∠∠ av |= �αq (then α 6= a). (precise definition uses evaluation DAGs)

∠∠∠ Intuition: Processing of the input word ends immediately!

…but input is still accepted!

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 15 / 24

Equivalence (Explicit-Dual to Positive)

Proposition (Explicit-Dual to Positive)

For every explicit-dual RANA A of degree k and with n orbits, there is a positive

RANA A+ that accepts the same literal language, has degree as 2k + 1, and at

most n · (k + 2) · (2k + 1)2k+1 + 1 orbits.

∠∠∠ Problem: The disjunction
∨

σ 6=α ♦σ> is infinite!

Definition (Escape Letters)

Given a bar string w ∈ A?
and a formula ϕ ∈ Bd(1+A×Q+[A]Q), a free name

a ∈ FN(w) is an escape letter for w at ϕ if the satisfaction w |= ϕ ‘can end’ at

∠∠∠ some av |= εd or

∠∠∠ av |= �αq (then α 6= a). (precise definition uses evaluation DAGs)

∠∠∠ Intuition: Processing of the input word ends immediately!

…but input is still accepted!

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 15 / 24

Equivalence (Explicit-Dual to Positive)

Proposition (Explicit-Dual to Positive)

For every explicit-dual RANA A of degree k and with n orbits, there is a positive

RANA A+ that accepts the same literal language, has degree as 2k + 1, and at

most n · (k + 2) · (2k + 1)2k+1 + 1 orbits.

∠∠∠ Problem: The disjunction
∨

σ 6=α ♦σ> is infinite!

∠∠∠ Fix this, by restricting the disjunction to escape letters.

(bound names occur only once by use of abstraction sets)

∠∠∠ Note: The set of escape letters for w ∈ A?
at ϕ is always contained in

supp(ϕ) ∪ {a} for some a ∈ A!
∠∠∠ Thus, A+ has pairs (q, S) with q ∈ Q and S ⊆f A as states, where S is

the current set of escape letters. (|S | 6 k + 1)

∠∠∠ We change transition formulae accordingly and verify the equivalence

of languages by induction.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 16 / 24

Equivalence (Explicit-Dual to Positive)

Proposition (Explicit-Dual to Positive)

For every explicit-dual RANA A of degree k and with n orbits, there is a positive

RANA A+ that accepts the same literal language, has degree as 2k + 1, and at

most n · (k + 2) · (2k + 1)2k+1 + 1 orbits.

∠∠∠ Problem: The disjunction
∨

σ 6=α ♦σ> is infinite!

∠∠∠ Fix this, by restricting the disjunction to escape letters.

(bound names occur only once by use of abstraction sets)

∠∠∠ Note: The set of escape letters for w ∈ A?
at ϕ is always contained in

supp(ϕ) ∪ {a} for some a ∈ A!
∠∠∠ Thus, A+ has pairs (q, S) with q ∈ Q and S ⊆f A as states, where S is

the current set of escape letters. (|S | 6 k + 1)

∠∠∠ We change transition formulae accordingly and verify the equivalence

of languages by induction.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 16 / 24

Equivalence (Explicit-Dual to Positive)

Proposition (Explicit-Dual to Positive)

For every explicit-dual RANA A of degree k and with n orbits, there is a positive

RANA A+ that accepts the same literal language, has degree as 2k + 1, and at

most n · (k + 2) · (2k + 1)2k+1 + 1 orbits.

∠∠∠ Problem: The disjunction
∨

σ 6=α ♦σ> is infinite!

∠∠∠ Fix this, by restricting the disjunction to escape letters.

(bound names occur only once by use of abstraction sets)

∠∠∠ Note: The set of escape letters for w ∈ A?
at ϕ is always contained in

supp(ϕ) ∪ {a} for some a ∈ A!

∠∠∠ Thus, A+ has pairs (q, S) with q ∈ Q and S ⊆f A as states, where S is

the current set of escape letters. (|S | 6 k + 1)

∠∠∠ We change transition formulae accordingly and verify the equivalence

of languages by induction.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 16 / 24

Equivalence (Explicit-Dual to Positive)

Proposition (Explicit-Dual to Positive)

For every explicit-dual RANA A of degree k and with n orbits, there is a positive

RANA A+ that accepts the same literal language, has degree as 2k + 1, and at

most n · (k + 2) · (2k + 1)2k+1 + 1 orbits.

