Modal Characterization Theorems: from the classical to the quantitative coalgebraic

Paul Wild

October 25, 2022

Friedrich-Alexander-Universität Erlangen-Nürnberg

A van Benthem theorem for fuzzy modal logic (LICS'18)

Paul Wild, Lutz Schröder, Dirk Pattinson and Barbara König

Theorem

Every bisimulation invariant first-order formula can be expressed by modal formulas.

Goal: formalize and prove this theorem in terms of fuzzy logic.

Fuzzy Modal Logic (1)

Theorem

Every bisimulation invariant first-order formula can be expressed by modal formulas.

Syntax:

$$\varphi, \psi ::= c \mid p \mid \neg \varphi \mid \varphi \ominus c \mid \varphi \land \psi \mid \Diamond \varphi$$

where $c \in \mathbb{Q} \cap [0,1]$ and $p \in At$.

Semantics: given over fuzzy relational models

$$\mathcal{A} = (A, (p^{\mathcal{A}})_{p \in \mathsf{At}}, R^{\mathcal{A}})$$

- A is the set of states.
- $p^{\mathcal{A}}: A \to [0,1]$ is the interpretation for $p \in \mathsf{At}$.
- $R^{\mathcal{A}}: A \times A \rightarrow [0,1]$ is the transition relation.

Formulas are interpreted as functions $A \rightarrow [0, 1]$:

- constants: c(a) = c
- propositions: $p(a) = p^{\mathcal{A}}(a)$
- negation: $(\neg \varphi)(a) = 1 \varphi(a)$
- truncated subtraction: $(\varphi \ominus c)(a) = \max(\varphi(a) c, 0)$

• conjunction:
$$(\varphi \land \psi)(a) = \min(\varphi(a), \psi(a))$$

- modality: $(\Diamond \varphi)(a) = \sup_{a' \in A} \min(R^{\mathcal{A}}(a,a'),\varphi(a'))$

Notations: $a \wedge b = \min(a, b), a \vee b = \max(a, b), \forall = \sup, \land = \inf.$

Fuzzy First Order Logic

Theorem

Every bisimulation invariant first-order formula can be expressed by modal formulas.

Syntax:

$$\varphi, \psi ::= c \mid p(x) \mid R(x,y) \mid x = y \mid \neg \varphi \mid \varphi \ominus c \mid \varphi \land \psi \mid \exists x.\varphi$$

where $c \in \mathbb{Q} \cap [0,1]$, $p \in At$, x, y variables.

Semantics:

Let $\eta \colon \mathsf{Var} \to A$. $\varphi(\eta)$ is defined inductively:

- Boolean connectives and equality as expected
- $p(x)(\eta) = p^{\mathcal{A}}(\eta(x)), R(x,y)(\eta) = R^{\mathcal{A}}(\eta(x),\eta(y))$
- existential quantification: $(\exists x.\varphi)(\eta) = \bigvee_{a \in A} \varphi(\eta[x \mapsto a])$

Bisimulation Invariance

Theorem

Every bisimulation invariant first-order formula can be expressed by modal formulas.

$$a \qquad b$$

$$0.5 \qquad \qquad 0.6$$

$$c$$

$$c$$

$$c$$

• In fuzzy logic we can *quantify* how similarly two states behave.

d

- This gives rise to *behavioural distance* d.
- Bisimilar states have distance 0.
- φ bisimulation invariant $\iff \varphi$ non-expansive wrt. d:

 $|\varphi(a) - \varphi(b)| \le d(a, b)$ for all states a, b.

Modal Approximation

Theorem

Every bisimulation invariant first-order formula can be expressed by modal formulas.

- In classical modal logic, there are only finitely many modal formulas of fixed rank k (up to equivalence).
- In fuzzy modal logic, this is no longer true, because there are infinitely many truth constants $c \in \mathbb{Q} \cap [0, 1]$.
- Thus, instead of showing that the bisimulation invariant formula φ is equivalent to some modal φ of rank k, we show that it can be approximated by such formulas:

$$\forall \varepsilon > 0 \; \exists \psi_{\varepsilon} \text{ modal of rank } k \; \| \varphi - \psi_{\varepsilon} \|_{\infty} \leq \varepsilon.$$

Theorem

Every fuzzy first-order formula φ that is non-expansive wrt. behavioural distance d^G can be approximated by fuzzy modal formulas of some fixed rank k.

