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Motivation

∠∠∠ Consider sequences of user logins within
a given time period on a server.

∠∠∠ Behaviour patterns can be modelled as

data languages over A:

∠∠∠ Now: Model these patterns with explicit ‘name binding’ (bar languages)

Forming finite data words a1 · · · an ∈ A? A: admissible user IDs for
a server ( infinite set )

L1 =
{
a1 · · · an ∈ A?

: ai = aj for some i 6= j
}

L2 =

{
a1 · · · an ∈ A?

:

(
a1 = an−1 ∧ a2 = an ∧

∀2 6 i < n − 1. a1 6= ai ∧ a2 6= ai+1

)}
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‘some user has logged in twice’

‘first pair of users is equal to last pair
with only different users in between’
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Motivation (Name Binding /Allocation for Automata)

∠∠∠ Introduce ‘variables’ to words/strings:

A := A ∪ { a : a ∈ A} ∼= A+A

∠∠∠ Examples:

a b a b a b a b a

6‘variable’
intros

≡α c b c d c d e d e

‘variable’
intros

∠∠∠ These ‘bar strings’, i.e. words with ‘variables’, result in different kinds of

languages:

∠∠ Data Languages ∠∠ Literal Languages ∠∠ Bar Languages

data values or ‘variable names’
introduces ‘variable’

with name a

n b n d n d a d a

h b h a h a a a a

a n

a h

b d

b a

(over A?) (over A
?
) (over A

?
/≡α)

Conversion via Global/Local Freshness

≈
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Nominal Sets (Talking about Infinite Data with Finite Means)

 Fix a (countably infinite) set A of ‘names’ Data Values.

Definition (Nominal Sets ) Gabbay, Pitts ’99

A nominal set is a set whose elements depend on a finite number of these names.

→ supp(x)

 We can change the names of an element using permutations π : A
'−→ A

which act upon these elements. ( Group Actions . : Perm(A)× X → X )

<book id="bk007">
<author lstname="Doe"

fstname="John"/>
<title value="Biggy"/>
<price cur="USD"

amount="12.95"/>
</book>

∠∠∠ ‘Freshness’: A 3 a#x iff a /∈ supp(x).

∠∠∠ Proper ‘finiteness’ is now replaced

by finiteness up to such permuta-

tions.  Orbit-Finiteness

∠∠∠ Nominal Sets and action-preser-

ving maps form a category Nom.
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Bound Data Values (Name Abstraction)

Definition (Abstraction ) Gabbay, Pitts ’99

Given a nominal set X , define the equivalence relation ≈α onA× X as follows:

(a, x) ≈α (b, y ) iff ∃c # (a, b, x , y ). (a c) . x = (b c) . y . (1)

With this, define the nominal set [A]X as the quotient (A× X )/ ≈α, and denote

the equivalence classes by 〈a〉x .

∠∠∠ [A]X extends to a endofunctor [A]− on Nom.

∠∠∠ This results in an ‘easier’ definition of α-equivalence:
Substitution is pushed back to the definition of the nominal set.

Definition (≡α on Bar Strings ) Schröder, Kozen, Milius, Wißmann ’17

≡α is the equivalence generated by w av ≡α w bu if 〈a〉v = 〈b〉u holds in [A]A
?
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Bar Languages (With corresponding Data Languages)

A := A ∪ { d : d ∈ A} ∼= A+A

∠∠∠ A name a is free in a bar string w ∈ A?
, if a occurs to the left of any

occurence of a.

∠∠∠ A bar string w ∈ A?
is clean if its bound letters a are mutually distinct

and distinct from all its free names.

∠∠∠ Bar Languages (L ⊆ A?
/≡α) may also be understood as data

languages via two conversions:

Global Freshness: GF(L) = {ub(w ) : w clean, w ≡α w ′ ∈ L}

Local Freshness: LF(L) = {ub(w ) : w ≡α w ′ ∈ L}ub(w) removes all
‘|’s in w by replacing
all a in w with a.
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Motivation

∠∠∠ Behaviour patterns can be modelled as

data languages over A (or as bar lan-

guages): A: admissible user IDs for
a server ( infinite set )

LF(L1) =
{
a1 · · · an ∈ A?

