Modal Characterization Theorems: from the classical to the quantitative coalgebraic

Paul Wild

October 25, 2022
Friedrich-Alexander-Universität Erlangen-Nürnberg

A van Benthem theorem for fuzzy modal logic (LICS'18)

Paul Wild, Lutz Schröder, Dirk Pattinson and Barbara König

The van Benthem Theorem

Theorem

Every bisimulation invariant first-order formula can be expressed by modal formulas.

Goal: formalize and prove this theorem in terms of fuzzy logic.

Fuzzy Modal Logic (1)

Theorem

Every bisimulation invariant first-order formula can be expressed by modal formulas

Syntax:

$$
\varphi, \psi::=c|p| \neg \varphi|\varphi \ominus c| \varphi \wedge \psi \mid \diamond \varphi
$$

where $c \in \mathbb{Q} \cap[0,1]$ and $p \in \mathrm{At}$.

Semantics: given over fuzzy relational models

$$
\mathcal{A}=\left(A,\left(p^{\mathcal{A}}\right)_{p \in \mathrm{At}}, R^{\mathcal{A}}\right)
$$

- A is the set of states.
- $p^{\mathcal{A}}: A \rightarrow[0,1]$ is the interpretation for $p \in \mathrm{At}$.
- $R^{\mathcal{A}}: A \times A \rightarrow[0,1]$ is the transition relation.

Fuzzy Modal Logic (2)

Formulas are interpreted as functions $A \rightarrow[0,1]$:

- constants: $c(a)=c$
- propositions: $p(a)=p^{\mathcal{A}}(a)$
- negation: $(\neg \varphi)(a)=1-\varphi(a)$
- truncated subtraction: $(\varphi \ominus c)(a)=\max (\varphi(a)-c, 0)$
- conjunction: $(\varphi \wedge \psi)(a)=\min (\varphi(a), \psi(a))$
- modality: $(\Delta \varphi)(a)=\sup _{a^{\prime} \in A} \min \left(R^{\mathcal{A}}\left(a, a^{\prime}\right), \varphi\left(a^{\prime}\right)\right)$

Notations: $a \wedge b=\min (a, b), a \vee b=\max (a, b), \vee=\sup , \wedge=\inf$.

Fuzzy First Order Logic

Theorem

Every bisimulation invariant first-order formula can be expressed by modal formulas

Syntax:

$$
\varphi, \psi::=c|p(x)| R(x, y)|x=y| \neg \varphi|\varphi \ominus c| \varphi \wedge \psi \mid \exists x . \varphi
$$

where $c \in \mathbb{Q} \cap[0,1], p \in \mathrm{At}, x, y$ variables.

Semantics:
Let $\eta: \operatorname{Var} \rightarrow A . \varphi(\eta)$ is defined inductively:

- Boolean connectives and equality as expected
- $p(x)(\eta)=p^{\mathcal{A}}(\eta(x)), R(x, y)(\eta)=R^{\mathcal{A}}(\eta(x), \eta(y))$
- existential quantification: $(\exists x . \varphi)(\eta)=\bigvee_{a \in A} \varphi(\eta[x \mapsto a])$

Bisimulation Invariance

Theorem

bisimulation invariant first-order formula can be expressed by modal formulas.

- In fuzzy logic we can quantify how similarly two states behave.
- This gives rise to behavioural distance d.
- Bisimilar states have distance 0 .
- φ bisimulation invariant $\Longleftrightarrow \varphi$ non-expansive wrt. d :

$$
|\varphi(a)-\varphi(b)| \leq d(a, b) \quad \text { for all states } a, b .
$$

Modal Approximation

Theorem

Every bisimulation invariant first-order formula can be expressed by modal formulas.

- In classical modal logic, there are only finitely many modal formulas of fixed rank k (up to equivalence).
- In fuzzy modal logic, this is no longer true, because there are infinitely many truth constants $c \in \mathbb{Q} \cap[0,1]$.
- Thus, instead of showing that the bisimulation invariant formula φ is equivalent to some modal φ of rank k, we show that it can be approximated by such formulas:

$$
\forall \varepsilon>0 \quad \exists \psi_{\varepsilon} \text { modal of rank } k\left\|\varphi-\psi_{\varepsilon}\right\|_{\infty} \leq \varepsilon
$$

A Fuzzy van Benthem Theorem

Theorem

Every fuzzy first-order formula φ that is non-expansive wrt. behavioural distance d^{G} can be approximated by fuzzy modal formulas of some fixed rank k.

Next: define behavioural distance d^{G} via a bisimulation game.

Game-based Distance (1)

Bisimulation game for fuzzy logic:

- The game is parametrised by some $\varepsilon \geq 0$
- Two players, spoiler S and duplicator D
- Configurations: pairs of states (a, b)
- Moves:
- S picks a^{\prime} such that $R\left(a, a^{\prime}\right)>\varepsilon$
- D picks b^{\prime} such that $R\left(b, b^{\prime}\right) \geq R\left(a, a^{\prime}\right)-\varepsilon$
- New configuration: $\left(a^{\prime}, b^{\prime}\right)$
S may also swap the two sides before his move
- Whoever is unable to move, loses
- Winning condition for D before every round:

$$
|p(a)-p(b)| \leq \varepsilon \text { for all } p \in \mathrm{At}
$$

Game-based Distance (2)

The corresponding distances are:

$$
\begin{aligned}
& d^{G}(a, b)=\bigwedge\{\varepsilon \mid D \text { wins the } \varepsilon \text {-game for }(a, b)\} \\
& d_{n}^{G}(a, b)=\bigwedge\{\varepsilon \mid D \text { wins the } n \text {-round } \varepsilon \text {-game for }(a, b)\}
\end{aligned}
$$

$$
d^{G}(a, b)=1
$$

D wins for $\varepsilon=0.1$, but loses for $\varepsilon<0.1$.

Logic-based Distance

Using modal formulas, we can define:

$$
\begin{gathered}
d^{L}(a, b)=\bigvee_{\varphi \text { modal }}|\varphi(a)-\varphi(b)| \\
d_{n}^{L}(a, b)=\bigvee_{\varphi \text { modal, rk } \varphi \leq n}|\varphi(a)-\varphi(b)| \\
\underbrace{b}_{\substack{a}} \underbrace{b}_{c} 0.6 \\
d_{1}^{L}(a, b)=0.1 \text { with } \varphi=\diamond 1
\end{gathered}
$$

Function-based Distance

Behavioural distance via a Kantorovich construction:

$$
\begin{aligned}
& d_{0}^{K}(a, b)= 0 \\
& d_{n+1}^{K}(a, b)= \bigvee_{p \in \mathrm{At}}|p(a)-p(b)| \vee \bigvee_{f:\left(A, d_{n}^{K}\right) \rightarrow[0,1] \text { nonexp. }}|(\diamond f)(a)-(\diamond f)(b)| \\
&(\diamond f)(a)=\bigvee_{a^{\prime} \in A} R\left(a, a^{\prime}\right) \wedge f\left(a^{\prime}\right) \\
& a \underbrace{a}_{c} b \\
& d_{1}^{K}(a, b)=0.1 \text { with } f=x \mapsto 1
\end{aligned}
$$

Equivalence of Distances

Theorem

Let \mathcal{A} be a model and $n \geq 0$. Then

1. $d_{n}^{G}=d_{n}^{K}=d_{n}^{L}=: d_{n}$ on \mathcal{A}.
2. $\left(A, d_{n}\right)$ is a totally bounded pseudometric space.
3. The rank n formulas are a dense subset of the space of non-expansive maps $\left(A, d_{n}\right) \rightarrow[0,1]$.