Next: define behavioural distance d^G via a bisimulation game.

Game-based Distance (1)

Bisimulation game for fuzzy logic:

- The game is parametrised by some $\varepsilon \geq 0$
- Two players, spoiler ${\cal S}$ and duplicator ${\cal D}$
- Configurations: pairs of states (a, b)
- Moves:
 - S picks a' such that $R(a,a') > \varepsilon$
 - D picks b' such that $R(b,b') \geq R(a,a') \varepsilon$
 - New configuration: (a', b')

 ${\boldsymbol{S}}$ may also swap the two sides before his move

- Whoever is unable to move, loses
- Winning condition for *D* before every round:

$$|p(a) - p(b)| \le \varepsilon$$
 for all $p \in At$.

The corresponding distances are:

$$d^G(a,b) = \bigwedge \{ \varepsilon \mid D \text{ wins the } \varepsilon \text{-game for } (a,b) \}$$

 $d_n^G(a,b) = \bigwedge \{ \varepsilon \mid D \text{ wins the } n \text{-round } \varepsilon \text{-game for } (a,b) \}$

D wins for $\varepsilon=0.1,$ but loses for $\varepsilon<0.1.$

Using modal formulas, we can define:

Function-based Distance

Behavioural distance via a Kantorovich construction:

$$\begin{split} d_0^K(a,b) &= 0\\ d_{n+1}^K(a,b) &= \bigvee_{p \in \mathsf{At}} |p(a) - p(b)| \lor \bigvee_{f \colon (A, d_n^K) \to [0,1] \text{ nonexp.}} |(\Diamond f)(a) - (\Diamond f)(b)| \end{split}$$

$$(\Diamond f)(a) = \bigvee_{a' \in A} R(a, a') \wedge f(a')$$

$$a \qquad b \\ 0.5 \bigvee \downarrow 0.6 \\ c \\ d_1^K(a,b) = 0.1 \text{ with } f = x \mapsto 1.$$

Theorem

Let \mathcal{A} be a model and $n \geq 0$. Then

- 1. $d_n^G = d_n^K = d_n^L =: d_n \text{ on } \mathcal{A}.$
- 2. (A, d_n) is a totally bounded pseudometric space.
- 3. The rank n formulas are a dense subset of the space of non-expansive maps $(A, d_n) \rightarrow [0, 1].$

Coalgebraic View

Consider the set functors F and G:

$$\mathsf{F}X = [0,1]^X, \quad \mathsf{F}f(g)(y) = \bigvee_{f(x)=y} g(x)$$

where $f \colon X \to Y, g \in [0,1]^X, y \in Y.$

 $\mathsf{G}X = [0,1]^{\mathsf{At}} \times \mathsf{F}X$

Models
$$\mathcal{A} = (A, (p^{\mathcal{A}})_{p \in \mathsf{At}}, R^{\mathcal{A}})$$
 are *coalgebras* $\alpha \colon A \to \mathsf{G}A$:
 $\alpha(a) = (\lambda p.p^{\mathcal{A}}(a), \lambda a'.R^{\mathcal{A}}(a, a')).$

Uniform Approximation

- $F_n := \mathsf{G}^n(\{*\})$ is the set of all *n*-step behaviours.
- We can construct a model \mathcal{F} on the set $F := \bigcup_{n \ge 0} F_n$:

$$p^{\mathcal{F}}(h,g) = h(p), \quad R^{\mathcal{F}}((h,g),y) = \begin{cases} g(y), & \text{if } y \in F_n, \\ 0, & \text{otherwise.} \end{cases}$$