∠∠∠ Problem: The disjunction
∨

σ 6=α ♦σ> is infinite!

∠∠∠ Fix this, by restricting the disjunction to escape letters.

(bound names occur only once by use of abstraction sets)

∠∠∠ Note: The set of escape letters for w ∈ A?
at ϕ is always contained in

supp(ϕ) ∪ {a} for some a ∈ A!
∠∠∠ Thus, A+ has pairs (q, S) with q ∈ Q and S ⊆f A as states, where S is

the current set of escape letters. (|S | 6 k + 1)

∠∠∠ We change transition formulae accordingly and verify the equivalence

of languages by induction.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 16 / 24

Equivalence (Explicit-Dual to Positive)

Proposition (Explicit-Dual to Positive)

For every explicit-dual RANA A of degree k and with n orbits, there is a positive

RANA A+ that accepts the same literal language, has degree as 2k + 1, and at

most n · (k + 2) · (2k + 1)2k+1 + 1 orbits.

∠∠∠ Problem: The disjunction
∨

σ 6=α ♦σ> is infinite!

∠∠∠ Fix this, by restricting the disjunction to escape letters.

(bound names occur only once by use of abstraction sets)

∠∠∠ Note: The set of escape letters for w ∈ A?
at ϕ is always contained in

supp(ϕ) ∪ {a} for some a ∈ A!
∠∠∠ Thus, A+ has pairs (q, S) with q ∈ Q and S ⊆f A as states, where S is

the current set of escape letters. (|S | 6 k + 1)

∠∠∠ We change transition formulae accordingly and verify the equivalence

of languages by induction.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 16 / 24

Results II: Equivalence to Bar-µTL

Bar-µTL and RANAs

∠∠∠ Transition formulae of RANAs look like modal formulae (especially with

our notation for atoms).

∠∠∠ Fix a countably infinite set Var of fixed-point variables.

Definition (Bar Formulae) Hausmann, Milius, Schröder ’21

Bar formulae of Bar-µTL are defined by the grammar

ϕ,ψ ::= ε | ¬ε |ϕ ∨ ψ |ϕ ∧ ψ | ♥σϕ |X |µX .ϕ . (♥ ∈ {♦,�}, σ ∈ A,X ∈ Var)

Additionally, > := ε ∨ ¬ε and ⊥ := ε ∧ ¬ε.

∠∠∠ The semantics of bar formulae is defined like the semantics for

transition formulae.

Theorem (Equivalence)

For every bar formula ϕ, there is an explicit-dual RANA Aϕ accepting the literal

language of ϕ: L0(A) = {w ∈ bs(∅) : w |= ϕ}.

 makes use of the Fisher–Ladner closure of ϕ

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results II: Equivalence to Bar-µTL) 17 / 24

Bar-µTL and RANAs

∠∠∠ Transition formulae of RANAs look like modal formulae (especially with

our notation for atoms).

∠∠∠ Fix a countably infinite set Var of fixed-point variables.

Definition (Bar Formulae) Hausmann, Milius, Schröder ’21

Bar formulae of Bar-µTL are defined by the grammar

ϕ,ψ ::= ε | ¬ε |ϕ ∨ ψ |ϕ ∧ ψ | ♥σϕ |X |µX .ϕ . (♥ ∈ {♦,�}, σ ∈ A,X ∈ Var)

Additionally, > := ε ∨ ¬ε and ⊥ := ε ∧ ¬ε.

∠∠∠ The semantics of bar formulae is defined like the semantics for

transition formulae.

Theorem (Equivalence)

For every bar formula ϕ, there is an explicit-dual RANA Aϕ accepting the literal

language of ϕ: L0(A) = {w ∈ bs(∅) : w |= ϕ}.

 makes use of the Fisher–Ladner closure of ϕ

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results II: Equivalence to Bar-µTL) 17 / 24

Bar-µTL and RANAs

∠∠∠ Transition formulae of RANAs look like modal formulae (especially with

our notation for atoms).

∠∠∠ Fix a countably infinite set Var of fixed-point variables.