: ai = aj for some i 6= j
}

L1 = [( b)∗ a( b)∗a( b)∗]α

LF(L2) =

{
a1 · · · an ∈ A?

:

(
a1 = an−1 ∧ a2 = an ∧

∀2 6 i < n − 1. a1 6= ai ∧ a2 6= ai+1

)}

L2 = [ a b( c)∗ab]α

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 6 / 24



Motivation

∠∠∠ Behaviour patterns can be modelled as

data languages over A (or as bar lan-

guages): A: admissible user IDs for
a server ( infinite set )

LF(L1) =
{
a1 · · · an ∈ A?

: ai = aj for some i 6= j
}

L1 = [( b)∗ a( b)∗a( b)∗]α

LF(L2) =

{
a1 · · · an ∈ A?

:

(
a1 = an−1 ∧ a2 = an ∧

∀2 6 i < n − 1. a1 6= ai ∧ a2 6= ai+1

)}

L2 = [ a b( c)∗ab]α

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 6 / 24



Motivation

∠∠∠ Behaviour patterns can be modelled as

data languages over A (or as bar lan-

guages): A: admissible user IDs for
a server ( infinite set )

LF(L1) =
{
a1 · · · an ∈ A?

: ai = aj for some i 6= j
}

L1 = [( b)∗ a( b)∗a( b)∗]α

LF(L2) =

{
a1 · · · an ∈ A?

:

(
a1 = an−1 ∧ a2 = an ∧

∀2 6 i < n − 1. a1 6= ai ∧ a2 6= ai+1

)}

L2 = [ a b( c)∗ab]α

‘some user has logged in twice’

‘first pair of users is equal to last pair
with only different users in between’

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Motivation) 6 / 24



Alternation



RANA (Alternating Nominal Automata w/Name Binding)

Motivation

Model checking with fixed-point/temporal logics over (in-)finite words usually

uses alternating automata.

∠∠∠ Goal: Introduce alternation using transition formulae.

Definition (Boolean Formulae )

Let X be a set of atoms. Then, Bn(X ) denotes the set of Boolean formulae over

X defined by the grammar

ϕ,ψ ::= > | ⊥ | x | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ. (x ∈ X )

Denote by B+(X ) the subset of positive Boolean formulae over X , i.e. formulae

that do not contain any negation.

∠∠∠ If X is a nominal set, then we regard Bn(X ) and B+(X ) also as nominal

sets with the obvious group action.
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RANA (Definition)

Definition (RANA )

A regular alternating nominal automaton (RANA) A = (Q, δ, q0) consists of:

∠∠∠ an orbit-finite set Q specifying states;

∠∠∠ an equivariant initial state q0 ∈ Q; and

∠∠∠ an equivariant transition function δ : Q → Bn(1 +A× Q + [A]Q).

Definition (Positive RANA )

A RANA is positive if the transition function corestricts to B+(1+A×Q + [A]Q).

An extended regular nondeterministic nominal automaton (ERNNA) is a positive

RANA in which non of the transition formulae uses a conjunction (∧).
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RANA (Semantics)

Definition (Semantics )

Define w |= ϕ for w ∈ A?
, and ϕ ∈ Bn(1 +A× Q + [A]Q) recursively by:

∠∠∠ ∨, ∧, ¬, >, and ⊥ have the conventional interpretation.

∠∠∠ The interpretation of atoms x ∈ A×Q+[A]Q is given by the following clauses:

w |= ε :⇐⇒ w = ε

w |= ♦aq :⇐⇒ ∃v ∈ A?
. w = av and v |= δ(q)

w |= ♦ aq :⇐⇒ ∃v , v ′ ∈ A?
, b, c ∈ A, q ′ ∈ Q. w = bv ≡α cv

′,

〈a〉q = 〈c〉q ′, and v
′ |= δ(q ′)

Define the accepted languages as follows:

∠∠∠ Literal Language: L0(A) :=
{
w ∈ A?

: w is closed and q0 accepts w
}
.

∠∠∠ Bar Language: Lα(A) := L0(A)/≡α.
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RANA (Small Remarks)

∠∠∠ Our choice for transitions functions is deliberate:

(δ : Q → Bn(1 +A× Q + [A]Q) instead of final states & δ : Q × A → Bn(Q))

∠∠ Encoding transition ‘letters’ into formulae makes proofs and

constructions easier later on. Additionally, there’d be multiple extra

conditions on δ.