Coalgebraic View

Consider the set functors F and G :

$$
\mathrm{F} X=[0,1]^{X}, \quad \mathrm{~F} f(g)(y)=\bigvee_{f(x)=y} g(x)
$$

where $f: X \rightarrow Y, g \in[0,1]^{X}, y \in Y$.

$$
\mathrm{G} X=[0,1]^{\mathrm{At}} \times \mathrm{F} X
$$

Models $\mathcal{A}=\left(A,\left(p^{\mathcal{A}}\right)_{p \in \mathrm{At}}, R^{\mathcal{A}}\right)$ are coalgebras $\alpha: A \rightarrow \mathrm{G} A$:

$$
\alpha(a)=\left(\lambda p \cdot p^{\mathcal{A}}(a), \lambda a^{\prime} \cdot R^{\mathcal{A}}\left(a, a^{\prime}\right)\right) .
$$

Uniform Approximation

- $F_{n}:=\mathrm{G}^{n}(\{*\})$ is the set of all n-step behaviours.
- We can construct a model \mathcal{F} on the set $F:=\bigcup_{n \geq 0} F_{n}$:

$$
p^{\mathcal{F}}(h, g)=h(p), \quad R^{\mathcal{F}}((h, g), y)= \begin{cases}g(y), & \text { if } y \in F_{n} \\ 0, & \text { otherwise }\end{cases}
$$

- For every model \mathcal{A}, there is a map $\pi_{n}: A \rightarrow F$ such that

$$
d_{n}\left(a, \pi_{n}(a)\right)=0
$$

- Thus:

$$
\|\varphi-\psi\|_{\infty} \leq \varepsilon \text { on } \mathcal{F} \Longrightarrow\|\varphi-\psi\|_{\infty} \leq \varepsilon \text { on all models } \mathcal{A}
$$

A characterization theorem for a modal description logic (IJCAl’19)

Paul Wild, Lutz Schröder, Dirk Pattinson and Barbara König

The logic $\mathcal{A} \mathcal{L C}(\mathbf{P})$ - Syntax

Quantitative Probabilistic $\mathcal{A L C}$:

$$
C, D::=q|A| C \ominus q|\neg C| C \sqcap D \mid \mathbf{P} r . C
$$

- rational constants $q \in \mathbb{Q} \cap[0,1]$
- basic concept names $A \in N_{C}$
- subtraction of constants \ominus
- expected value over r-successors $\mathbf{P}\left(r \in \mathbf{N}_{\mathbf{R}}\right)$

Loud $\sqcap \mathbf{P}$ hasSource. (Large $\sqcap \mathbf{P}$ hasMood. Angry)

The logic $\mathcal{A L C}(\mathbf{P})$ - Semantics

Models: $\mathcal{I}=\left(\Delta^{\mathcal{I}},\left(A^{\mathcal{I}}\right)_{A \in \mathrm{~N}_{\mathrm{C}}},\left(r^{\mathcal{I}}\right)_{r \in \mathrm{~N}_{\mathrm{R}}}\right)$, where

- $\Delta^{\mathcal{I}}$ is a set (the domain)
- $A^{\mathcal{I}}: \Delta^{\mathcal{I}} \rightarrow[0,1]$
- $r^{\mathcal{I}}: \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \rightarrow[0,1]$

$$
\text { such that } \sum_{a^{\prime} \in \Delta^{\mathcal{I}}} r^{\mathcal{I}}\left(a, a^{\prime}\right) \in\{0,1\} \quad \text { for each } a \in \Delta^{\mathcal{I}} \text {. }
$$

In other words, for role r each state a is either

- r-blocking $-r_{a}:=r^{\mathcal{I}}(a, \cdot)$ is zero; or
- r-transient $-r_{a}$ is a discrete probability distribution on $\Delta^{\mathcal{I}}$.

The logic $\mathcal{A L C}(\mathbf{P})$ - Semantics

Interpretations: $C^{\mathcal{I}}: \Delta^{\mathcal{I}} \rightarrow[0,1]$, where

$$
\begin{aligned}
q^{\mathcal{I}}(a) & =q \\
(C \ominus q)^{\mathcal{I}}(a) & =\max \left(C^{\mathcal{I}}(a)-q, 0\right) \\
(\neg C)^{\mathcal{I}}(a) & =1-C^{\mathcal{I}}(a) \\
(C \sqcap D)^{\mathcal{I}}(a) & =\min \left(C^{\mathcal{I}}(a), D^{\mathcal{I}}(a)\right) \\
(\mathbf{P} r . C)^{\mathcal{I}}(a) & =\mathbb{E}_{r_{a}}\left(C^{\mathcal{I}}\right)=\sum_{a^{\prime} \in \Delta^{\mathcal{I}}} r_{a}\left(a^{\prime}\right) \cdot C^{\mathcal{I}}\left(a^{\prime}\right)
\end{aligned}
$$

Bisimulation Invariance

From now on, restrict to a single role π.

- Classically, bisimulations are used to tell whether two states exhibit the same behaviour.
- However, consider the following states:

- With a behavioural distance d we can quantify how similarly two states behave. Bisimilar states have distance 0 .

Towards a Characterization Theorem

- Defer the precise definition of bisimulation distance d for now.
- φ bisimulation invariant $\Longleftrightarrow \varphi$ non-expansive wrt. d :

$$
|\varphi(a)-\varphi(b)| \leq d(a, b) \quad \text { for all states } a, b .
$$

- Characterize $\mathcal{A L C}(\mathbf{P})$ using bisimulation invariance:
- All $\mathcal{A L C}(\mathbf{P})$-concepts are bisimulation invariant.
- Every bisimulation invariant property can be approximated by $\mathcal{A L C}(\mathbf{P})$-concepts.

Correspondence Language

Quantitative probabilistic first-order logic (FO(P)):

$$
\varphi, \psi::=q|A(x)| x=y|\varphi \ominus q| \neg \varphi|\varphi \wedge \psi| \exists x . \varphi \mid x \mathbf{P}\lceil y: \varphi\rceil
$$

Semantics:

$$
\begin{aligned}
A\left(x_{i}\right)(\bar{a}) & =A^{\mathcal{I}}\left(a_{i}\right) \\
\left(\exists x_{0} \cdot \varphi\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right)(\bar{a}) & =\sup \left\{\varphi\left(a_{0}, \bar{a}\right) \mid a_{0} \in \Delta^{\mathcal{I}}\right\} \\
\left(x_{i} \mathbf{P}\left\lceil y: \varphi\left(y, x_{1}, \ldots, x_{n}\right)\right\rceil\right)(\bar{a}) & =\mathbb{E}_{r_{a_{i}}}(\varphi(\cdot, \bar{a}))
\end{aligned}
$$

Example:

$$
\begin{aligned}
x \mathbf{P}\lceil z: z=y\rceil & =\text { 'the successor of } x \text { is probably } y \text { ' } \\
& =\text { probability of reaching } y \text { from } x \text { in one step }
\end{aligned}
$$

Modal Approximation

- In classical $\mathcal{A L C}$, there are only finitely many modal formulas of fixed rank k (up to equivalence).
- In fuzzy modal logic, this is no longer true, because there are infinitely many truth constants $c \in \mathbb{Q} \cap[0,1]$.
- Thus, instead of showing that the bisimulation invariant formula φ is equivalent to some modal φ of rank k, we show that it can be approximated by such formulas:

$$
\forall \varepsilon>0 \quad \exists \psi_{\varepsilon} \text { modal of rank } k\left\|\varphi-\psi_{\varepsilon}\right\|_{\infty} \leq \varepsilon
$$

Bisimulation game

Game on models \mathcal{I}, \mathcal{J} played by Spoiler (S) and Duplicator (D) :