Definition (Bar Formulae) Hausmann, Milius, Schröder ’21

Bar formulae of Bar-µTL are defined by the grammar

ϕ,ψ ::= ε | ¬ε |ϕ ∨ ψ |ϕ ∧ ψ | ♥σϕ |X |µX .ϕ . (♥ ∈ {♦,�}, σ ∈ A,X ∈ Var)

Additionally, > := ε ∨ ¬ε and ⊥ := ε ∧ ¬ε.

∠∠∠ The semantics of bar formulae is defined like the semantics for

transition formulae.

Theorem (Equivalence)

For every bar formula ϕ, there is an explicit-dual RANA Aϕ accepting the literal

language of ϕ: L0(A) = {w ∈ bs(∅) : w |= ϕ}.

 makes use of the Fisher–Ladner closure of ϕ

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results II: Equivalence to Bar-µTL) 17 / 24

Bar-µTL and RANAs

∠∠∠ Transition formulae of RANAs look like modal formulae (especially with

our notation for atoms).

∠∠∠ Fix a countably infinite set Var of fixed-point variables.

Definition (Bar Formulae) Hausmann, Milius, Schröder ’21

Bar formulae of Bar-µTL are defined by the grammar

ϕ,ψ ::= ε | ¬ε |ϕ ∨ ψ |ϕ ∧ ψ | ♥σϕ |X |µX .ϕ . (♥ ∈ {♦,�}, σ ∈ A,X ∈ Var)

Additionally, > := ε ∨ ¬ε and ⊥ := ε ∧ ¬ε.

∠∠∠ The semantics of bar formulae is defined like the semantics for

transition formulae.

Theorem (Equivalence)

For every bar formula ϕ, there is an explicit-dual RANA Aϕ accepting the literal

language of ϕ: L0(A) = {w ∈ bs(∅) : w |= ϕ}.

 makes use of the Fisher–Ladner closure of ϕ

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results II: Equivalence to Bar-µTL) 17 / 24

Results III: De-Alternation

Restricted Semantics (Name-Dropping Modification)

Motivation

We have seen earlier that renaming is necessary for negation to be α-invariant.
This non-acceptance of some α-equivalent bar strings w/o renaming was previ-

ously (ERNNAs/RNNAs) ameliorated by the use of name-dropping.

Theorem (Name-Dropping for RANAs)

For every positive RANA A with degree k and n orbits, there is a positive RANA

And (the name-dropping modification) accepting the same literal language, with

degree k and at most n ·2k orbits for which the restricted and ordinary semantics

coincide.

∠∠∠ Thus, we can restrict ourself to the restricted semantics whenever

necessary.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results III: De-Alternation) 18 / 24

Restricted Semantics (Name-Dropping Modification)

Definition (Restricted Semantics)

Let A = (Q, δ, q0) be a positive RANA. We define the restricted satisfaction

w |=r ϕ just as |= for ε, ♦a-modalities (a ∈ A) and

w |=r ♦ aq :⇐⇒ ∃v ∈ A?
,b ∈ A,q ′ ∈ Q.w = bv , 〈a〉q = 〈b〉q ′

and v |=r δ(q ′).

Theorem (Name-Dropping for RANAs)

For every positive RANA A with degree k and n orbits, there is a positive RANA

And (the name-dropping modification) accepting the same literal language, with

degree k and at most n ·2k orbits for which the restricted and ordinary semantics

coincide.

∠∠∠ Thus, we can restrict ourself to the restricted semantics whenever

necessary.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results III: De-Alternation) 18 / 24

Restricted Semantics (Name-Dropping Modification)

Definition (Restricted Semantics)

Let A = (Q, δ, q0) be a positive RANA. We define the restricted satisfaction

w |=r ϕ just as |= for ε, ♦a-modalities (a ∈ A) and

w |=r ♦ aq :⇐⇒ ∃v ∈ A?
,b ∈ A,q ′ ∈ Q.w = bv , 〈a〉q = 〈b〉q ′

and v |=r δ(q ′).

Theorem (Name-Dropping for RANAs)

For every positive RANA A with degree k and n orbits, there is a positive RANA

And (the name-dropping modification) accepting the same literal language, with

degree k and at most n ·2k orbits for which the restricted and ordinary semantics

coincide.

