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The van Benthem Theorem

Theorem
Every bisimulation invariant first-order formula can be expressed by modal formulas.

Goal: formalize and prove this theorem in terms of fuzzy logic.
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Fuzzy Modal Logic (1)

Theorem
Every bisimulation invariant first-order formula can be expressed by modal formulas.

Syntax:
φ,ψ ::= c | p | ¬φ | φ⊖ c | φ ∧ ψ | ♢φ

where c ∈ Q ∩ [0, 1] and p ∈ At.

Semantics: given over fuzzy relational models

A = (A, (pA)p∈At, R
A)

• A is the set of states.
• pA : A → [0, 1] is the interpretation for p ∈ At.
• RA : A×A → [0, 1] is the transition relation. 3



Fuzzy Modal Logic (2)

Formulas are interpreted as functions A → [0, 1]:

• constants: c(a) = c

• propositions: p(a) = pA(a)
• negation: (¬φ)(a) = 1 − φ(a)
• truncated subtraction: (φ⊖ c)(a) = max(φ(a) − c, 0)
• conjunction: (φ ∧ ψ)(a) = min(φ(a), ψ(a))
• modality: (♢φ)(a) = supa′∈A min(RA(a, a′), φ(a′))

Notations: a ∧ b = min(a, b), a ∨ b = max(a, b),
∨

= sup,
∧

= inf.
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Fuzzy First Order Logic

Theorem
Every bisimulation invariant first-order formula can be expressed by modal formulas.

Syntax:
φ,ψ ::= c | p(x) | R(x, y) | x = y | ¬φ | φ⊖ c | φ ∧ ψ | ∃x.φ

where c ∈ Q ∩ [0, 1], p ∈ At, x, y variables.

Semantics:

Let η : Var → A. φ(η) is defined inductively:

• Boolean connectives and equality as expected
• p(x)(η) = pA(η(x)), R(x, y)(η) = RA(η(x), η(y))
• existential quantification: (∃x.φ)(η) =

∨
a∈A φ(η[x 7→ a])
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Bisimulation Invariance

Theorem
Every bisimulation invariant first-order formula can be expressed by modal formulas.

a

0.5
��

b

0.6



c

d(a, b) = 0.1

• In fuzzy logic we can quantify how similarly two states behave.
• This gives rise to behavioural distance d.
• Bisimilar states have distance 0.
• φ bisimulation invariant ⇐⇒ φ non-expansive wrt. d:

|φ(a) − φ(b)| ≤ d(a, b) for all states a, b.
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Modal Approximation

Theorem
Every bisimulation invariant first-order formula can be expressed by modal formulas.

• In classical modal logic, there are only finitely many modal formulas of fixed rank
k (up to equivalence).

• In fuzzy modal logic, this is no longer true, because there are infinitely many truth
constants c ∈ Q ∩ [0, 1].

• Thus, instead of showing that the bisimulation invariant formula φ is equivalent to
some modal φ of rank k, we show that it can be approximated by such formulas:

∀ε > 0 ∃ψε modal of rank k ∥φ− ψε∥∞ ≤ ε.
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A Fuzzy van Benthem Theorem

Theorem
Every fuzzy first-order formula φ that is non-expansive wrt. behavioural distance dG

can be approximated by fuzzy modal formulas of some fixed rank k.

Next: define behavioural distance dG via a bisimulation game.
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Game-based Distance (1)

Bisimulation game for fuzzy logic:

• The game is parametrised by some ε ≥ 0
• Two players, spoiler S and duplicator D
• Configurations: pairs of states (a, b)
• Moves:

• S picks a′ such that R(a, a′) > ε

• D picks b′ such that R(b, b′) ≥ R(a, a′) − ε

• New configuration: (a′, b′)
S may also swap the two sides before his move

• Whoever is unable to move, loses
• Winning condition for D before every round:

|p(a) − p(b)| ≤ ε for all p ∈ At.
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Game-based Distance (2)

The corresponding distances are:

dG(a, b) =
∧

{ε | D wins the ε-game for (a, b)}

dG
n (a, b) =

∧
{ε | D wins the n-round ε-game for (a, b)}

a

0.5
��

b

0.6



c

dG(a, b) = 1

D wins for ε = 0.1, but loses for ε < 0.1.
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Logic-based Distance

