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Bisimilarity
A bisimulation is a relation R such that for all xRy
• x a−→ x ′ implies that there is y ′ with y a−→ y ′ and x ′Ry ′

• y a−→ y ′ implies that there is x ′ with x a−→ x ′ and x ′Ry ′

States x , y are bisimilar if there is a bisimulation with xRy
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The LT/BT Spectrum

bisimulation

2-nested simulation

possible-futures
ready simulation

ready trace

readiness failure trace

failure

completed trace

trace

simulation

van Glabbeek ’90
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Graded Monads

Graded Monads
A graded monad M consists of

• Mn : C → C for n ∈ N
• µij : MiMj ⇒ Mi+j
• η : Id ⇒ M0

Subject to the usual monad laws (+ indices)

Graded Algebras
A graded Mn-algebra A consists of

• C-objects Ak for k ≤ n
• aij : MiAj ⇒ Ai+j for i + j ≤ n

Subject to the usual algebra laws (+ indices)
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Graded Semantics

Graded Semantics
A graded semantics for G-coalgebras consists of a graded monad
M and a natural transformation α : G ⇒ M1

For γ : X → GX define inductively γ(k) : X → Mk1:

γ(0) : X η−→ M0X M0!−−→ M01

γ(k+1) : X α·γ−−→ M1X M1γ(k)
−−−−→ M1Mk1 µ1k

−−→ Mk+11
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Example: Probabilistic Traces

PTS
Probabilistic Transition Systems are coalgebras γ : X → D(A × X )

Probabilistic Trace Monad
• Mn = D(An × X )
• Multiplication µi ,j

X : D(Ai × D(Aj × X )) → D(Ai+j × X )
multiplies (and adds) probabilities

• ηX : X → DX , unit of D
• α = id

Then γ(n)(x) ∈ D(An) probabilities of traces of x after n steps
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Depth-1 Monads

Depth-1 Graded Monads
A graded monad is depth-1 if the following diagram is a
coequalizer:

M1M0M0 M1M0 M1
µ10M0

M1µ00
µ10
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Canonical M1 Algebras

Canonical Algebra
An M1-algebra A is canonical if it is free over its 0-part

A0 B0

M1A0 M1B0

A1 B1

f0

a10

M1f0

b10

f1

Lemma
If M is depth-1, then the M1-algebra (M0X ,M1X , µ0,0, µ0,1, µ1,0)
is canonical
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(Pre)determinization

M̄1

Let E : Alg0(M) → Alg1(M) be the functor extending M0-algebras
to their canonical M1-algebra

M̄1 : (Alg0(M) E−→ Alg1(M) (−)1−−−→ Alg0(M))

It is immediate that M1 = UM̄1F

X α·γ−−→ M1X = UM̄1FX

FX γ#
−−→ M̄1FX
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Categories with Structure

Topological Categories / CLat⊓-fibrations
Categories that admit initial liftings

E A Bi

Set X UBi

U

fi

fi

Pullback
EX : Lattice of spaces above X
For f : X → Y , get functor f • : EY → EX
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Topological Categories

Examples

Category Initial Lift

Topological spaces Initial topology

Measurable spaces (Basis of) Preimages of measurable sets

Equivalence relation Relation reflection

Preorders Order reflection

Pseudometric spaces "Map and measure"
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Setting

Ingredients
• Topological functor U : E → Set
• Graded monad Mn on E
• Functor G : E → E and depth-1 graded semantics α : G ⇒ M1

Behavioural Conformance
Define Pω

α :=
d

i∈N(γ(i))•Mi1

Define P∞
α as the initial lift w.r.t. h ◦ η, where h ranges over

coalgebra homs with domain γ# : M0X → M1M0X

Example
Equip MnX = D(An × X ) with Wasserstein/total var. distance
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Local bisimulation
A local bisimulation at (x , y) is a relation R ⊆ X × X such that

• x a−→ x ′ implies that there is y ′ with y a−→ y ′ and x ′Ry ′

• y a−→ y ′ implies that there is x ′ with x a−→ x ′ and x ′Ry ′

Game variant
To prove bisimilarity of (x , y)

1 Duplicator plays a local bisimulation R at (x , y)
2 Spoiler picks an element (x ′, y ′) ∈ R as a new position.
3 Goto step 1.