- Configurations: triples $(a, b, \varepsilon), a \in \Delta^{\mathcal{I}}, b \in \Delta^{\mathcal{J}}, \varepsilon \in[0,1]$.
- Moves:
- D picks $\mu \in \operatorname{Cpl}\left(\pi_{a}, \pi_{b}\right)$
- D picks a function $\varepsilon^{\prime}: \Delta^{\mathcal{I}} \times \Delta^{\mathcal{J}} \rightarrow[0,1]$ such that $\mathbb{E}_{\mu}\left(\varepsilon^{\prime}\right) \leq \varepsilon$
- S picks $\left(a^{\prime}, b^{\prime}\right)$ with $\mu\left(a^{\prime}, b^{\prime}\right)>0$
- New configuration: $\left(a^{\prime}, b^{\prime}, \varepsilon^{\prime}\left(a^{\prime}, b^{\prime}\right)\right)$
- D wins if both states are blocking or $\varepsilon=1$.
- S wins if exactly one state is blocking and $\varepsilon<1$.
- Otherwise, D wins if she maintains the winning condition: $\left|A^{\mathcal{I}}(a)-A^{\mathcal{J}}(b)\right| \leq \varepsilon$ for all $A \in \mathrm{~N}_{\mathrm{C}}$.
$\mathrm{Cpl}\left(\pi_{a}, \pi_{b}\right)$: set of $\mu: \Delta^{\mathcal{I}} \times \Delta^{\mathcal{J}} \rightarrow[0,1]$ with marginals π_{a} and π_{b} :

$$
\pi_{a}\left(a^{\prime}\right)=\sum_{b^{\prime}} \mu\left(a^{\prime}, b^{\prime}\right) \quad \pi_{b}\left(b^{\prime}\right)=\sum_{a^{\prime}} \mu\left(a^{\prime}, b^{\prime}\right)
$$

Example game

- Initial configuration: $\left(a_{1}, b_{1}, 0.01\right)$.
- First turn: D picks μ and ε^{\prime} as follows:

μ	b_{2}	b_{3}	
a_{2}	0.5	0	0.5
a_{3}	0.01	0.49	0.5
	0.51	0.49	

ε^{\prime}	b_{2}	b_{3}
a_{2}	0	1
a_{3}	1	0

Game-based distance

$$
\begin{aligned}
& d^{G}(a, b)=\inf \{\varepsilon \mid D \text { wins the game for }(a, b, \varepsilon)\} \\
& d_{n}^{G}(a, b)=\inf \{\varepsilon \mid D \text { wins the } n \text {-round game for }(a, b, \varepsilon)\}
\end{aligned}
$$

Lemma

Each $\mathcal{A L C}(\boldsymbol{P})$-concept of rank n is depth- n bisimulation-invariant, that is

$$
|C(a)-C(b)| \leq d_{n}^{G}(a, b)
$$

Logical Distance

Using modal formulas, we can define:

$$
\begin{aligned}
d^{L}(a, b) & =\sup \{|C(a)-C(b)| \mid C \in \mathcal{A L C}(\mathbf{P})\} \\
d_{n}^{L}(a, b) & =\sup \{|C(a)-C(b)| \mid C \in \mathcal{A L C}(\mathbf{P}), \text { rk } C \leq n\}
\end{aligned}
$$

Pseudometric Liftings

Let (X, d) be a pseudometric space. We define two pseudometrics on the space $\mathrm{D} X$ of discrete probability measures on X.

Definition (Kantorovich distance)

$$
d^{\uparrow}\left(\pi_{1}, \pi_{2}\right)=\sup \left\{\left|\mathbb{E}_{\pi_{1}}(f)-\mathbb{E}_{\pi_{2}}(f)\right| \mid f \in \operatorname{Pred}(X, d)\right\}
$$

where $\operatorname{Pred}(X, d)$ is the set of nonexpansive maps $(X, d) \rightarrow[0,1]$.

Definition (Wasserstein distance)

$$
d^{\downarrow}\left(\pi_{1}, \pi_{2}\right)=\inf \left\{\mathbb{E}_{\mu}(d) \mid \mu \in \operatorname{Cpl}\left(\pi_{1}, \pi_{2}\right)\right\}
$$

These two pseudometrics liftings coincide:

Theorem (Kantorovich-Rubinstein duality)

For all $\pi_{1}, \pi_{2}, d^{\uparrow}\left(\pi_{1}, \pi_{2}\right)=d^{\downarrow}\left(\pi_{1}, \pi_{2}\right)$.

Kantorovich and Wasserstein Distances

Behavioural distance via fixed point iteration:

$$
\begin{gathered}
d_{0}^{K}(a, b)=d_{0}^{W}(a, b)=0 \\
d_{n+1}^{K}(a, b)=\max \left(\sup _{A \in \mathbb{N}_{C}}\left|A^{\mathcal{I}}(a)-A^{\mathcal{I}}(b)\right|,\left(d_{n}^{K}\right)^{\uparrow}\left(\pi_{a}, \pi_{b}\right)\right) \\
d_{n+1}^{W}(a, b)=\max \left(\sup _{A \in \mathrm{~N}_{\mathrm{C}}}\left|A^{\mathcal{I}}(a)-A^{\mathcal{I}}(b)\right|,\left(d_{n}^{W}\right)^{\downarrow}\left(\pi_{a}, \pi_{b}\right)\right)
\end{gathered}
$$

By Kantorovich-Rubinstein duality, $d_{n}^{K}=d_{n}^{W}$ for all n.

Equivalence of Distances and Density

Theorem

Let \mathcal{I} be a model. Then for all $n \geq 0$:

- $d_{n}^{G}=d_{n}^{W}=d_{n}^{K}=d_{n}^{L}=: d_{n}$ on \mathcal{A}.
- The rank-n $\mathcal{A L C}(\boldsymbol{P})$-concepts form a dense subset of the space $\operatorname{Pred}\left(\Delta^{\mathcal{I}}, d_{n}\right)$ of non-expansive maps $\left(\Delta^{\mathcal{I}}, d_{n}\right) \rightarrow[0,1]$.

This is proven by induction on n. Some intuition:

- $d_{n}^{G}=d_{n}^{W}$ because the game is built to model W. distance.
- $d_{n}^{W}=d_{n}^{K}$ by Kantorovich-Rubinstein duality.
- $d_{n}^{K}=d_{n}^{L}$ follows from the density claim for $n-1$.

The Characterization Theorem

Theorem

Every bisimulation-invariant $\mathrm{FO}(\boldsymbol{P})$-formula of rank at most n can be approximated by $\mathcal{A L C}(\boldsymbol{P})$-concepts of rank at most 3^{n}.

Characteristic logics for behavioural metrics via fuzzy lax extensions (CONCUR'20)

Paul Wild and Lutz Schröder

Introduction

Goal

Analyse the behaviour of transition systems involving quantitative data.

- Various system types can be modelled as coalgebras:
- Labelled transition systems $\alpha: A \rightarrow \mathcal{P}(L \times A)$
- Markov chains $\alpha: A \rightarrow \mathrm{D} A$

In general: $\alpha: A \rightarrow T A$ for some set functor T

Introduction

Goal

Analyse the behaviour of transition systems involving quantitative data.

- Various system types can be modelled as coalgebras:
- Labelled transition systems $\alpha: A \rightarrow \mathcal{P}(L \times A)$
- Markov chains $\alpha: A \rightarrow \mathrm{D} A$

In general: $\alpha: A \rightarrow T A$ for some set functor T

- Behavioural distances allow for a quantitative measure of process equivalence:

$$
d\left(a_{1}, b_{1}\right)=\varepsilon
$$

Introduction

Goal

Analyse the behaviour of transition systems involving quantitative data.

- To define behavioural distances, we make use of lax extensions:
- Lax extensions give a coalgebraic account of bisimulation.
- Using a lax extension, lift the set functor T to a functor on pseudometrics.
- Behavioural distance arises from a coalgebraic fixpoint construction.

Introduction

Goal

Analyse the behaviour of transition systems involving quantitative data.