∠∠ Encoding ‘finality’ into formulae makes transition formulae more

align to their logical counterpart Bar-µTL and our modalities match

more closely to their logical counterparts.

 Otherwise, diamonds would need to accept ε depending on finality.

∠∠∠ Why do we need a possibility of α-renaming bar strings for

‘bar-modalities’ ♦ a?

w |= ♦ aq :⇐⇒ ∃v , v ′ ∈ A?
, b, c ∈ A, q ′ ∈ Q. w = bv ≡α cv

′,

〈a〉q = 〈c〉q ′, and v
′ |= δ(q ′)

∠∠ Otherwise, negation is not α-invariant! (Example at blackboard)

∠∠ This would contradict the expected complementation procedure!
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Results I: Equivalence of Models



Equivalence of Models

We showed that negation does not matter for expresivity of RANAs, in

more detail:

Theorem (Equivalence )

Positive RANAs accept the same bar languages as ordinary RANAs do.

Hence, also the same languages under the local/global freshness semantics.
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Explicit-Dual RANAs

∠∠∠ To untangle the proof and for the later equivalence to Bar-µTL, we
introduce another variant of RANAs:

Definition (Dualizable Boolean Formulae )

Let X be a (nominal) set of atoms.

Put Bd(X ) := B+(X ∪ Xd) with Xd =
{
xd : x ∈ X

}
as a copy of X .

Definition (Explicit-Dual RANA )

An explicit-dual RANA A = (Q, δ, q0) is defined like a RANA but with an equivari-

ant transition function δ : Q → Bd(1 +A× Q + [A]Q).
We denote the copy (♦αq)

d
of atoms by �αq.

The additional atoms are interpreted as follows:

w |= εd :⇐⇒ w 6= ε

w |= �aq :⇐⇒ ∀v ∈ A?
. w = av =⇒ v |= δ(q)

w |= � aq :⇐⇒ ∀b ∈ A, v ∈ A?
.w = bv =⇒ w |= ♦ aq.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 12 / 24



Explicit-Dual RANAs

∠∠∠ To untangle the proof and for the later equivalence to Bar-µTL, we
introduce another variant of RANAs:

Definition (Dualizable Boolean Formulae )

Let X be a (nominal) set of atoms.

Put Bd(X ) := B+(X ∪ Xd) with Xd =
{
xd : x ∈ X

}
as a copy of X .

Definition (Explicit-Dual RANA )

An explicit-dual RANA A = (Q, δ, q0) is defined like a RANA but with an equivari-

ant transition function δ : Q → Bd(1 +A× Q + [A]Q).
We denote the copy (♦αq)

d
of atoms by �αq.

The additional atoms are interpreted as follows:

w |= εd :⇐⇒ w 6= ε

w |= �aq :⇐⇒ ∀v ∈ A?
. w = av =⇒ v |= δ(q)

w |= � aq :⇐⇒ ∀b ∈ A, v ∈ A?
.w = bv =⇒ w |= ♦ aq.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 12 / 24



Explicit-Dual RANAs

∠∠∠ To untangle the proof and for the later equivalence to Bar-µTL, we
introduce another variant of RANAs:

Definition (Dualizable Boolean Formulae )

Let X be a (nominal) set of atoms.

Put Bd(X ) := B+(X ∪ Xd) with Xd =
{
xd : x ∈ X

}
as a copy of X .

Definition (Explicit-Dual RANA )

An explicit-dual RANA A = (Q, δ, q0) is defined like a RANA but with an equivari-

ant transition function δ : Q → Bd(1 +A× Q + [A]Q).
We denote the copy (♦αq)

d
of atoms by �αq.

The additional atoms are interpreted as follows:

w |= εd :⇐⇒ w 6= ε

w |= �aq :⇐⇒ ∀v ∈ A?
. w = av =⇒ v |= δ(q)

w |= � aq :⇐⇒ ∀b ∈ A, v ∈ A?
.w = bv =⇒ w |= ♦ aq.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results I: Equivalence of Models) 12 / 24



Equivalence (Ordinary to Explicit-Dual)

Proposition (Ordinary to Explicit-Dual )

For every ordinary RANA A, there is an explicit-dual RANA Ad that accepts the

same literal language, has twice as many orbits and the same degree as A.