∠∠∠ Thus, we can restrict ourself to the restricted semantics whenever

necessary.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results III: De-Alternation) 18 / 24

Restricted Semantics (Name-Dropping Modification)

Definition (Restricted Semantics)

Let A = (Q, δ, q0) be a positive RANA. We define the restricted satisfaction

w |=r ϕ just as |= for ε, ♦a-modalities (a ∈ A) and

w |=r ♦ aq :⇐⇒ ∃v ∈ A?
,b ∈ A,q ′ ∈ Q.w = bv , 〈a〉q = 〈b〉q ′

and v |=r δ(q ′).

Theorem (Name-Dropping for RANAs)

For every positive RANA A with degree k and n orbits, there is a positive RANA

And (the name-dropping modification) accepting the same literal language, with

degree k and at most n ·2k orbits for which the restricted and ordinary semantics

coincide.

∠∠∠ Thus, we can restrict ourself to the restricted semantics whenever

necessary.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results III: De-Alternation) 18 / 24

De-Alternation

Theorem (De-Alternation)

Every RANA with n orbits and degree k can be de-alternated into an ERNNA

(RNNA with one single >-state).

∠∠∠ Classical Idea: Use a power-set construction where a word is accepted

by S ⊆ Q iff all q ∈ S accept the word: transitions built accordingly.

∠∠∠ Problem: The power-set construction yields a non orbit-finite set!

 Restrict the number of states tracked simultaneously:

∠∠ Suppose q 6= q ′ are in the same orbit of Q, then:

(A) If supp(q) 6= supp(q ′) and A := supp(q) ∩ supp(q ′):

Either q and q ′|A or q|A and q ′ accept w iff both q and q ′ accept w .

(B) If supp(q) = supp(q ′), both q and q ′ must be checked.

∠∠∠ We restrict the power-set construction to sets of atmost size n · k !.
∠∠∠ The resulting ERNNA has a degree of at most n · k · k ! and a number of

orbits that is at most singly exponential in n and doubly exponential in k .

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results III: De-Alternation) 19 / 24

De-Alternation

Theorem (De-Alternation)

Every RANA with n orbits and degree k can be de-alternated into an ERNNA

(RNNA with one single >-state).

∠∠∠ Classical Idea: Use a power-set construction where a word is accepted

by S ⊆ Q iff all q ∈ S accept the word: transitions built accordingly.

∠∠∠ Problem: The power-set construction yields a non orbit-finite set!

 Restrict the number of states tracked simultaneously:

∠∠ Suppose q 6= q ′ are in the same orbit of Q, then:

(A) If supp(q) 6= supp(q ′) and A := supp(q) ∩ supp(q ′):

Either q and q ′|A or q|A and q ′ accept w iff both q and q ′ accept w .

(B) If supp(q) = supp(q ′), both q and q ′ must be checked.

∠∠∠ We restrict the power-set construction to sets of atmost size n · k !.
∠∠∠ The resulting ERNNA has a degree of at most n · k · k ! and a number of

orbits that is at most singly exponential in n and doubly exponential in k .

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results III: De-Alternation) 19 / 24

De-Alternation

Theorem (De-Alternation)

Every RANA with n orbits and degree k can be de-alternated into an ERNNA

(RNNA with one single >-state).

∠∠∠ Classical Idea: Use a power-set construction where a word is accepted

by S ⊆ Q iff all q ∈ S accept the word: transitions built accordingly.

∠∠∠ Problem: The power-set construction yields a non orbit-finite set!

 Restrict the number of states tracked simultaneously:

∠∠ Suppose q 6= q ′ are in the same orbit of Q, then:

(A) If supp(q) 6= supp(q ′) and A := supp(q) ∩ supp(q ′):

Either q and q ′|A or q|A and q ′ accept w iff both q and q ′ accept w .

(B) If supp(q) = supp(q ′), both q and q ′ must be checked.

∠∠∠ We restrict the power-set construction to sets of atmost size n · k !.
∠∠∠ The resulting ERNNA has a degree of at most n · k · k ! and a number of

orbits that is at most singly exponential in n and doubly exponential in k .

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results III: De-Alternation) 19 / 24

De-Alternation

Theorem (De-Alternation)

Every RANA with n orbits and degree k can be de-alternated into an ERNNA

(RNNA with one single >-state).

∠∠∠ Classical Idea: Use a power-set construction where a word is accepted

by S ⊆ Q iff all q ∈ S accept the word: transitions built accordingly.

∠∠∠ Problem: The power-set construction yields a non orbit-finite set!