Using modal formulas, we can define:

dL(a, b) =
∨

φ modal
|φ(a) − φ(b)|

dL
n(a, b) =

∨
φ modal, rkφ≤n

|φ(a) − φ(b)|

a

0.5
��

b

0.6



c

dL
1 (a, b) = 0.1 with φ = ♢1
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Function-based Distance

Behavioural distance via a Kantorovich construction:

dK
0 (a, b) = 0

dK
n+1(a, b) =

∨
p∈At

|p(a) − p(b)| ∨
∨

f : (A,dK
n )→[0,1] nonexp.

|(♢f)(a) − (♢f)(b)|

(♢f)(a) =
∨

a′∈A

R(a, a′) ∧ f(a′)

a

0.5
��

b

0.6



c

dK
1 (a, b) = 0.1 with f = x 7→ 1.
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Equivalence of Distances

Theorem
Let A be a model and n ≥ 0. Then

1. dG
n = dK

n = dL
n =: dn on A.

2. (A, dn) is a totally bounded pseudometric space.
3. The rank n formulas are a dense subset of the space of non-expansive maps

(A, dn) → [0, 1].
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Coalgebraic View

Consider the set functors F and G:

FX = [0, 1]X , Ff(g)(y) =
∨

f(x)=y

g(x)

where f : X → Y, g ∈ [0, 1]X , y ∈ Y .

GX = [0, 1]At × FX

Models A = (A, (pA)p∈At, R
A) are coalgebras α : A → GA:

α(a) = (λp.pA(a), λa′.RA(a, a′)).
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Uniform Approximation

• Fn := Gn({∗}) is the set of all n-step behaviours.
• We can construct a model F on the set F :=

⋃
n≥0 Fn:

pF (h, g) = h(p), RF ((h, g), y) =

g(y), if y ∈ Fn,
0, otherwise.

• For every model A, there is a map πn : A → F such that

dn(a, πn(a)) = 0.

• Thus:
∥φ− ψ∥∞ ≤ ε on F =⇒ ∥φ− ψ∥∞ ≤ ε on all models A.
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A characterization theorem for a modal description logic
(IJCAI’19)

Paul Wild, Lutz Schröder, Dirk Pattinson and Barbara König
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The logic ALC(P) - Syntax

Quantitative Probabilistic ALC:

C,D ::= q | A | C ⊖ q | ¬C | C ⊓D | P r. C

• rational constants q ∈ Q ∩ [0, 1]
• basic concept names A ∈ NC

• subtraction of constants ⊖
• expected value over r-successors P (r ∈ NR)

Loud ⊓ P hasSource. (Large ⊓ P hasMood.Angry)
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The logic ALC(P) - Semantics

Models: I = (∆I , (AI)A∈NC , (rI)r∈NR), where

• ∆I is a set (the domain)
• AI : ∆I → [0, 1]
• rI : ∆I × ∆I → [0, 1]

such that
∑

a′∈∆I

rI(a, a′) ∈ {0, 1} for each a ∈ ∆I .

In other words, for role r each state a is either

• r-blocking – ra := rI(a, ·) is zero; or
• r-transient – ra is a discrete probability distribution on ∆I .
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The logic ALC(P) - Semantics

Interpretations: CI : ∆I → [0, 1], where

qI(a) = q

(C ⊖ q)I(a) = max(CI(a) − q, 0)
(¬C)I(a) = 1 − CI(a)

(C ⊓D)I(a) = min(CI(a), DI(a))
(P r. C)I(a) = Era(CI) =

∑
a′∈∆I ra(a′) · CI(a′)
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Bisimulation Invariance

From now on, restrict to a single role π.

• Classically, bisimulations are used to tell whether two states exhibit the same
behaviour.

• However, consider the following states:

a1

0.5

��

0.5

��

b1

0.51
		

0.49
��

a2

1

XX a3 b2

1

XX b3

d(a1, b1) = 0.01

• With a behavioural distance d we can quantify how similarly two states behave.
Bisimilar states have distance 0. 19



Towards a Characterization Theorem

• Defer the precise definition of bisimulation distance d for now.
• φ bisimulation invariant ⇐⇒ φ non-expansive wrt. d:

|φ(a) − φ(b)| ≤ d(a, b) for all states a, b.