∠∠∠ The resulting RANA Ad has two states q,qn for each state q in A.

∠∠∠ q in Ad accepts the same literal language as in A:

∠∠ For transitions, only ‘negations’ change:
¬♦αq with α ∈ A becomes �αqn.

∠∠ The ‘negated epsilon’ (¬ε) is replaced by εd.

∠∠∠ qn in Ad accepts the complement of q. Herefore, we ‘negate’ the

transition formula and convert it as above.

∠∠∠ Acceptance is then shown easily by double induction (word length and

size of transition formulae in NNF).
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Equivalence (Explicit-Dual to Positive)

Proposition (Explicit-Dual to Positive )

For every explicit-dual RANA A of degree k and with n orbits, there is a positive

RANA A+ that accepts the same literal language, has degree 2k + 1, and at most

n · (k + 2) · (2k + 1)2k+1 + 1 orbits.

∠∠∠ The idea is to make use of the following logical equivalence:

�αϕ ≡ ♦αϕ ∨
∨
σ 6=α

♦σ>.

∠∠∠ The > is easily managed by a single additional >-state q> with

transition formula >.
∠∠∠ Problem: The disjunction

∨
σ 6=α ♦σ> is infinite!
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Equivalence (Explicit-Dual to Positive)

Proposition (Explicit-Dual to Positive )

For every explicit-dual RANA A of degree k and with n orbits, there is a positive

RANA A+ that accepts the same literal language, has degree as 2k + 1, and at

most n · (k + 2) · (2k + 1)2k+1 + 1 orbits.

∠∠∠ Problem: The disjunction
∨

σ 6=α ♦σ> is infinite!

Definition (Escape Letters )

Given a bar string w ∈ A?
and a formula ϕ ∈ Bd(1+A×Q+[A]Q), a free name

a ∈ FN(w ) is an escape letter for w at ϕ if the satisfaction w |= ϕ ‘can end’ at

∠∠∠ some av |= εd or

∠∠∠ av |= �αq (then α 6= a). (precise definition uses evaluation DAGs)

∠∠∠ Intuition: Processing of the input word ends immediately!

…but input is still accepted!
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Equivalence (Explicit-Dual to Positive)

Proposition (Explicit-Dual to Positive )

For every explicit-dual RANA A of degree k and with n orbits, there is a positive

RANA A+ that accepts the same literal language, has degree as 2k + 1, and at

most n · (k + 2) · (2k + 1)2k+1 + 1 orbits.

∠∠∠ Problem: The disjunction
∨

σ 6=α ♦σ> is infinite!

∠∠∠ Fix this, by restricting the disjunction to escape letters.

(bound names occur only once by use of abstraction sets)

∠∠∠ Note: The set of escape letters for w ∈ A?
at ϕ is always contained in

supp(ϕ) ∪ {a} for some a ∈ A!
∠∠∠ Thus, A+ has pairs (q, S) with q ∈ Q and S ⊆f A as states, where S is

the current set of escape letters. (|S | 6 k + 1)

∠∠∠ We change transition formulae accordingly and verify the equivalence

of languages by induction.
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Results II: Equivalence to Bar-µTL



Bar-µTL and RANAs

∠∠∠ Transition formulae of RANAs look like modal formulae (especially with

our notation for atoms).

∠∠∠ Fix a countably infinite set Var of fixed-point variables.

Definition (Bar Formulae ) Hausmann, Milius, Schröder ’21

Bar formulae of Bar-µTL are defined by the grammar

ϕ,ψ ::= ε | ¬ε |ϕ ∨ ψ |ϕ ∧ ψ | ♥σϕ |X |µX .ϕ . (♥ ∈ {♦,�}, σ ∈ A,X ∈ Var)

Additionally, > := ε ∨ ¬ε and ⊥ := ε ∧ ¬ε.

∠∠∠ The semantics of bar formulae is defined like the semantics for

transition formulae.