 Restrict the number of states tracked simultaneously:

∠∠ Suppose q 6= q ′ are in the same orbit of Q, then:

(A) If supp(q) 6= supp(q ′) and A := supp(q) ∩ supp(q ′):

Either q and q ′|A or q|A and q ′ accept w iff both q and q ′ accept w .

(B) If supp(q) = supp(q ′), both q and q ′ must be checked.

∠∠∠ We restrict the power-set construction to sets of atmost size n · k !.
∠∠∠ The resulting ERNNA has a degree of at most n · k · k ! and a number of

orbits that is at most singly exponential in n and doubly exponential in k .

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results III: De-Alternation) 19 / 24

De-Alternation

Theorem (De-Alternation)

Every RANA with n orbits and degree k can be de-alternated into an ERNNA

(RNNA with one single >-state).

∠∠∠ Classical Idea: Use a power-set construction where a word is accepted

by S ⊆ Q iff all q ∈ S accept the word: transitions built accordingly.

∠∠∠ Problem: The power-set construction yields a non orbit-finite set!

 Restrict the number of states tracked simultaneously:

∠∠ Suppose q 6= q ′ are in the same orbit of Q, then:

(A) If supp(q) 6= supp(q ′) and A := supp(q) ∩ supp(q ′):

Either q and q ′|A or q|A and q ′ accept w iff both q and q ′ accept w .

(B) If supp(q) = supp(q ′), both q and q ′ must be checked.

∠∠∠ We restrict the power-set construction to sets of atmost size n · k !.
∠∠∠ The resulting ERNNA has a degree of at most n · k · k ! and a number of

orbits that is at most singly exponential in n and doubly exponential in k .

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results III: De-Alternation) 19 / 24

De-Alternation

Theorem (De-Alternation)

Every RANA with n orbits and degree k can be de-alternated into an ERNNA

(RNNA with one single >-state).

∠∠∠ Classical Idea: Use a power-set construction where a word is accepted

by S ⊆ Q iff all q ∈ S accept the word: transitions built accordingly.

∠∠∠ Problem: The power-set construction yields a non orbit-finite set!

 Restrict the number of states tracked simultaneously:

∠∠ Suppose q 6= q ′ are in the same orbit of Q, then:

(A) If supp(q) 6= supp(q ′) and A := supp(q) ∩ supp(q ′):

Either q and q ′|A or q|A and q ′ accept w iff both q and q ′ accept w .

(B) If supp(q) = supp(q ′), both q and q ′ must be checked.

∠∠∠ We restrict the power-set construction to sets of atmost size n · k !.
∠∠∠ The resulting ERNNA has a degree of at most n · k · k ! and a number of

orbits that is at most singly exponential in n and doubly exponential in k .

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results III: De-Alternation) 19 / 24

De-Alternation

Theorem (De-Alternation)

Every RANA with n orbits and degree k can be de-alternated into an ERNNA

(RNNA with one single >-state).

∠∠∠ Classical Idea: Use a power-set construction where a word is accepted

by S ⊆ Q iff all q ∈ S accept the word: transitions built accordingly.

∠∠∠ Problem: The power-set construction yields a non orbit-finite set!

 Restrict the number of states tracked simultaneously:

∠∠ Suppose q 6= q ′ are in the same orbit of Q, then:

(A) If supp(q) 6= supp(q ′) and A := supp(q) ∩ supp(q ′):

Either q and q ′|A or q|A and q ′ accept w iff both q and q ′ accept w .

(B) If supp(q) = supp(q ′), both q and q ′ must be checked.

∠∠∠ We restrict the power-set construction to sets of atmost size n · k !.

∠∠∠ The resulting ERNNA has a degree of at most n · k · k ! and a number of

orbits that is at most singly exponential in n and doubly exponential in k .

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results III: De-Alternation) 19 / 24

De-Alternation

Theorem (De-Alternation)

Every RANA with n orbits and degree k can be de-alternated into an ERNNA

(RNNA with one single >-state).

∠∠∠ Classical Idea: Use a power-set construction where a word is accepted

by S ⊆ Q iff all q ∈ S accept the word: transitions built accordingly.

∠∠∠ Problem: The power-set construction yields a non orbit-finite set!