• Characterize ALC(P) using bisimulation invariance:
• All ALC(P)-concepts are bisimulation invariant.
• Every bisimulation invariant property can be approximated by ALC(P)-concepts.
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Correspondence Language

Quantitative probabilistic first-order logic (FO(P)):

φ,ψ ::= q | A(x) | x = y | φ⊖ q | ¬φ | φ ∧ ψ | ∃x. φ | xP⌈y : φ⌉

Semantics:

A(xi)(ā) = AI(ai)
(∃x0. φ(x0, x1, . . . , xn))(ā) = sup{φ(a0, ā) | a0 ∈ ∆I}

(xiP⌈y : φ(y, x1, . . . , xn)⌉)(ā) = Erai
(φ( · , ā))

Example:

xP⌈z : z = y⌉ = ‘the successor of x is probably y’
= probability of reaching y from x in one step
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Modal Approximation

• In classical ALC, there are only finitely many modal formulas of fixed rank k (up
to equivalence).

• In fuzzy modal logic, this is no longer true, because there are infinitely many truth
constants c ∈ Q ∩ [0, 1].

• Thus, instead of showing that the bisimulation invariant formula φ is equivalent to
some modal φ of rank k, we show that it can be approximated by such formulas:

∀ε > 0 ∃ψε modal of rank k ∥φ− ψε∥∞ ≤ ε.
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Bisimulation game

Game on models I,J played by Spoiler (S) and Duplicator (D):

• Configurations: triples (a, b, ε), a ∈ ∆I , b ∈ ∆J , ε ∈ [0, 1].
• Moves:

• D picks µ ∈ Cpl(πa, πb)
• D picks a function ε′ : ∆I × ∆J → [0, 1] such that Eµ(ε′) ≤ ε

• S picks (a′, b′) with µ(a′, b′) > 0
• New configuration: (a′, b′, ε′(a′, b′))

• D wins if both states are blocking or ε = 1.
• S wins if exactly one state is blocking and ε < 1.
• Otherwise, D wins if she maintains the winning condition: |AI(a) −AJ (b)| ≤ ε

for all A ∈ NC.

Cpl(πa, πb): set of µ : ∆I × ∆J → [0, 1] with marginals πa and πb:

πa(a′) =
∑

b′ µ(a′, b′) πb(b′) =
∑

a′ µ(a′, b′) 23



Example game

a1

0.5

��

0.5

��

b1

0.51
		

0.49
��

a2

1

XX a3 b2

1

XX b3

• Initial configuration: (a1, b1, 0.01).
• First turn: D picks µ and ε′ as follows:

µ b2 b3

a2 0.5 0 0.5
a3 0.01 0.49 0.5

0.51 0.49

ε′ b2 b3

a2 0 1
a3 1 0

• Regardless of S’s choice, the rest of the game is deterministic.
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Game-based distance

dG(a, b) = inf{ε | D wins the game for (a, b, ε)}
dG

n (a, b) = inf{ε | D wins the n-round game for (a, b, ε)}

Lemma
Each ALC(P)-concept of rank n is depth-n bisimulation-invariant, that is

|C(a) − C(b)| ≤ dG
n (a, b).
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Logical Distance

Using modal formulas, we can define:

dL(a, b) = sup{|C(a) − C(b)| | C ∈ ALC(P)}
dL

n(a, b) = sup{|C(a) − C(b)| | C ∈ ALC(P), rkC ≤ n}

a1

0.5

��

0.5

��

b1

0.51
		

0.49
��

a2

1

XX a3 b2

1

XX b3

dL
2 (a, b) = 0.01 with C = PP1 26



Pseudometric Liftings

Let (X, d) be a pseudometric space. We define two pseudometrics on the space DX of
discrete probability measures on X.
Definition (Kantorovich distance)

d↑(π1, π2) = sup{|Eπ1(f) − Eπ2(f)| | f ∈ Pred(X, d)}

where Pred(X, d) is the set of nonexpansive maps (X, d) → [0, 1].

Definition (Wasserstein distance)

d↓(π1, π2) = inf{Eµ(d) | µ ∈ Cpl(π1, π2)}

These two pseudometrics liftings coincide:
Theorem (Kantorovich-Rubinstein duality)
For all π1, π2, d↑(π1, π2) = d↓(π1, π2). 27



Kantorovich and Wasserstein Distances

Behavioural distance via fixed point iteration:

dK
0 (a, b) = dW

0 (a, b) = 0
dK

n+1(a, b) = max( sup
A∈NC

|AI(a) −AI(b)|, (dK
n )↑(πa, πb))

dW
n+1(a, b) = max( sup

A∈NC

|AI(a) −AI(b)|, (dW
n )↓(πa, πb))

By Kantorovich-Rubinstein duality, dK
n = dW

n for all n.
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Equivalence of Distances and Density

Theorem
Let I be a model. Then for all n ≥ 0:

• dG
n = dW

n = dK
n = dL

n =: dn on A.
• The rank-n ALC(P)-concepts form a dense subset of the space Pred(∆I , dn) of

non-expansive maps (∆I , dn) → [0, 1].