Theorem (Equivalence )

For every bar formula ϕ, there is an explicit-dual RANA Aϕ accepting the literal

language of ϕ: L0(A) = {w ∈ bs(∅) : w |= ϕ}.

 makes use of the Fisher–Ladner closure of ϕ
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Results III: De-Alternation



Restricted Semantics (Name-Dropping Modification)

Motivation

We have seen earlier that renaming is necessary for negation to be α-invariant.
This non-acceptance of some α-equivalent bar strings w/o renaming was previ-

ously (ERNNAs/RNNAs) ameliorated by the use of name-dropping.

Theorem (Name-Dropping for RANAs )

For every positive RANA A with degree k and n orbits, there is a positive RANA

And (the name-dropping modification) accepting the same literal language, with

degree k and at most n ·2k orbits for which the restricted and ordinary semantics

coincide.

∠∠∠ Thus, we can restrict ourself to the restricted semantics whenever

necessary.
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De-Alternation

Theorem (De-Alternation )

Every RANA with n orbits and degree k can be de-alternated into an ERNNA

(RNNA with one single >-state).

∠∠∠ Classical Idea: Use a power-set construction where a word is accepted

by S ⊆ Q iff all q ∈ S accept the word: transitions built accordingly.

∠∠∠ Problem: The power-set construction yields a non orbit-finite set!

 Restrict the number of states tracked simultaneously:

∠∠ Suppose q 6= q ′ are in the same orbit of Q, then:

(A) If supp(q) 6= supp(q ′) and A := supp(q) ∩ supp(q ′):

Either q and q ′|A or q|A and q ′ accept w iff both q and q ′ accept w .

(B) If supp(q) = supp(q ′), both q and q ′ must be checked.

∠∠∠ We restrict the power-set construction to sets of atmost size n · k !.
∠∠∠ The resulting ERNNA has a degree of at most n · k · k ! and a number of

orbits that is at most singly exponential in n and doubly exponential in k .
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De-Alternation

Theorem (De-Alternation )

Every RANA with n orbits and degree k can be de-alternated into an ERNNA

(RNNA with one single >-state).

Under the local freshness semantics, RANAs can be completely de-alternated

into RNNAs.

∠∠∠ A full de-alternation to RNNAs (w/o the >-state) is impossible.

(Example at blackboard)

∠∠∠ Similarly, the naïve power-set construction is impossible.

(Example at blackboard)

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results III: De-Alternation) 20 / 24



Results IV: Finitisation & Model-Checking



Finite Representability

∠∠∠ To simplify model checking, we desire a correspondence between

classical AFAs and our RANAs:

Theorem (Equivalence )

Every RANA is bar-language-equivalent to a bar AFA, that is a classical alternating

finite automaton over a finite alphabet A0 having a certain semantics.

∠∠∠ If the RANA is of degree k with n orbits, the bar AFA has an alphabet of

size 2k + 1 and at most n · k ! = n · 2k log(k) states.

∠∠∠ The semantics looks at bar strings and split them up into a pre-word and

a suffix, where the pre-word is ‘read up to α-equivalence’ by the
Bar-AFA. If it results in just >’s, any suffix may be added.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 21 / 24



Finite Representability

∠∠∠ To simplify model checking, we desire a correspondence between

classical AFAs and our RANAs:

Theorem (Equivalence )

Every RANA is bar-language-equivalent to a bar AFA, that is a classical alternating

finite automaton over a finite alphabet A0 having a certain semantics.

∠∠∠ If the RANA is of degree k with n orbits, the bar AFA has an alphabet of

size 2k + 1 and at most n · k ! = n · 2k log(k) states.

∠∠∠ The semantics looks at bar strings and split them up into a pre-word and

a suffix, where the pre-word is ‘read up to α-equivalence’ by the
Bar-AFA. If it results in just >’s, any suffix may be added.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 21 / 24



Finite Representability

∠∠∠ To simplify model checking, we desire a correspondence between

classical AFAs and our RANAs:

Theorem (Equivalence )

Every RANA is bar-language-equivalent to a bar AFA, that is a classical alternating

finite automaton over a finite alphabet A0 having a certain semantics.

∠∠∠ If the RANA is of degree k with n orbits, the bar AFA has an alphabet of

size 2k + 1 and at most n · k ! = n · 2k log(k) states.