- To define behavioural distances, we make use of lax extensions:
- Lax extensions give a coalgebraic account of bisimulation.
- Using a lax extension, lift the set functor T to a functor on pseudometrics.
- Behavioural distance arises from a coalgebraic fixpoint construction.
- We extract characteristic logics for these behavioural distances:
- Coalgebraic modal logics with modalities defined using L.
- Real-valued semantics give rise to logical distance.
- Logical distance = behavioural distance, amounting to a Hennessy-Milner theorem.

Fuzzy Relations

Definition

A fuzzy relation is a map $R: A \times B \rightarrow[0,1]$, also written $R: A \rightarrow B$.

Convention: a, b are related by $R \Longleftrightarrow R(a, b)=0$.

Fuzzy Relations

Definition

A fuzzy relation is a map $R: A \times B \rightarrow[0,1]$, also written $R: A \rightarrow B$.
Convention: a, b are related by $R \Longleftrightarrow R(a, b)=0$.
Let $R: A \rightarrow B, S: B \rightarrow C$ and $f: A \rightarrow B$.

- Converse relation: $R^{\circ}(b, a)=R(a, b)$.
- Graph of a function: $\operatorname{Gr}_{f}(a, b)= \begin{cases}0, & \text { if } f(a)=b, \\ 1, & \text { otherwise. }\end{cases}$

Fuzzy Relations

Definition

A fuzzy relation is a map $R: A \times B \rightarrow[0,1]$, also written $R: A \rightarrow B$.
Convention: a, b are related by $R \Longleftrightarrow R(a, b)=0$.
Let $R: A \rightarrow B, S: B \rightarrow C$ and $f: A \rightarrow B$.

- Converse relation: $R^{\circ}(b, a)=R(a, b)$.
- Graph of a function: $\operatorname{Gr}_{f}(a, b)= \begin{cases}0, & \text { if } f(a)=b, \\ 1, & \text { otherwise. }\end{cases}$
- Composition of relations: $(R ; S)(a, c)=\inf _{b \in B} R(a, b) \oplus(b, c)$.

Fuzzy Relations

Definition

A fuzzy relation is a map $R: A \times B \rightarrow[0,1]$, also written $R: A \rightarrow B$.
Convention: a, b are related by $R \Longleftrightarrow R(a, b)=0$.
Let $R: A \rightarrow B, S: B \rightarrow C$ and $f: A \rightarrow B$.

- Converse relation: $R^{\circ}(b, a)=R(a, b)$.
- Graph of a function: $\operatorname{Gr}_{f}(a, b)= \begin{cases}0, & \text { if } f(a)=b, \\ 1, & \text { otherwise. }\end{cases}$
- Composition of relations: $(R ; S)(a, c)=\inf _{b \in B} R(a, b) \oplus(b, c)$.
- ε-diagonal on a set: $\Delta_{\varepsilon, A}\left(a_{1}, a_{2}\right)= \begin{cases}\varepsilon, & \text { if } a_{1}=a_{2}, \\ 1, & \text { otherwise. }\end{cases}$

Fuzzy Lax Extensions

Definition

A fuzzy lax extension maps $R: A \nrightarrow B$ to $L R: T A \nrightarrow T B$ such that:

$$
\begin{array}{ll}
(\mathrm{LO}) & L\left(R^{\circ}\right)=(L R)^{\circ} \\
(\mathrm{L} 1) & R_{1} \leq R_{2} \Rightarrow L R_{1} \leq L R_{2} \\
(\mathrm{~L} 2) & L(R ; S) \leq L R ; L S \\
(\mathrm{~L} 3) & L \mathrm{Gr}_{f} \leq \mathrm{Gr}_{T f}
\end{array}
$$

We say that L is non-expansive, if additionally

$$
\text { (L4) } L \Delta_{\varepsilon, A} \leq \Delta_{\varepsilon, T A}
$$

where A, B, C are sets, $R, R_{1}, R_{2}: A \rightarrow B, S: B \rightarrow C, f: A \rightarrow B, \varepsilon>0$.

Properties of Fuzzy Lax Extensions

Lemma

L satisfies Axiom (L4) $\Longleftrightarrow R \mapsto L R$ is non-expansive w.r.t. the supremum metric.

Properties of Fuzzy Lax Extensions

Lemma

L satisfies Axiom (L4) $\Longleftrightarrow R \mapsto L R$ is non-expansive w.r.t. the supremum metric.

Lemma

If $d: X \rightarrow X$ is a pseudometric, then so is $L d: T X \rightarrow T X$.

Thus, L gives rise to a functor lifting of T : Set \rightarrow Set to a functor \bar{T} : PMet \rightarrow PMet.

The Hausdorff Lifting

Classically, bisimulations on Kripke frames arise via the Egli-Milner extension:

$$
(U, V) \in \overline{\mathcal{P}}(R) \Longleftrightarrow(\forall a \in U . \exists b \in V .(a, b) \in R) \wedge(\forall b \in V . \exists a \in U .(a, b) \in R)
$$

$\overline{\mathcal{P}}$ is a two-valued lax extension of the powerset functor \mathcal{P}.

The Hausdorff Lifting

Classically, bisimulations on Kripke frames arise via the Egli-Milner extension:

$$
(U, V) \in \overline{\mathcal{P}}(R) \Longleftrightarrow(\forall a \in U . \exists b \in V .(a, b) \in R) \wedge(\forall b \in V . \exists a \in U .(a, b) \in R)
$$

$\overline{\mathcal{P}}$ is a two-valued lax extension of the powerset functor \mathcal{P}.

Replacing \forall with sup, \exists with inf, \wedge with max gives the Hausdorff lifting H :

$$
H R(U, V)=\max \left(\sup _{a \in U} \inf _{b \in V} R(a, b), \sup _{b \in V} \inf _{a \in U} R(a, b)\right) .
$$

H is a non-expansive fuzzy lax extension of \mathcal{P}.

Quantitative Bisimulations

Definition

Let L be a lax extension of T, and let $\alpha: A \rightarrow T A$ and $\beta: B \rightarrow T B$ be coalgebras.

1. $R: A \nrightarrow B$ is an L-bisimulation if $L R \circ(\alpha \times \beta) \leq R$.

Quantitative Bisimulations

Definition

Let L be a lax extension of T, and let $\alpha: A \rightarrow T A$ and $\beta: B \rightarrow T B$ be coalgebras.

1. $R: A \nrightarrow B$ is an L-bisimulation if $L R \circ(\alpha \times \beta) \leq R$.
2. L-behavioural distance: $d_{\alpha, \beta}^{L}=\inf \{R: A \rightarrow B \mid R$ is an L-bisimulation $\}$.

Quantitative Bisimulations

Definition

Let L be a lax extension of T, and let $\alpha: A \rightarrow T A$ and $\beta: B \rightarrow T B$ be coalgebras.

1. $R: A \rightarrow B$ is an L-bisimulation if $L R \circ(\alpha \times \beta) \leq R$.
2. L-behavioural distance: $d_{\alpha, \beta}^{L}=\inf \{R: A \rightarrow B \mid R$ is an L-bisimulation $\}$.

Equivalently, $d_{\alpha, \beta}^{L}$ is the least fixed point of $R \mapsto L R \circ(\alpha \times \beta)$.

Quantitative Bisimulations

Definition

Let L be a lax extension of T, and let $\alpha: A \rightarrow T A$ and $\beta: B \rightarrow T B$ be coalgebras.

1. $R: A \rightarrow B$ is an L-bisimulation if $L R \circ(\alpha \times \beta) \leq R$.
2. L-behavioural distance: $d_{\alpha, \beta}^{L}=\inf \{R: A \rightarrow B \mid R$ is an L-bisimulation $\}$.

Equivalently, $d_{\alpha, \beta}^{L}$ is the least fixed point of $R \mapsto L R \circ(\alpha \times \beta)$.
$\Longrightarrow L$-bisimulations can be used to prove upper bounds for behavioural distance.