This is proven by induction on n. Some intuition:

• dG
n = dW

n because the game is built to model W. distance.
• dW

n = dK
n by Kantorovich-Rubinstein duality.

• dK
n = dL

n follows from the density claim for n− 1.
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The Characterization Theorem

Theorem
Every bisimulation-invariant FO(P)-formula of rank at most n can be approximated
by ALC(P)-concepts of rank at most 3n.
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Characteristic logics for behavioural metrics via fuzzy lax
extensions (CONCUR’20)

Paul Wild and Lutz Schröder
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Introduction

Goal
Analyse the behaviour of transition systems involving quantitative data.

• Various system types can be modelled as coalgebras:
• Labelled transition systems α : A → P(L×A)
• Markov chains α : A → DA
• . . .

In general: α : A → TA for some set functor T

• Behavioural distances allow for a quantitative measure of process equivalence:
a1

a2 a3

b1

b2 b3

d(a1, b1) = ε
0.5 0.5 0.5 + ε 0.5 − ε
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Introduction

Goal
Analyse the behaviour of transition systems involving quantitative data.

• To define behavioural distances, we make use of lax extensions:
• Lax extensions give a coalgebraic account of bisimulation.
• Using a lax extension, lift the set functor T to a functor on pseudometrics.
• Behavioural distance arises from a coalgebraic fixpoint construction.

• We extract characteristic logics for these behavioural distances:
• Coalgebraic modal logics with modalities defined using L.
• Real-valued semantics give rise to logical distance.
• Logical distance = behavioural distance, amounting to a Hennessy-Milner theorem.
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Fuzzy Relations

Definition
A fuzzy relation is a map R : A×B → [0, 1], also written R : A→+ B.

Convention: a, b are related by R ⇐⇒ R(a, b) = 0.

Let R : A→+ B,S : B →+ C and f : A → B.

• Converse relation: R◦(b, a) = R(a, b).

• Graph of a function: Grf (a, b) =
{

0, if f(a) = b,

1, otherwise.

• Composition of relations: (R;S)(a, c) = infb∈B R(a, b) ⊕ S(b, c).

x ⊕ y = min(x + y, 1)

• ε-diagonal on a set: ∆ε,A(a1, a2) =
{
ε, if a1 = a2,
1, otherwise.
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Fuzzy Lax Extensions

Definition
A fuzzy lax extension maps R : A→+ B to LR : TA→+ TB such that:

(L0) L(R◦) = (LR)◦

(L1) R1 ≤ R2 ⇒ LR1 ≤ LR2

(L2) L(R;S) ≤ LR;LS
(L3) LGrf ≤ GrT f

We say that L is non-expansive, if additionally

(L4) L∆ε,A ≤ ∆ε,T A

where A,B,C are sets, R,R1, R2 : A→+ B, S : B →+ C, f : A → B, ε > 0.
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Properties of Fuzzy Lax Extensions

Lemma
L satisfies Axiom (L4) ⇐⇒ R 7→ LR is non-expansive w.r.t. the supremum metric.

Lemma
If d : X →+ X is a pseudometric, then so is Ld : TX →+ TX.

Thus, L gives rise to a functor lifting of T : Set → Set to a functor T : PMet → PMet.

category of pseudometric spaces and non-expansive maps
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The Hausdorff Lifting

Classically, bisimulations on Kripke frames arise via the Egli-Milner extension:

(U, V ) ∈ P(R) ⇐⇒ (∀a ∈ U.∃b ∈ V. (a, b) ∈ R) ∧ (∀b ∈ V.∃a ∈ U. (a, b) ∈ R).

P is a two-valued lax extension of the powerset functor P.

Replacing ∀ with sup, ∃ with inf, ∧ with max gives the Hausdorff lifting H:

HR(U, V ) = max(sup
a∈U

inf
b∈V

R(a, b), sup
b∈V

inf
a∈U

R(a, b)).