A player that can not move loses, infinite plays are won by
Duplicator.
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Setting up the Game

How to Play
Basis B of EM0X

Duplicator wants to show that conformance P holds in the
behaviour of (M0X , γ#).

Player Position Move
Duplicator P ∈ B Z ⊆ B s.t. P ⊑ (M1ι · γ#)•M1C(

⊔
Z )

Spoiler Z ⊆ B P ∈ Z

Additional Condition
Let P be the position after n rounds. Duplicator wins the n-round
game if

P ⊑ (M0!X )•M01
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Theorems

Assumptions
• Depth-1 graded semantics, M̄1 preserves initial arrows.
• M0 is a lifting of a set functor.

Theorem
Let P ∈ EUX . Duplicator wins in all positions P ′ ∈ B with
P ′ ⊑ η•P

• in the graded n-round conformance game iff P ⊑ (γ(n))•Mn1.
• in the graded infinite conformance game iff P ⊑ P∞

α .

Syntactic Perspective
⇒ Categories of Relational Structures
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Relational Structures

Category Str(Π

Relational Signature

)
Objects are pairs (X ,E ), where X is a set and E consists of tuples
π(x1, . . . , xar(π)) with π ∈ Π and xi ∈ X

Morphisms g : (X ,E ) → (Y ,E ′) are maps g : X → Y such that
π(x1, . . . , xn) ∈ E implies π(g(x1), . . . , g(xn)) ∈ E ′
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Horn Structures

Horn Axioms
Let A be a set of axioms of the form

Φ ⇒ ψ

where ψ is a Π-edge in Var and Φ is a set of Π-edges in Var

Category Str(Π,A): Subcategory of Str(Π), closed under A.
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Examples of Horn Theories

Preorders
Signature Π = {≤}, Axioms

x ≤ x {x ≤ y , y ≤ z} ⇒ x ≤ z

Pseudometric Spaces
Signature Π = {=ϵ| ϵ ∈ [0, 1] ∩ Q}, Axioms

x =0 x x =ϵ y ⇒ y =ϵ x

{x =ϵ y , y =ϵ′ z} ⇒ x =ϵ+ϵ′ z

x =ϵ y ⇒ x =ϵ+ϵ′ y

{x =ϵ′ y | [0, 1] ∩ Q ∋ ϵ′ > ϵ} ⇒ x =ϵ y
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Relational Theories

Relations in Context
Set Σ of symbols σ, each with arity ar(σ) ∈ N and depth d(σ) ∈ N.

Relational theories (Σ, E) are parametric over a set of Axioms E of
the form

X ⊢k π(t1, . . . , tn)

where
• ti are uniform depth k terms over Var
• π ∈ Π ∪ {=}
• X is a Π-structure over Var
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Varieties of Σ-Algebras

Calculus
Judgments of the form X ⊢k π(t1, . . . , tn)
over some context X ∈ Str(H) Monad M, where MnX are depth-n
terms in Σ modulo =, with provable edges.

Example: Probabilistic Trace Distance
Σ = {+q | q ∈ [0, 1]} ∪ {a | a ∈ A}

⊢0 x +1 y = x ⊢0 x +ϵ x = x
⊢0 x +q y = y +1−q x ⊢0 (x +q y) +v z = x +qv (y + q−qv

1−qv
z)

⊢1 a(x +q y) = a(x) +q a(y)
{x =ϵ y , x ′ =ϵ′ y ′} ⊢0 x +q x ′ =δ y +q y ′

with δ = ϵq + ϵ′(1 − q)
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Advantages of Relational Structures

Basis for free!
Basis B consists of individual edges on M0X

Admissibility ∼= Syntactic Proof
A set of edges Z is admissible at π(x1, . . . , xn) if
Z ⊢1 π(γ#(x1), . . . , γ#(xn))

Monad Conditions
(Σ, E) depth-1 ⇒ M depth-1
M0 lifting if all depth-0 axioms for = have empty context
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Conclusion

What we did
• Generalized graded games to topological categories
• Provided Syntactic Underpinnings

Future Work
• Relation to codensity games?
• Syntax for arbitrary topological categories?
• Strategies ⇔ Formulae?
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