 Restrict the number of states tracked simultaneously:

∠∠ Suppose q 6= q ′ are in the same orbit of Q, then:

(A) If supp(q) 6= supp(q ′) and A := supp(q) ∩ supp(q ′):

Either q and q ′|A or q|A and q ′ accept w iff both q and q ′ accept w .

(B) If supp(q) = supp(q ′), both q and q ′ must be checked.

∠∠∠ We restrict the power-set construction to sets of atmost size n · k !.
∠∠∠ The resulting ERNNA has a degree of at most n · k · k ! and a number of

orbits that is at most singly exponential in n and doubly exponential in k .

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results III: De-Alternation) 19 / 24

De-Alternation

Theorem (De-Alternation)

Every RANA with n orbits and degree k can be de-alternated into an ERNNA

(RNNA with one single >-state).

Under the local freshness semantics, RANAs can be completely de-alternated

into RNNAs.

∠∠∠ A full de-alternation to RNNAs (w/o the >-state) is impossible.

(Example at blackboard)

∠∠∠ Similarly, the naïve power-set construction is impossible.

(Example at blackboard)

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results III: De-Alternation) 20 / 24

Results IV: Finitisation & Model-Checking

Finite Representability

∠∠∠ To simplify model checking, we desire a correspondence between

classical AFAs and our RANAs:

Theorem (Equivalence)

Every RANA is bar-language-equivalent to a bar AFA, that is a classical alternating

finite automaton over a finite alphabet A0 having a certain semantics.

∠∠∠ If the RANA is of degree k with n orbits, the bar AFA has an alphabet of

size 2k + 1 and at most n · k ! = n · 2k log(k) states.

∠∠∠ The semantics looks at bar strings and split them up into a pre-word and

a suffix, where the pre-word is ‘read up to α-equivalence’ by the
Bar-AFA. If it results in just >’s, any suffix may be added.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 21 / 24

Finite Representability

∠∠∠ To simplify model checking, we desire a correspondence between

classical AFAs and our RANAs:

Theorem (Equivalence)

Every RANA is bar-language-equivalent to a bar AFA, that is a classical alternating

finite automaton over a finite alphabet A0 having a certain semantics.

∠∠∠ If the RANA is of degree k with n orbits, the bar AFA has an alphabet of

size 2k + 1 and at most n · k ! = n · 2k log(k) states.

∠∠∠ The semantics looks at bar strings and split them up into a pre-word and

a suffix, where the pre-word is ‘read up to α-equivalence’ by the
Bar-AFA. If it results in just >’s, any suffix may be added.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 21 / 24

Finite Representability

∠∠∠ To simplify model checking, we desire a correspondence between

classical AFAs and our RANAs:

Theorem (Equivalence)

Every RANA is bar-language-equivalent to a bar AFA, that is a classical alternating

finite automaton over a finite alphabet A0 having a certain semantics.

∠∠∠ If the RANA is of degree k with n orbits, the bar AFA has an alphabet of

size 2k + 1 and at most n · k ! = n · 2k log(k) states.

∠∠∠ The semantics looks at bar strings and split them up into a pre-word and

a suffix, where the pre-word is ‘read up to α-equivalence’ by the
Bar-AFA. If it results in just >’s, any suffix may be added.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 21 / 24

Finite Representability

∠∠∠ To simplify model checking, we desire a correspondence between

classical AFAs and our RANAs:

Theorem (Equivalence)

Every RANA is bar-language-equivalent to a bar AFA, that is a classical alternating

finite automaton over a finite alphabet A0 having a certain semantics.

∠∠∠ If the RANA is of degree k with n orbits, the bar AFA has an alphabet of

size 2k + 1 and at most n · k ! = n · 2k log(k) states.

∠∠∠ The semantics looks at bar strings and split them up into a pre-word and

a suffix, where the pre-word is ‘read up to α-equivalence’ by the
Bar-AFA. If it results in just >’s, any suffix may be added.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 21 / 24

Finite Representability (Emptiness-Equivalence)

Problem

The previously mentioned equivalence will not help us directly, since standard

algorithms for AFAs use the classical finite semantics.