H is a non-expansive fuzzy lax extension of P.
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Quantitative Bisimulations

Definition
Let L be a lax extension of T , and let α : A → TA and β : B → TB be coalgebras.

1. R : A→+ B is an L-bisimulation if LR ◦ (α× β) ≤ R.

2. L-behavioural distance: dL
α,β = inf{R : A→+ B | R is an L-bisimulation}.

Equivalently, dL
α,β is the least fixed point of R 7→ LR ◦ (α× β).

=⇒ L-bisimulations can be used to prove upper bounds for behavioural distance.
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Fuzzy Predicate Liftings

Definition
An n-ary (fuzzy) predicate lifting is a natural transformation

λ : Qn ⇒ Q ◦ T,

where QX = [0, 1]X is the contravariant fuzzy powerset functor.

• Dual of λ: λ̄(f1, . . . , fn) = 1 − λ(1 − f1, . . . , 1 − fn).
• λ is monotone if f1 ≤ g1, . . . , fn ≤ gn =⇒ λ(f1, . . . , fn) ≤ λ(g1, . . . , gn).
• λ is nonexpansive if

∥λX(f1, . . . , fn) − λX(g1, . . . , gn)∥∞ ≤ max(∥f1 − g1∥∞, . . . , ∥fn − gn∥∞).
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• λ is monotone if f1 ≤ g1, . . . , fn ≤ gn =⇒ λ(f1, . . . , fn) ≤ λ(g1, . . . , gn).
• λ is nonexpansive if

∥λX(f1, . . . , fn) − λX(g1, . . . , gn)∥∞ ≤ max(∥f1 − g1∥∞, . . . , ∥fn − gn∥∞).

37



The Kantorovich Lifting

For µ1, µ2 ∈ DX and d : X →+ X a metric,

Kd(µ1, µ2) = sup{Eµ1(f) − Eµ2(f) | f : (X, d) → ([0, 1], dE) nonexpansive}.

Definition (Kantorovich Lifting)
Let Λ be a set of monotone predicate liftings that is closed under duals.
For R : A→+ B, KΛR : TA→+ TB is given by

KΛR(t1, t2) = sup{λA(f)(t1) − λB(g)(t2) | λ ∈ Λ, (f, g) is R-nonexpansive},

where (f, g) is R-nonexpansive if f(a) − g(b) ≤ R(a, b) for all a ∈ A, b ∈ B.

cf. Baldan et al. 2018

Theorem
KΛ is a lax extension. If all λ ∈ Λ are nonexpansive, then KΛ is nonexpansive.
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The Wasserstein Lifting

Definition (Wasserstein lifting)
Let Λ be a set of monotone predicate liftings.
For R : A→+ B, WΛR : TA→+ TB is given by

WΛR(t1, t2) = supλ∈Λ inf{λA×B(R)(t) | t ∈ T (A×B), Tπ1(t) = t1, Tπ2(t) = t2}.

cf. Baldan et al. 2018, Hofmann 2007

Suppose T preserves weak pullbacks and for each λ ∈ Λ,

λX(0X) = 0T X and λX(f ⊕ g) ≤ λX(f) ⊕ λX(g).

Theorem
WΛ is a lax extension. If all λ ∈ Λ are nonexpansive, then WΛ is nonexpansive.
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Wasserstein Examples

Example (Wasserstein for distributions)
D has a nonexpansive fuzzy lax extension W = W{λ}, where λX(f)(µ) = Eµ(f).

Example (Hausdorff lifting)
For the Hausdorff lifting H of P, we have H = W{λ}, where λX(f)(A) = sup f [A].

Example (Convex powersets)
CX = nonempty convex subsets of DX.
C has a nonexpansive fuzzy lax extension L = W{λ}, where
λX(f)(A) = supµ∈A Eµ(f).

One can show that in fact L = H ◦W = H ◦K. Mio/Vignudelli 2020
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Lax Extensions as Kantorovich Liftings

Goal
Given a fuzzy lax extension L, find a set Λ such that L = KΛ.

Idea
If the functor T is finitary, is has a finitary presentation:

• a signature Σ of operations with given finite arities
• for each σ ∈ Σ of arity n a natural transformation σ : (−)n ⇒ T

such that every element of TX has the form σX(x1, . . . , xn) for some σ ∈ Σ.
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Moss Liftings

Definition
Let σ ∈ Σ be n-ary. The Moss lifting µσ : Qn ⇒ Q ◦ T is defined as follows:

µσ
X(f1, . . . , fn)(t) = LevX(σQX(f1, . . . , fn), t),

where evX : QX →+ X is given by evX(f, x) = f(x).