• For every model $\mathcal A,$ there is a map $\pi_n\colon A\to F$ such that

$$d_n(a,\pi_n(a))=0.$$

Thus:

$$\|\varphi - \psi\|_{\infty} \leq \varepsilon \text{ on } \mathcal{F} \implies \|\varphi - \psi\|_{\infty} \leq \varepsilon \text{ on all models } \mathcal{A}.$$

A characterization theorem for a modal description logic (IJCAI'19)

Paul Wild, Lutz Schröder, Dirk Pattinson and Barbara König

The logic $\mathcal{ALC}(\mathsf{P})$ - Syntax

Quantitative Probabilistic ALC:

$$C, D ::= q \mid A \mid C \ominus q \mid \neg C \mid C \sqcap D \mid \mathbf{P} r. C$$

- rational constants $q \in \mathbb{Q} \cap [0,1]$
- basic concept names $A \in N_C$
- subtraction of constants \ominus
- expected value over r-successors **P** $(r \in N_R)$

```
Loud \sqcap \mathbf{P} hasSource. (Large \sqcap \mathbf{P} hasMood. Angry)
```

The logic $\mathcal{ALC}(\mathsf{P})$ - Semantics

Models: $\mathcal{I} = (\Delta^{\mathcal{I}}, (A^{\mathcal{I}})_{A \in N_{\mathsf{C}}}, (r^{\mathcal{I}})_{r \in N_{\mathsf{R}}})$, where

- $\Delta^{\mathcal{I}}$ is a set (the *domain*)
- $A^{\mathcal{I}} \colon \Delta^{\mathcal{I}} \to [0, 1]$
- $r^{\mathcal{I}} \colon \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \to [0, 1]$

such that
$$\sum_{a'\in\Delta^{\mathcal{I}}}r^{\mathcal{I}}(a,a')\in\{0,1\}$$
 for each $a\in\Delta^{\mathcal{I}}$,

In other words, for role r each state a is either

- r-blocking $r_a := r^{\mathcal{I}}(a, \cdot)$ is zero; or
- r-transient r_a is a discrete probability distribution on $\Delta^{\mathcal{I}}$.

Interpretations: $C^{\mathcal{I}} \colon \Delta^{\mathcal{I}} \to [0,1]$, where

$$q^{\mathcal{I}}(a) = q$$

$$(C \ominus q)^{\mathcal{I}}(a) = \max(C^{\mathcal{I}}(a) - q, 0)$$

$$(\neg C)^{\mathcal{I}}(a) = 1 - C^{\mathcal{I}}(a)$$

$$(C \sqcap D)^{\mathcal{I}}(a) = \min(C^{\mathcal{I}}(a), D^{\mathcal{I}}(a))$$

$$(\mathbf{P} r. C)^{\mathcal{I}}(a) = \mathbb{E}_{r_a}(C^{\mathcal{I}}) = \sum_{a' \in \Delta^{\mathcal{I}}} r_a(a') \cdot C^{\mathcal{I}}(a')$$

From now on, restrict to a single role π .

- Classically, bisimulations are used to tell whether two states exhibit the same behaviour.
- However, consider the following states:

• With a *behavioural distance* d we can *quantify* how similarly two states behave. Bisimilar states have distance 0.

- Defer the precise definition of $bisimulation \ distance \ d$ for now.
- φ bisimulation invariant $\iff \varphi$ non-expansive wrt. d:

 $|\varphi(a) - \varphi(b)| \le d(a, b)$ for all states a, b.

- Characterize $\mathcal{ALC}(\mathbf{P})$ using bisimulation invariance:
 - All $\mathcal{ALC}(\mathbf{P})$ -concepts are bisimulation invariant.
 - Every bisimulation invariant property can be approximated by $\mathcal{ALC}(\mathbf{P})\text{-concepts}.$

Correspondence Language

Quantitative probabilistic first-order logic (FO(**P**)): $\varphi, \psi ::= q \mid A(x) \mid x = y \mid \varphi \ominus q \mid \neg \varphi \mid \varphi \land \psi \mid \exists x. \varphi \mid x \mathbf{P} \lceil y : \varphi \rceil$