Fuzzy Predicate Liftings

Definition

An n-ary (fuzzy) predicate lifting is a natural transformation

$$
\lambda: Q^{n} \Rightarrow Q \circ T,
$$

where $\mathrm{Q} X=[0,1]^{X}$ is the contravariant fuzzy powerset functor.

Fuzzy Predicate Liftings

Definition

An n-ary (fuzzy) predicate lifting is a natural transformation

$$
\lambda: \mathbb{Q}^{n} \Rightarrow \mathbf{Q} \circ T
$$

where $\mathrm{Q} X=[0,1]^{X}$ is the contravariant fuzzy powerset functor.

- Dual of $\lambda: \bar{\lambda}\left(f_{1}, \ldots, f_{n}\right)=1-\lambda\left(1-f_{1}, \ldots, 1-f_{n}\right)$.
- λ is monotone if $f_{1} \leq g_{1}, \ldots, f_{n} \leq g_{n} \Longrightarrow \lambda\left(f_{1}, \ldots, f_{n}\right) \leq \lambda\left(g_{1}, \ldots, g_{n}\right)$.
- λ is nonexpansive if

$$
\left\|\lambda_{X}\left(f_{1}, \ldots, f_{n}\right)-\lambda_{X}\left(g_{1}, \ldots, g_{n}\right)\right\|_{\infty} \leq \max \left(\left\|f_{1}-g_{1}\right\|_{\infty}, \ldots,\left\|f_{n}-g_{n}\right\|_{\infty}\right)
$$

The Kantorovich Lifting

$$
\begin{aligned}
& \text { For } \mu_{1}, \mu_{2} \in \mathrm{D} X \text { and } d: X \rightarrow X \text { a metric, } \\
& \qquad K d\left(\mu_{1}, \mu_{2}\right)=\sup \left\{\mathbb{E} \mu_{1}(f)-\mathbb{E} \mu_{2}(f) \mid f:(X, d) \rightarrow\left([0,1], d_{E}\right) \text { nonexpansive }\right\} .
\end{aligned}
$$

The Kantorovich Lifting

For $\mu_{1}, \mu_{2} \in \mathrm{D} X$ and $d: X \rightarrow X$ a metric,

$$
K d\left(\mu_{1}, \mu_{2}\right)=\sup \left\{\mathbb{E} \mu_{1}(f)-\mathbb{E} \mu_{2}(f) \mid f:(X, d) \rightarrow\left([0,1], d_{E}\right) \text { nonexpansive }\right\} .
$$

Definition (Kantorovich Lifting)

Let Λ be a set of monotone predicate liftings that is closed under duals.
For $R: A \nrightarrow B, K_{\Lambda} R: T A \rightarrow T B$ is given by

$$
K_{\Lambda} R\left(t_{1}, t_{2}\right)=\sup \left\{\lambda_{A}(f)\left(t_{1}\right)-\lambda_{B}(g)\left(t_{2}\right) \mid \lambda \in \Lambda,(f, g) \text { is } R \text {-nonexpansive }\right\}
$$

where (f, g) is R-nonexpansive if $f(a)-g(b) \leq R(a, b)$ for all $a \in A, b \in B$.

The Kantorovich Lifting

For $\mu_{1}, \mu_{2} \in \mathrm{D} X$ and $d: X \rightarrow X$ a metric,

$$
K d\left(\mu_{1}, \mu_{2}\right)=\sup \left\{\mathbb{E} \mu_{1}(f)-\mathbb{E} \mu_{2}(f) \mid f:(X, d) \rightarrow\left([0,1], d_{E}\right) \text { nonexpansive }\right\} .
$$

Definition (Kantorovich Lifting)

Let Λ be a set of monotone predicate liftings that is closed under duals.
For $R: A \nrightarrow B, K_{\Lambda} R: T A \rightarrow T B$ is given by

$$
K_{\Lambda} R\left(t_{1}, t_{2}\right)=\sup \left\{\lambda_{A}(f)\left(t_{1}\right)-\lambda_{B}(g)\left(t_{2}\right) \mid \lambda \in \Lambda,(f, g) \text { is } R \text {-nonexpansive }\right\}
$$

where (f, g) is R-nonexpansive if $f(a)-g(b) \leq R(a, b)$ for all $a \in A, b \in B$.

Theorem

K_{Λ} is a lax extension. If all $\lambda \in \Lambda$ are nonexpansive, then K_{Λ} is nonexpansive.

The Wasserstein Lifting

Definition (Wasserstein lifting)

Let Λ be a set of monotone predicate liftings.
For $R: A \rightarrow B, W_{\Lambda} R: T A \rightarrow T B$ is given by

$$
W_{\Lambda} R\left(t_{1}, t_{2}\right)=\sup _{\lambda \in \Lambda} \inf \left\{\lambda_{A \times B}(R)(t) \mid t \in T(A \times B), T \pi_{1}(t)=t_{1}, T \pi_{2}(t)=t_{2}\right\}
$$

The Wasserstein Lifting

Definition (Wasserstein lifting)

Let Λ be a set of monotone predicate liftings.
For $R: A \nrightarrow B, W_{\Lambda} R: T A \rightarrow T B$ is given by

$$
W_{\Lambda} R\left(t_{1}, t_{2}\right)=\sup _{\lambda \in \Lambda} \inf \left\{\lambda_{A \times B}(R)(t) \mid t \in T(A \times B), T \pi_{1}(t)=t_{1}, T \pi_{2}(t)=t_{2}\right\}
$$

Suppose T preserves weak pullbacks and for each $\lambda \in \Lambda$,

$$
\lambda_{X}\left(0_{X}\right)=0_{T X} \quad \text { and } \quad \lambda_{X}(f \oplus g) \leq \lambda_{X}(f) \oplus \lambda_{X}(g)
$$

Theorem

W_{Λ} is a lax extension. If all $\lambda \in \Lambda$ are nonexpansive, then W_{Λ} is nonexpansive.

Wasserstein Examples

Example (Wasserstein for distributions)

D has a nonexpansive fuzzy lax extension $W=W_{\{\lambda\}}$, where $\lambda_{X}(f)(\mu)=\mathbb{E} \mu(f)$.

Wasserstein Examples

Example (Wasserstein for distributions)

D has a nonexpansive fuzzy lax extension $W=W_{\{\lambda\}}$, where $\lambda_{X}(f)(\mu)=\mathbb{E} \mu(f)$.

Example (Hausdorff lifting)

For the Hausdorff lifting H of \mathcal{P}, we have $H=W_{\{\lambda\}}$, where $\lambda_{X}(f)(A)=\sup f[A]$.

Wasserstein Examples

Example (Wasserstein for distributions)

D has a nonexpansive fuzzy lax extension $W=W_{\{\lambda\}}$, where $\lambda_{X}(f)(\mu)=\mathbb{E} \mu(f)$.

Example (Hausdorff lifting)

For the Hausdorff lifting H of \mathcal{P}, we have $H=W_{\{\lambda\}}$, where $\lambda_{X}(f)(A)=\sup f[A]$.

Example (Convex powersets)

$\mathcal{C} X=$ nonempty convex subsets of $\mathrm{D} X$.
\mathcal{C} has a nonexpansive fuzzy lax extension $L=W_{\{\lambda\}}$, where $\lambda_{X}(f)(A)=\sup _{\mu \in A} \mathbb{E} \mu(f)$.

Wasserstein Examples

Example (Wasserstein for distributions)

D has a nonexpansive fuzzy lax extension $W=W_{\{\lambda\}}$, where $\lambda_{X}(f)(\mu)=\mathbb{E} \mu(f)$.

Example (Hausdorff lifting)

For the Hausdorff lifting H of \mathcal{P}, we have $H=W_{\{\lambda\}}$, where $\lambda_{X}(f)(A)=\sup f[A]$.