Theorem
We have L = KΛ, where Λ = {µσ | σ ∈ Σ} ∪ {µσ | σ ∈ Σ} is the set of all Moss
liftings and their duals.

Moreover, L is nonexpansive iff all Moss liftings are nonexpansive.
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Finitary Separability

What about non-finitary functors?
Note that every set functor T has a finitary part Tω given by

TωX =
⋃

{Ti[TY ] | Y ⊆ X finite, i : Y → X inclusion}.

Definition
A fuzzy lax extension L of T is finitarily separable if for every set X, TωX is a dense
subset of TX wrt. to the pseudometric L∆X .

Example
The Kantorovich lifting K of D is finitarily separable.

Theorem
If L is finitarily separable, then the Moss liftings for Tω extend to a set Λ of predicate
liftings for T such that L = KΛ.
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Real-valued Coalgebraic Modal Logic

Syntax of LΛ

φ,ψ ::= c | φ⊖ c | ¬φ | φ ∧ ψ | λ(φ1, . . . , φn) (c ∈ [0, 1], λ ∈ Λ)

Semantics over a coalgebra α : A → TA

JcK(a) = c Jφ⊖ cK(a) = max(JφK(a) − c, 0)
J¬φK(a) = 1 − JφK(a) Jφ ∧ ψK(a) = min(JφK(a), JψK(a))

Jλ(φ1, . . . , φn)K(a) = λA(Jφ1K, . . . , JφnK)(α(a))

Definition
Λ-logical distance: dΛ(a, b) = sup{|JφK(a) − JφK(b)| | φ ∈ LΛ}.
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A Hennessy-Milner Theorem

Theorem (Fixpoint approximation)
Let L be a non-expansive and finitarily separable lax extension of T and let α and β
be T -coalgebras.

Put d0 = 0 and dn+1 = Ldn ◦ (α× β) for n < ω. Then dL
α,β = supn<ω dn.

least fixpoint of R 7→ LR ◦ (α × β)

For Kantorovich extensions KΛ, this is known to imply dKΛ = dΛ.

König/Mika-Michalski 2018As a corollary, we get:
Theorem (Hennessy-Milner Theorem for Lax Extensions)
Let L be a non-expansive finitarily separable fuzzy lax extension. Then there exists a
set Λ of monotone non-expansive predicate liftings such that L = KΛ and dΛ = dL.

=⇒ LΛ is a characteristic logic for L.
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A Quantified Coalgebraic van Benthem Theorem
(FoSSaCS’21)

Paul Wild and Lutz Schröder
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A Quantified Quantitative Coalgebraic van Benthem
Theorem (FoSSaCS’21)

Paul Wild and Lutz Schröder
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Introduction – Bisimulation invariance

a a

b bc

a

b c

Bisimilar states: indistinguishable in terms of successor behaviour.

Bisimulation invariant properties:

♢aφ = there exists an a-successor satisfying φ

□bφ = all b-successors satisfy φ
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Introduction – Modal logic

A syntax for bisimulation-invariant properties:

φ,ψ ::= ⊤ |φ ∧ ψ | ¬φ |♢aφ |□aφ (a label)

Lemma
Every modal formula is bisimulation-invariant.

Theorem (Hennessy-Milner Theorem)
In finitely branching systems, two states agreeing on all modal formulae are bisimilar.

Theorem (van Benthem Theorem)
If a first-order property is bisimulation-invariant, it is equivalent to a modal formula.
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Introduction – Markov chains

deadlock

0.5 0.5
1.0

0.51 0.49
1.0

Behavioural distance d with d( , ) = 0.01

Real-valued probabilistic modal logic with JφK(x) ∈ [0, 1]:

• Eφ = expected truth value of φ over successors
• Modal formulae are non-expansive wrt. d: JφK(x) − JφK(y) ≤ d(x, y)

Probabilistic Hennessy-Milner Theorem: [van Breugel/Worrell 2005]
Probabilistic van Benthem Theorem: [Wild/Schröder/Pattinson/König 2019]
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Introduction – Simulations

a b a b c

simulates .