Semantics:

$$A(x_i)(\bar{a}) = A^{\mathcal{I}}(a_i)$$
$$(\exists x_0, \varphi(x_0, x_1, \dots, x_n))(\bar{a}) = \sup\{\varphi(a_0, \bar{a}) \mid a_0 \in \Delta^{\mathcal{I}}\}$$
$$(x_i \mathbf{P} \lceil y : \varphi(y, x_1, \dots, x_n) \rceil)(\bar{a}) = \mathbb{E}_{r_{a_i}}(\varphi(\cdot, \bar{a}))$$

Example:

$$x\mathbf{P}[z:z=y] =$$
 'the successor of x is probably y '
= probability of reaching y from x in one step

- In classical ALC, there are only finitely many modal formulas of fixed rank k (up to equivalence).
- In fuzzy modal logic, this is no longer true, because there are infinitely many truth constants $c \in \mathbb{Q} \cap [0, 1]$.
- Thus, instead of showing that the bisimulation invariant formula φ is equivalent to some modal φ of rank k, we show that it can be approximated by such formulas:

 $\forall \varepsilon > 0 \;\; \exists \psi_{\varepsilon} \; \text{modal of rank} \; k \; \| \varphi - \psi_{\varepsilon} \|_{\infty} \leq \varepsilon.$

Bisimulation game

Game on models \mathcal{I}, \mathcal{J} played by *Spoiler* (*S*) and *Duplicator* (*D*):

- Configurations: triples (a, b, ε) , $a \in \Delta^{\mathcal{I}}$, $b \in \Delta^{\mathcal{J}}$, $\varepsilon \in [0, 1]$.
- Moves:
 - D picks $\mu \in Cpl(\pi_a, \pi_b)$
 - D picks a function $\varepsilon' \colon \Delta^{\mathcal{I}} \times \Delta^{\mathcal{J}} \to [0,1]$ such that $\mathbb{E}_{\mu}(\varepsilon') \leq \varepsilon$
 - S picks (a',b') with $\mu(a',b')>0$
 - New configuration: $(a', b', \varepsilon'(a', b'))$
- D wins if both states are blocking or $\varepsilon = 1$.
- S wins if exactly one state is blocking and $\varepsilon < 1.$
- Otherwise, D wins if she maintains the winning condition: |A^I(a) − A^J(b)| ≤ ε for all A ∈ N_C.

 $\mathsf{Cpl}(\pi_a, \pi_b)$: set of $\mu \colon \Delta^{\mathcal{I}} \times \Delta^{\mathcal{J}} \to [0, 1]$ with marginals π_a and π_b :

$$\pi_a(a') = \sum_{b'} \mu(a', b') \qquad \qquad \pi_b(b') = \sum_{a'} \mu(a', b')$$
²³

- Initial configuration: $(a_1, b_1, 0.01)$.
- First turn: D picks μ and ε' as follows:

μ	b_2	b_3	
a_2	0.5	0	0.5
a_3	0.01	0.49	0.5
	0.51	0.49	

ε'	b_2	b_3
a_2	0	1
a_3	1	0

$$\begin{split} d^G(a,b) &= \inf\{\varepsilon \mid D \text{ wins the game for } (a,b,\varepsilon)\}\\ d^G_n(a,b) &= \inf\{\varepsilon \mid D \text{ wins the } n\text{-round game for } (a,b,\varepsilon)\} \end{split}$$

Lemma

Each $ALC(\mathbf{P})$ -concept of rank n is depth-n bisimulation-invariant, that is

 $|C(a) - C(b)| \le d_n^G(a, b).$

Logical Distance

Using modal formulas, we can define:

$$d^{L}(a,b) = \sup\{|C(a) - C(b)| \mid C \in \mathcal{ALC}(\mathbf{P})\}$$

$$d^{L}_{n}(a,b) = \sup\{|C(a) - C(b)| \mid C \in \mathcal{ALC}(\mathbf{P}), \mathsf{rk}C \leq n\}$$

 $d_2^L(a,b)=0.01$ with $C={\bf PP}1$

Pseudometric Liftings

Let (X, d) be a pseudometric space. We define two pseudometrics on the space DX of discrete probability measures on X.