∠∠∠ For a bar AFA, let L0(A) be the literal language under our semantics and

LAFA(A) be the literal language under the classical finite semantics:

Theorem (Emptiness-Equivalence)

For every bar AFA, we have the following equivalence:

L0(A) = ∅ iff LAFA(A) ∩ bs(∅)︸ ︷︷ ︸
is recognizable by an AFA

= ∅

∠∠∠ If A is a bar AFA with alphabet size k and n states, the AFA accepting

LAFA(A) ∩ bs(∅) has alphabet size k and at most n + 2
k/2 + 1 states.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 22 / 24

Finite Representability (Emptiness-Equivalence)

Problem

The previously mentioned equivalence will not help us directly, since standard

algorithms for AFAs use the classical finite semantics.

∠∠∠ For a bar AFA, let L0(A) be the literal language under our semantics and

LAFA(A) be the literal language under the classical finite semantics:

Theorem (Emptiness-Equivalence)

For every bar AFA, we have the following equivalence:

L0(A) = ∅ iff LAFA(A) ∩ bs(∅)︸ ︷︷ ︸
is recognizable by an AFA

= ∅

∠∠∠ If A is a bar AFA with alphabet size k and n states, the AFA accepting

LAFA(A) ∩ bs(∅) has alphabet size k and at most n + 2
k/2 + 1 states.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 22 / 24

Finite Representability (Emptiness-Equivalence)

Problem

The previously mentioned equivalence will not help us directly, since standard

algorithms for AFAs use the classical finite semantics.

∠∠∠ For a bar AFA, let L0(A) be the literal language under our semantics and

LAFA(A) be the literal language under the classical finite semantics:

Theorem (Emptiness-Equivalence)

For every bar AFA, we have the following equivalence:

L0(A) = ∅ iff LAFA(A) ∩ bs(∅)︸ ︷︷ ︸
is recognizable by an AFA

= ∅

∠∠∠ If A is a bar AFA with alphabet size k and n states, the AFA accepting

LAFA(A) ∩ bs(∅) has alphabet size k and at most n + 2
k/2 + 1 states.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 22 / 24

Finite Representability (Emptiness-Equivalence)

Problem

The previously mentioned equivalence will not help us directly, since standard

algorithms for AFAs use the classical finite semantics.

∠∠∠ For a bar AFA, let L0(A) be the literal language under our semantics and

LAFA(A) be the literal language under the classical finite semantics:

Theorem (Emptiness-Equivalence)

For every bar AFA, we have the following equivalence:

L0(A) = ∅ iff LAFA(A) ∩ bs(∅)︸ ︷︷ ︸
is recognizable by an AFA

= ∅

∠∠∠ If A is a bar AFA with alphabet size k and n states, the AFA accepting

LAFA(A) ∩ bs(∅) has alphabet size k and at most n + 2
k/2 + 1 states.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 22 / 24

Decidability Problems

Remark (Complexities)

Given any RANA of degree k and with n orbits, its equivalent name-dropping

modification has at most (2 · n · (k +2)+1) · 2(2k+1)·log(4k+2) orbits and a degree

of 2k + 1.

Its de-alternation has a degree that is linear in n and exponential in k as well as a

number of orbits that is exponential in n and doubly exponential in k .

Theorem (Inclusion-Checking under Local Freshness)

The inclusion problem for RANAs under local freshness is decidable in 2EXPSPACE:

 space exponential in both the number of orbits and the degree of both RANAs.

∠∠∠ For local freshness, we need to de-alternate completely!

(Example at blackboard)

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 23 / 24

Decidability Problems

Remark (Complexities)

Given any RANA of degree k and with n orbits, its equivalent name-dropping

modification has at most (2 · n · (k +2)+1) · 2(2k+1)·log(4k+2) orbits and a degree

of 2k + 1.

Its de-alternation has a degree that is linear in n and exponential in k as well as a

number of orbits that is exponential in n and doubly exponential in k .

Theorem (Decidability Problems)

Non-Emptiness for (name-dropping) RANAs is decidable in EXPSPACE:

 space linear in the number of orbits and exponential in the degree of the RANA

Universality for RANAs is decidable in EXPSPACE:

 space linear in the number of orbits and exponential in the degree of the RANA.

Inclusion-Checking for RANAs is decidable in EXPSPACE:

 space linear in the number of both orbits and exponential in the maximum degree of both RANAs.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 23 / 24

Decidability Problems

Remark (Complexities)

Given any RANA of degree k and with n orbits, its equivalent name-dropping

modification has at most (2 · n · (k +2)+1) · 2(2k+1)·log(4k+2) orbits and a degree

of 2k + 1.