Syntax for properties preserved under simulation:

φ,ψ ::= ⊥ | ⊤ |φ ∧ ψ |φ ∨ ψ |♢aφ (a label)

Hennessy-Milner Theorem for simulations: [van Glabbeek 2001]
van Benthem Theorem for simulations: [Lutz/Piro/Wolter 2010]
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Our Contribution – Overview

Goal
General versions of the Hennessy-Milner and van Benthem Theorems that have all
the previous examples as instances.

Key Ingredients

• an algebra of truth values ⇝ value co-quantale V
• abstraction over system types ⇝ T -coalgebras of a functor T
• a representation of the modalities ⇝ set of predicate liftings Λ

Idea
Modal logic LΛ characterizes non-expansiveness wrt. behavioural distance dK .
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Value co-quantales

Value co-quantale V [Flagg, 1997]

• Completely distributive lattice (V,≤)
• Monoid structure ⊕ that distributes over meets: a⊕

∧
i∈I bi =

∧
i∈I a⊕ bi.

• Subtraction a⊖ b ≤ c ⇐⇒ a ≤ b⊕ c.
• Filter of positive elements {ε | ε ≫ 0}.

Key properties

0 =
∧

{ε | ε ≫ 0} and ε ≫ 0 =⇒ ∃δ ≫ 0. δ ⊕ δ ≤ ε

Main Examples

2 = {0, 1} [0, 1] {[a, b] | 0 ≤ a ≤ b ≤ 1}
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Coalgebras

γ : X → TX (T endofunctor on Set)

Some choices of T :

• LTS with edge labels in A: TX = P(A×X)
• Markov chains with deadlocks: TX = 1 + DX
• Metric transition systems with state labels in (S, dS): TX = S × PX

52



Quantitative Coalgebraic Modal Logic

Predicate Lifting
λX : (X → V ) → (TX → V ), natural, monotone and non-expansive

Syntax of QCML

φ,ψ ::= c | φ⊕ c | φ⊖ c | φ ∧ ψ | φ ∨ ψ | λφ (c ∈ V, λ ∈ Λ).

Semantics over γ : X → TX

JφKγ : X → V recursively defined with JλφKγ = λX(JφKγ) ◦ γ.

Example
Probabilistic modal logic: EX(f)(µ) = expected value of f under µ
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Behavioural Distance via Relation Lifting

Kantorovich Lifting

(R : A×B → V ) 7→ (KΛ(R) : TA× TB → V )

KΛ(R)(t1, t2) =
∨

{λA(f)(t1) ⊖ λB(g)(t2) | λ ∈ Λ, ∀a, b. f(a) ⊖ g(b) ≤ R(a, b)}

Behavioural distance as least fixed point

dK = KΛ(dK) ◦ (γ × γ)

dK(x, x) = 0 and dK(x, z) ≤ dK(x, y) ⊕ dK(y, z)

dK(x, y) = dK(y, x) if Λ closed under duals
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Quantitative Hennessy-Milner Theorem

Theorem (Quantitative Hennessy-Milner theorem)
Let Λ be finite and V totally bounded and continuous from below.

If T is finitary, then

dK(a, b) =
∨

{JφK(a) ⊖ JφK(b) | φ a modal formula}.
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Quantitative van Benthem Theorem

Quantitative Coalgebraic Predicate Logic

φ,ψ ::= c | x = y | φ⊕ c | φ⊖ c | φ ∧ ψ | φ ∨ ψ | ∃x.φ | ∀x.φ | xλ⌈y : φ⌉

Theorem (Quantitative van Benthem theorem)
Let Λ be finite and V totally bounded. Let φ ∈ QCPL be non-expansive wrt. dK .

For every ε ≫ 0 there exists a modal formula ψ such that for all γ, x:

JφKγ(x) ⊖ JψKγ(x) ≤ ε and JψKγ(x) ⊖ JφKγ(x) ≤ ε
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Instantiations

Existing instances of Hennessy-Milner and van Benthem theorems we cover:

• Classical modal logic with V = 2 and TX = P(A×X)
• Probabilistic modal logic with V = [0, 1] and TX = 1 + DX
• Two-valued (V = 2) coalgebraic modal logic [Schröder/Pattinson/Litak 2017]

New instances include:

• Metric modal logic with TX = S × PX and modalities based on dS .
• For V = {[a, b] | 0 ≤ a ≤ b ≤ 1}: convex-nondeterministic metric modal logic.
• Simulation-based versions of all the above.
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