∠∠∠ The semantics looks at bar strings and split them up into a pre-word and

a suffix, where the pre-word is ‘read up to α-equivalence’ by the
Bar-AFA. If it results in just >’s, any suffix may be added.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 21 / 24



Finite Representability

∠∠∠ To simplify model checking, we desire a correspondence between

classical AFAs and our RANAs:

Theorem (Equivalence )

Every RANA is bar-language-equivalent to a bar AFA, that is a classical alternating

finite automaton over a finite alphabet A0 having a certain semantics.

∠∠∠ If the RANA is of degree k with n orbits, the bar AFA has an alphabet of

size 2k + 1 and at most n · k ! = n · 2k log(k) states.

∠∠∠ The semantics looks at bar strings and split them up into a pre-word and

a suffix, where the pre-word is ‘read up to α-equivalence’ by the
Bar-AFA. If it results in just >’s, any suffix may be added.

Frank et al. | INF8 (Oberseminar) | Alternating Nominal Automata with Name Allocation (Results IV: Finitisation & Model-Checking) 21 / 24



Finite Representability (Emptiness-Equivalence)

Problem

The previously mentioned equivalence will not help us directly, since standard

algorithms for AFAs use the classical finite semantics.

∠∠∠ For a bar AFA, let L0(A) be the literal language under our semantics and

LAFA(A) be the literal language under the classical finite semantics:

Theorem (Emptiness-Equivalence )

For every bar AFA, we have the following equivalence:

L0(A) = ∅ iff LAFA(A) ∩ bs(∅)︸ ︷︷ ︸
is recognizable by an AFA

= ∅

∠∠∠ If A is a bar AFA with alphabet size k and n states, the AFA accepting

LAFA(A) ∩ bs(∅) has alphabet size k and at most n + 2
k/2 + 1 states.
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Decidability Problems

Remark (Complexities )

Given any RANA of degree k and with n orbits, its equivalent name-dropping

modification has at most (2 · n · (k +2)+1) · 2(2k+1)·log(4k+2) orbits and a degree

of 2k + 1.

Its de-alternation has a degree that is linear in n and exponential in k as well as a

number of orbits that is exponential in n and doubly exponential in k .

Theorem ( Inclusion-Checking under Local Freshness )

The inclusion problem for RANAs under local freshness is decidable in 2EXPSPACE:

 space exponential in both the number of orbits and the degree of both RANAs.

∠∠∠ For local freshness, we need to de-alternate completely!

(Example at blackboard)
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Theorem (Decidability Problems )

Non-Emptiness for (name-dropping) RANAs is decidable in EXPSPACE:

 space linear in the number of orbits and exponential in the degree of the RANA

Universality for RANAs is decidable in EXPSPACE:

 space linear in the number of orbits and exponential in the degree of the RANA.

Inclusion-Checking for RANAs is decidable in EXPSPACE:

 space linear in the number of both orbits and exponential in the maximum degree of both RANAs.
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Decidability Problems

Remark (Complexities )

Given any RANA of degree k and with n orbits, its equivalent name-dropping

modification has at most (2 · n · (k +2)+1) · 2(2k+1)·log(4k+2) orbits and a degree

of 2k + 1.

Its de-alternation has a degree that is linear in n and exponential in k as well as a

number of orbits that is exponential in n and doubly exponential in k .

Theorem ( Inclusion-Checking under Local Freshness )

The inclusion problem for RANAs under local freshness is decidable in 2EXPSPACE:

 space exponential in both the number of orbits and the degree of both RANAs.

∠∠∠ For local freshness, we need to de-alternate completely!

(Example at blackboard)
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Conclusion



Conclusion & Future Work

∠∠∠ We looked at a variant of alternating automaton for data languages with

inherent name binding, and found many nice properties:

Alternating Automaton

RANA

De-Alternation

RNNAs

Finitisation

Bar-AFAs

Decidable

Inclusion-Problem

Decidable

Universality-Problem

Decidable

Emptiness-Problem

Logic

Bar-µTL

∠∠∠ There are still open problems left:

Coalgebraic Understanding

Residuality/Learning RANAs

Extension to ω-Words
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Questions?
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