Its de-alternation has a degree that is linear in n and exponential in k as well as a

number of orbits that is exponential in n and doubly exponential in k .

Theorem (Decidability Problems)

Non-Emptiness for (name-dropping) RANAs is decidable in EXPSPACE:

 space linear in the number of orbits and exponential in the degree of the RANA

Universality for RANAs is decidable in EXPSPACE:

 space linear in the number of orbits and exponential in the degree of the RANA.

Inclusion-Checking for RANAs is decidable in EXPSPACE:

 space linear in the number of both orbits and exponential in the maximum degree of both RANAs.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 23 / 24

Decidability Problems

Remark (Complexities)

Given any RANA of degree k and with n orbits, its equivalent name-dropping

modification has at most (2 · n · (k +2)+1) · 2(2k+1)·log(4k+2) orbits and a degree

of 2k + 1.

Its de-alternation has a degree that is linear in n and exponential in k as well as a

number of orbits that is exponential in n and doubly exponential in k .

Theorem (Decidability Problems)

Non-Emptiness for (name-dropping) RANAs is decidable in EXPSPACE:

 space linear in the number of orbits and exponential in the degree of the RANA

Universality for RANAs is decidable in EXPSPACE:

 space linear in the number of orbits and exponential in the degree of the RANA.

Inclusion-Checking for RANAs is decidable in EXPSPACE:

 space linear in the number of both orbits and exponential in the maximum degree of both RANAs.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 23 / 24

Decidability Problems

Remark (Complexities)

Given any RANA of degree k and with n orbits, its equivalent name-dropping

modification has at most (2 · n · (k +2)+1) · 2(2k+1)·log(4k+2) orbits and a degree

of 2k + 1.

Its de-alternation has a degree that is linear in n and exponential in k as well as a

number of orbits that is exponential in n and doubly exponential in k .

Theorem (Inclusion-Checking under Local Freshness)

The inclusion problem for RANAs under local freshness is decidable in 2EXPSPACE:

 space exponential in both the number of orbits and the degree of both RANAs.

∠∠∠ For local freshness, we need to de-alternate completely!

(Example at blackboard)

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 23 / 24

Conclusion

Conclusion & Future Work

∠∠∠ We looked at a variant of alternating automaton for data languages with

inherent name binding, and found many nice properties:

Alternating Automaton

RANA

De-Alternation

RNNAs

Finitisation

Bar-AFAs

Decidable

Inclusion-Problem

Decidable

Universality-Problem

Decidable

Emptiness-Problem

Logic

Bar-µTL

∠∠∠ There are still open problems left:

Coalgebraic Understanding

Residuality/Learning RANAs

Extension to ω-Words

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Conclusion) 24 / 24

Questions?

References (1)

Gabbay, Murdoch J., Andrew M. Pitts. ‘A new approach to abstract

syntax involving binders’. Proc. 14th Annual IEEE Symposium on Logic in

Computer Science (LICS 1999). IEEE Computer Society, 1999, pp. 214–224.

Hausmann, Daniel, Stefan Milius, Lutz Schröder. ‘A Linear-Time

Nominal µ-Calculus with Name Allocation’. 46th International

Symposium on Mathematical Foundations of Computer Science (MFCS 2021).

Ed. by Filippo Bonchi, Simon J. Puglisi. Vol. 202. LIPIcs. Dagstuhl, Germany:

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 58:1–58:18. ISBN:

978-3-95977-201-3. DOI: 10.4230/LIPIcs.MFCS.2021.58. URL:
https://drops.dagstuhl.de/opus/volltexte/2021/14498.
Schröder, Lutz, Dexter Kozen, Stefan Milius, Thorsten Wißmann.

‘Nominal Automata with Name Binding’. Proc. 20th International

Conference on Foundations of Software Science and Computation Structures,

(FOSSACS 2017). Vol. 10203. Lect. Notes Comput. Sci. 2017, pp. 124–142.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Appendix) ∞

https://doi.org/10.4230/LIPIcs.MFCS.2021.58
https://drops.dagstuhl.de/opus/volltexte/2021/14498

	Motivation
	Alternation
	Results I: Equivalence of Models
	Results II: Equivalence to Bar-TL
	Results III: De-Alternation
	Results IV: Finitisation & Model-Checking
	Conclusion
	Appendix
	References