Example (Convex powersets)

$\mathcal{C} X=$ nonempty convex subsets of $\mathrm{D} X$.
\mathcal{C} has a nonexpansive fuzzy lax extension $L=W_{\{\lambda\}}$, where $\lambda_{X}(f)(A)=\sup _{\mu \in A} \mathbb{E} \mu(f)$.

One can show that in fact $L=H \circ W=H \circ K . \longleftarrow$ Mio/Vignudelli 2020

Lax Extensions as Kantorovich Liftings

Goal

Given a fuzzy lax extension L, find a set Λ such that $L=K_{\Lambda}$.

Lax Extensions as Kantorovich Liftings

Goal

Given a fuzzy lax extension L, find a set Λ such that $L=K_{\Lambda}$.

Idea

If the functor T is finitary, is has a finitary presentation:

- a signature Σ of operations with given finite arities
- for each $\sigma \in \Sigma$ of arity n a natural transformation $\sigma:(-)^{n} \Rightarrow T$
such that every element of $T X$ has the form $\sigma_{X}\left(x_{1}, \ldots, x_{n}\right)$ for some $\sigma \in \Sigma$.

Moss Liftings

Definition

Let $\sigma \in \Sigma$ be n-ary. The Moss lifting $\mu^{\sigma}: \mathbf{Q}^{n} \Rightarrow \mathrm{Q} \circ T$ is defined as follows:

$$
\mu_{X}^{\sigma}\left(f_{1}, \ldots, f_{n}\right)(t)=\operatorname{Lev}_{X}\left(\sigma_{\mathrm{QX}}\left(f_{1}, \ldots, f_{n}\right), t\right)
$$

where $\mathrm{ev}_{X}: \mathrm{Q} X \rightarrow X$ is given by $\mathrm{ev}_{X}(f, x)=f(x)$.

Moss Liftings

Definition

Let $\sigma \in \Sigma$ be n-ary. The Moss lifting $\mu^{\sigma}: \mathbf{Q}^{n} \Rightarrow \mathrm{Q} \circ T$ is defined as follows:

$$
\mu_{X}^{\sigma}\left(f_{1}, \ldots, f_{n}\right)(t)=\operatorname{Lev}_{X}\left(\sigma_{\mathrm{QX}}\left(f_{1}, \ldots, f_{n}\right), t\right)
$$

where $\mathrm{ev}_{X}: \mathrm{Q} X \rightarrow X$ is given by $\mathrm{ev}_{X}(f, x)=f(x)$.

Theorem

We have $L=K_{\Lambda}$, where $\Lambda=\left\{\mu^{\sigma} \mid \sigma \in \Sigma\right\} \cup\left\{\overline{\mu^{\sigma}} \mid \sigma \in \Sigma\right\}$ is the set of all Moss liftings and their duals.

Moreover, L is nonexpansive iff all Moss liftings are nonexpansive.

Finitary Separability

What about non-finitary functors?

Note that every set functor T has a finitary part T_{ω} given by

$$
T_{\omega} X=\bigcup\{T i[T Y] \mid Y \subseteq X \text { finite, } i: Y \rightarrow X \text { inclusion }\} .
$$

Finitary Separability

What about non-finitary functors?

Note that every set functor T has a finitary part T_{ω} given by

$$
T_{\omega} X=\bigcup\{T i[T Y] \mid Y \subseteq X \text { finite, } i: Y \rightarrow X \text { inclusion }\} .
$$

Definition

A fuzzy lax extension L of T is finitarily separable if for every set $X, T_{\omega} X$ is a dense subset of $T X$ wrt. to the pseudometric $L \Delta_{X}$.

Example

The Kantorovich lifting K of D is finitarily separable.

Finitary Separability

What about non-finitary functors?

Note that every set functor T has a finitary part T_{ω} given by

$$
T_{\omega} X=\bigcup\{T i[T Y] \mid Y \subseteq X \text { finite, } i: Y \rightarrow X \text { inclusion }\} .
$$

Definition

A fuzzy lax extension L of T is finitarily separable if for every set $X, T_{\omega} X$ is a dense subset of $T X$ wrt. to the pseudometric $L \Delta_{X}$.

Example

The Kantorovich lifting K of D is finitarily separable.

Theorem

If L is finitarily separable, then the Moss liftings for T_{ω} extend to a set Λ of predicate liftings for T such that $L=K_{\Lambda}$.

Real-valued Coalgebraic Modal Logic

Syntax of \mathcal{L}_{Λ}

$$
\varphi, \psi::=c|\varphi \ominus c| \neg \varphi|\varphi \wedge \psi| \lambda\left(\varphi_{1}, \ldots, \varphi_{n}\right) \quad(c \in[0,1], \lambda \in \Lambda)
$$

Semantics over a coalgebra $\alpha: A \rightarrow T A$

Real-valued Coalgebraic Modal Logic

Syntax of \mathcal{L}_{Λ}

$$
\varphi, \psi::=c|\varphi \ominus c| \neg \varphi|\varphi \wedge \psi| \lambda\left(\varphi_{1}, \ldots, \varphi_{n}\right) \quad(c \in[0,1], \lambda \in \Lambda)
$$

Semantics over a coalgebra $\alpha: A \rightarrow T A$

$$
\begin{array}{rlrl}
\llbracket c \rrbracket(a) & =c & \llbracket \varphi \ominus c \rrbracket(a) & =\max (\llbracket \varphi \rrbracket(a)-c, 0) \\
\llbracket\urcorner \varphi \rrbracket(a) & =1-\llbracket \varphi \rrbracket(a) & \llbracket \varphi \wedge \psi \rrbracket(a) & =\min (\llbracket \varphi \rrbracket(a), \llbracket \psi \rrbracket(a)) \\
\llbracket \lambda\left(\varphi_{1}, \ldots, \varphi_{n}\right) \rrbracket(a)= & \lambda_{A}\left(\llbracket \varphi_{1} \rrbracket, \ldots, \llbracket \varphi_{n} \rrbracket\right)(\alpha(a))
\end{array}
$$

Real-valued Coalgebraic Modal Logic

Syntax of \mathcal{L}_{Λ}

$$
\varphi, \psi::=c|\varphi \ominus c| \neg \varphi|\varphi \wedge \psi| \lambda\left(\varphi_{1}, \ldots, \varphi_{n}\right) \quad(c \in[0,1], \lambda \in \Lambda)
$$

Semantics over a coalgebra $\alpha: A \rightarrow T A$

$$
\begin{aligned}
& \llbracket c \rrbracket(a)=c \quad \llbracket \varphi \ominus c \rrbracket(a)=\max (\llbracket \varphi \rrbracket(a)-c, 0) \\
& \llbracket \neg \varphi \rrbracket(a)=1-\llbracket \varphi \rrbracket(a) \quad \llbracket \varphi \wedge \psi \rrbracket(a)=\min (\llbracket \varphi \rrbracket(a), \llbracket \psi \rrbracket(a)) \\
& \llbracket \lambda\left(\varphi_{1}, \ldots, \varphi_{n}\right) \rrbracket(a)=\lambda_{A}\left(\llbracket \varphi_{1} \rrbracket, \ldots, \llbracket \varphi_{n} \rrbracket\right)(\alpha(a))
\end{aligned}
$$

Definition

Λ-logical distance: $d^{\Lambda}(a, b)=\sup \left\{|\llbracket \varphi \rrbracket(a)-\llbracket \varphi \rrbracket(b)| \mid \varphi \in \mathcal{L}_{\Lambda}\right\}$.

A Hennessy-Milner Theorem

Theorem (Fixpoint approximation)

Let L be a non-expansive and finitarily separable lax extension of T and let α and β be T-coalgebras. least fixpoint of $R \mapsto L R \circ(\alpha \times \beta)$

Put $d_{0}=0$ and $d_{n+1}=L d_{n} \circ(\alpha \times \beta)$ for $n<\omega$. Then $d_{\alpha, \beta}^{L}=\sup _{n<\omega} d_{n}$.

A Hennessy-Milner Theorem

Theorem (Fixpoint approximation)

Let L be a non-expansive and finitarily separable lax extension of T and let α and β be T-coalgebras. least fixpoint of $R \mapsto L R \circ(\alpha \times \beta)$

Put $d_{0}=0$ and $d_{n+1}=L d_{n} \circ(\alpha \times \beta)$ for $n<\omega$. Then $d_{\alpha, \beta}^{L}=\sup _{n<\omega} d_{n}$.

For Kantorovich extensions K_{Λ}, this is known to imply $d^{K_{\Lambda}}=d^{\Lambda}$.

A Hennessy-Milner Theorem

Theorem (Fixpoint approximation)

Let L be a non-expansive and finitarily separable lax extension of T and let α and β be T-coalgebras.

least fixpoint of $R \mapsto L R \circ(\alpha \times \beta)$

Put $d_{0}=0$ and $d_{n+1}=L d_{n} \circ(\alpha \times \beta)$ for $n<\omega$. Then $d_{\alpha, \beta}^{L}=\sup _{n<\omega} d_{n}$.

For Kantorovich extensions K_{Λ}, this is known to imply $d^{K_{\Lambda}}=d^{\Lambda}$.
As a corollary, we get:

Theorem (Hennessy-Milner Theorem for Lax Extensions)

Let L be a non-expansive finitarily separable fuzzy lax extension. Then there exists a set Λ of monotone non-expansive predicate liftings such that $L=K_{\Lambda}$ and $d^{\Lambda}=d^{L}$.
$\Longrightarrow \mathcal{L}_{\Lambda}$ is a characteristic logic for L.

A Quantified Coalgebraic van Benthem Theorem (FoSSaCS'21)

Paul Wild and Lutz Schröder

A Quantified Quantitative Coalgebraic van Benthem Theorem (FoSSaCS'21)

Paul Wild and Lutz Schröder

Introduction - Bisimulation invariance

Bisimilar states: indistinguishable in terms of successor behaviour.

Bisimulation invariant properties:

$$
\begin{gathered}
\diamond_{a} \varphi=\text { there exists an } a \text {-successor satisfying } \varphi \\
\square_{b \varphi}=\text { all } b \text {-successors satisfy } \varphi
\end{gathered}
$$

Introduction - Modal logic

A syntax for bisimulation-invariant properties:

$$
\varphi, \psi::=\top|\varphi \wedge \psi| \neg \varphi\left|\diamond_{a} \varphi\right| \square_{a} \varphi \quad(a \text { label })
$$

Lemma

Every modal formula is bisimulation-invariant.

Introduction - Modal logic

A syntax for bisimulation-invariant properties:

$$
\varphi, \psi::=\top|\varphi \wedge \psi| \neg \varphi\left|\diamond_{a} \varphi\right| \square_{a} \varphi \quad(a \text { label })
$$

Lemma

Every modal formula is bisimulation-invariant.

Theorem (Hennessy-Milner Theorem)

In finitely branching systems, two states agreeing on all modal formulae are bisimilar.

Introduction - Modal logic

A syntax for bisimulation-invariant properties:

$$
\varphi, \psi::=\top|\varphi \wedge \psi| \neg \varphi\left|\diamond_{a} \varphi\right| \square_{a} \varphi \quad(a \text { label })
$$

Lemma

Every modal formula is bisimulation-invariant.

Theorem (Hennessy-Milner Theorem)

In finitely branching systems, two states agreeing on all modal formulae are bisimilar.

Theorem (van Benthem Theorem)

If a first-order property is bisimulation-invariant, it is equivalent to a modal formula.

Introduction - Markov chains

Behavioural distance d with $d(\bullet, \boldsymbol{\Delta})=0.01$
Real-valued probabilistic modal logic with $\llbracket \varphi \rrbracket(x) \in[0,1]$:

- $\mathbb{E} \varphi=$ expected truth value of φ over successors
- Modal formulae are non-expansive wrt. $d: \llbracket \varphi \rrbracket(x)-\llbracket \varphi \rrbracket(y) \leq d(x, y)$

Probabilistic Hennessy-Milner Theorem: [van Breugel/Worrell 2005]
Probabilistic van Benthem Theorem: [Wild/Schröder/Pattinson/König 2019]

Introduction - Simulations

Syntax for properties preserved under simulation:

$$
\varphi, \psi::=\perp|\top| \varphi \wedge \psi|\varphi \vee \psi| \diamond_{a} \varphi \quad(a \text { label })
$$

Hennessy-Milner Theorem for simulations: [van Glabbeek 2001] van Benthem Theorem for simulations: [Lutz/Piro/Wolter 2010]

Our Contribution - Overview

Goal

General versions of the Hennessy-Milner and van Benthem Theorems that have all the previous examples as instances.

Our Contribution - Overview

Goal

General versions of the Hennessy-Milner and van Benthem Theorems that have all the previous examples as instances.

Key Ingredients

- an algebra of truth values \rightsquigarrow value co-quantale \mathcal{V}
- abstraction over system types $\rightsquigarrow T$-coalgebras of a functor T
- a representation of the modalities \rightsquigarrow set of predicate liftings Λ

Our Contribution - Overview

Goal

General versions of the Hennessy-Milner and van Benthem Theorems that have all the previous examples as instances.

Key Ingredients

- an algebra of truth values \rightsquigarrow value co-quantale \mathcal{V}
- abstraction over system types $\rightsquigarrow T$-coalgebras of a functor T
- a representation of the modalities \rightsquigarrow set of predicate liftings Λ

Idea

Modal logic \mathcal{L}_{Λ} characterizes non-expansiveness wrt. behavioural distance d^{K}.

Value co-quantales

Value co-quantale \mathcal{V}

- Completely distributive lattice (V, \leq)
- Monoid structure \oplus that distributes over meets: $a \oplus \bigwedge_{i \in I} b_{i}=\bigwedge_{i \in I} a \oplus b_{i}$.
- Subtraction $a \ominus b \leq c \Longleftrightarrow a \leq b \oplus c$.
- Filter of positive elements $\{\varepsilon \mid \varepsilon \gg 0\}$.

Key properties

$$
0=\bigwedge\{\varepsilon \mid \varepsilon \gg 0\} \quad \text { and } \quad \varepsilon \gg 0 \Longrightarrow \exists \delta \gg 0 . \delta \oplus \delta \leq \varepsilon
$$

Value co-quantales

Value co-quantale \mathcal{V}

- Completely distributive lattice (V, \leq)
- Monoid structure \oplus that distributes over meets: $a \oplus \bigwedge_{i \in I} b_{i}=\bigwedge_{i \in I} a \oplus b_{i}$.
- Subtraction $a \ominus b \leq c \Longleftrightarrow a \leq b \oplus c$.
- Filter of positive elements $\{\varepsilon \mid \varepsilon \gg 0\}$.

Key properties

$$
0=\bigwedge\{\varepsilon \mid \varepsilon \gg 0\} \quad \text { and } \quad \varepsilon \gg 0 \Longrightarrow \exists \delta \gg 0 . \delta \oplus \delta \leq \varepsilon
$$

Main Examples

$$
2=\{0,1\} \quad[0,1] \quad\{[a, b] \mid 0 \leq a \leq b \leq 1\}
$$

Coalgebras

$$
\gamma: X \rightarrow T X \quad(T \text { endofunctor on Set })
$$

Some choices of T :

- LTS with edge labels in $A: T X=\mathcal{P}(A \times X)$
- Markov chains with deadlocks: $T X=1+\mathcal{D} X$
- Metric transition systems with state labels in $\left(S, d_{S}\right): T X=S \times \mathcal{P} X$

Quantitative Coalgebraic Modal Logic

Predicate Lifting

$\lambda_{X}:(X \rightarrow V) \rightarrow(T X \rightarrow V)$, natural, monotone and non-expansive

Quantitative Coalgebraic Modal Logic

Predicate Lifting

$\lambda_{X}:(X \rightarrow V) \rightarrow(T X \rightarrow V)$, natural, monotone and non-expansive

Syntax of QCML

$$
\varphi, \psi::=c|\varphi \oplus c| \varphi \ominus c|\varphi \wedge \psi| \varphi \vee \psi \mid \lambda \varphi \quad(c \in V, \lambda \in \Lambda)
$$

Quantitative Coalgebraic Modal Logic

Predicate Lifting

$\lambda_{X}:(X \rightarrow V) \rightarrow(T X \rightarrow V)$, natural, monotone and non-expansive

Syntax of QCML

$$
\varphi, \psi::=c|\varphi \oplus c| \varphi \ominus c|\varphi \wedge \psi| \varphi \vee \psi \mid \lambda \varphi \quad(c \in V, \lambda \in \Lambda)
$$

Semantics over $\gamma: X \rightarrow T X$
$\llbracket \varphi \rrbracket_{\gamma}: X \rightarrow V$ recursively defined with $\llbracket \lambda \varphi \rrbracket_{\gamma}=\lambda_{X}\left(\llbracket \varphi \rrbracket_{\gamma}\right) \circ \gamma$.

Quantitative Coalgebraic Modal Logic

Predicate Lifting

$\lambda_{X}:(X \rightarrow V) \rightarrow(T X \rightarrow V)$, natural, monotone and non-expansive

Syntax of QCML

$$
\varphi, \psi::=c|\varphi \oplus c| \varphi \ominus c|\varphi \wedge \psi| \varphi \vee \psi \mid \lambda \varphi \quad(c \in V, \lambda \in \Lambda)
$$

Semantics over $\gamma: X \rightarrow T X$
$\llbracket \varphi \rrbracket_{\gamma}: X \rightarrow V$ recursively defined with $\llbracket \lambda \varphi \rrbracket_{\gamma}=\lambda_{X}\left(\llbracket \varphi \rrbracket_{\gamma}\right) \circ \gamma$.

Example

Probabilistic modal logic: $\mathbb{E} X(f)(\mu)=$ expected value of f under μ

Behavioural Distance via Relation Lifting

Kantorovich Lifting

$$
(R: A \times B \rightarrow V) \quad \mapsto \quad\left(K_{\Lambda}(R): T A \times T B \rightarrow V\right)
$$

Behavioural Distance via Relation Lifting

Kantorovich Lifting

$$
\begin{gathered}
(R: A \times B \rightarrow V) \mapsto\left(K_{\Lambda}(R): T A \times T B \rightarrow V\right) \\
K_{\Lambda}(R)\left(t_{1}, t_{2}\right)=\bigvee\left\{\lambda_{A}(f)\left(t_{1}\right) \ominus \lambda_{B}(g)\left(t_{2}\right) \mid \lambda \in \Lambda, \quad \forall a, b . f(a) \ominus g(b) \leq R(a, b)\right\}
\end{gathered}
$$

Behavioural Distance via Relation Lifting

Kantorovich Lifting

$$
\begin{gathered}
(R: A \times B \rightarrow V) \quad \mapsto \quad\left(K_{\Lambda}(R): T A \times T B \rightarrow V\right) \\
K_{\Lambda}(R)\left(t_{1}, t_{2}\right)=\bigvee\left\{\lambda_{A}(f)\left(t_{1}\right) \ominus \lambda_{B}(g)\left(t_{2}\right) \mid \lambda \in \Lambda, \quad \forall a, b . f(a) \ominus g(b) \leq R(a, b)\right\}
\end{gathered}
$$

Behavioural distance as least fixed point

$$
d^{K}=K_{\Lambda}\left(d^{K}\right) \circ(\gamma \times \gamma)
$$

$$
d^{K}(x, x)=0 \quad \text { and } \quad d^{K}(x, z) \leq d^{K}(x, y) \oplus d^{K}(y, z)
$$

Behavioural Distance via Relation Lifting

Kantorovich Lifting

$$
\begin{gathered}
(R: A \times B \rightarrow V) \quad \mapsto \quad\left(K_{\Lambda}(R): T A \times T B \rightarrow V\right) \\
K_{\Lambda}(R)\left(t_{1}, t_{2}\right)=\bigvee\left\{\lambda_{A}(f)\left(t_{1}\right) \ominus \lambda_{B}(g)\left(t_{2}\right) \mid \lambda \in \Lambda, \quad \forall a, b . f(a) \ominus g(b) \leq R(a, b)\right\}
\end{gathered}
$$

Behavioural distance as least fixed point

$$
\begin{gathered}
d^{K}=K_{\Lambda}\left(d^{K}\right) \circ(\gamma \times \gamma) \\
d^{K}(x, x)=0 \quad \text { and } \quad d^{K}(x, z) \leq d^{K}(x, y) \oplus d^{K}(y, z) \\
d^{K}(x, y)=d^{K}(y, x) \text { if } \Lambda \text { closed under duals }
\end{gathered}
$$

Quantitative Hennessy-Milner Theorem

Theorem (Quantitative Hennessy-Milner theorem)

Let Λ be finite and \mathcal{V} totally bounded and continuous from below.
If T is finitary, then

$$
d^{K}(a, b)=\bigvee\{\llbracket \varphi \rrbracket(a) \ominus \llbracket \varphi \rrbracket(b) \mid \varphi \text { a modal formula }\} .
$$

Quantitative van Benthem Theorem

Quantitative Coalgebraic Predicate Logic

$$
\varphi, \psi::=c|x=y| \varphi \oplus c|\varphi \ominus c| \varphi \wedge \psi|\varphi \vee \psi| \exists x . \varphi|\forall x . \varphi| x \lambda\lceil y: \varphi\rceil
$$

Theorem (Quantitative van Benthem theorem)

Let Λ be finite and \mathcal{V} totally bounded. Let $\varphi \in Q C P L$ be non-expansive wrt. d^{K}.
For every $\varepsilon \gg 0$ there exists a modal formula ψ such that for all γ, x :

$$
\llbracket \varphi \rrbracket_{\gamma}(x) \ominus \llbracket \psi \rrbracket_{\gamma}(x) \leq \varepsilon \quad \text { and } \quad \llbracket \psi \rrbracket_{\gamma}(x) \ominus \llbracket \varphi \rrbracket_{\gamma}(x) \leq \varepsilon
$$

Instantiations

Existing instances of Hennessy-Milner and van Benthem theorems we cover:

- Classical modal logic with $\mathcal{V}=2$ and $T X=\mathcal{P}(A \times X)$
- Probabilistic modal logic with $\mathcal{V}=[0,1]$ and $T X=1+\mathcal{D} X$
- Two-valued $(\mathcal{V}=2)$ coalgebraic modal logic [Schröder/Pattinson/Litak 2017]

Instantiations

Existing instances of Hennessy-Milner and van Benthem theorems we cover:

- Classical modal logic with $\mathcal{V}=2$ and $T X=\mathcal{P}(A \times X)$
- Probabilistic modal logic with $\mathcal{V}=[0,1]$ and $T X=1+\mathcal{D} X$
- Two-valued $(\mathcal{V}=2)$ coalgebraic modal logic [Schröder/Pattinson/Litak 2017]

New instances include:

- Metric modal logic with $T X=S \times \mathcal{P} X$ and modalities based on d_{S}.
- For $\mathcal{V}=\{[a, b] \mid 0 \leq a \leq b \leq 1\}$: convex-nondeterministic metric modal logic.
- Simulation-based versions of all the above.