Definition (Kantorovich distance)

$$d^{\uparrow}(\pi_1, \pi_2) = \sup\{|\mathbb{E}_{\pi_1}(f) - \mathbb{E}_{\pi_2}(f)| \mid f \in \operatorname{Pred}(X, d)\}$$

where $\operatorname{Pred}(X,d)$ is the set of nonexpansive maps $(X,d) \to [0,1]$.

Definition (Wasserstein distance)

$$d^{\downarrow}(\pi_1, \pi_2) = \inf \{ \mathbb{E}_{\mu}(d) \mid \mu \in \mathsf{Cpl}(\pi_1, \pi_2) \}$$

These two *pseudometrics liftings* coincide:

Theorem (Kantorovich-Rubinstein duality) For all π_1, π_2 , $d^{\uparrow}(\pi_1, \pi_2) = d^{\downarrow}(\pi_1, \pi_2)$. Behavioural distance via fixed point iteration:

$$d_0^K(a,b) = d_0^W(a,b) = 0$$

$$d_{n+1}^K(a,b) = \max(\sup_{A \in \mathsf{N}_{\mathsf{C}}} |A^{\mathcal{I}}(a) - A^{\mathcal{I}}(b)|, (d_n^K)^{\uparrow}(\pi_a,\pi_b))$$

$$d_{n+1}^W(a,b) = \max(\sup_{A \in \mathsf{N}_{\mathsf{C}}} |A^{\mathcal{I}}(a) - A^{\mathcal{I}}(b)|, (d_n^W)^{\downarrow}(\pi_a,\pi_b))$$

By Kantorovich-Rubinstein duality, $d_n^K = d_n^W$ for all n.

Equivalence of Distances and Density

Theorem

Let \mathcal{I} be a model. Then for all $n \geq 0$:

•
$$d_n^G = d_n^W = d_n^K = d_n^L =: d_n \text{ on } \mathcal{A}.$$

The rank-n ALC(P)-concepts form a dense subset of the space Pred(Δ^I, d_n) of non-expansive maps (Δ^I, d_n) → [0, 1].

This is proven by induction on n. Some intuition:

- $d_n^G = d_n^W$ because the game is built to model W. distance.
- $d_n^W = d_n^K$ by Kantorovich-Rubinstein duality.
- $d_n^K = d_n^L$ follows from the density claim for n-1.

Theorem

Every bisimulation-invariant FO(\mathbf{P})-formula of rank at most n can be approximated by $\mathcal{ALC}(\mathbf{P})$ -concepts of rank at most 3^n .

Characteristic logics for behavioural metrics via fuzzy lax extensions (CONCUR'20)

Paul Wild and Lutz Schröder

Introduction

Goal

Analyse the behaviour of transition systems involving quantitative data.

- Various system types can be modelled as coalgebras:
 - Labelled transition systems $\alpha \colon A \to \mathcal{P}(L \times A)$
 - Markov chains $\alpha \colon A \to \mathsf{D}A$
 - • • •

In general: $\alpha \colon A \to TA$ for some set functor T

Introduction

Goal

Analyse the behaviour of transition systems involving quantitative data.

- Various system types can be modelled as coalgebras:
 - Labelled transition systems $\alpha \colon A \to \mathcal{P}(L \times A)$
 - Markov chains $\alpha \colon A \to \mathsf{D}A$
 - • • •

In general: $\alpha \colon A \to TA$ for some set functor T

Behavioural distances allow for a quantitative measure of process equivalence:

Introduction

Goal

Analyse the behaviour of transition systems involving quantitative data.

- To define behavioural distances, we make use of lax extensions:
 - Lax extensions give a coalgebraic account of *bisimulation*.
 - Using a lax extension, lift the set functor T to a functor on pseudometrics.
 - Behavioural distance arises from a coalgebraic *fixpoint* construction.
Introduction

Goal

Analyse the behaviour of transition systems involving quantitative data.

- To define behavioural distances, we make use of lax extensions:
 - Lax extensions give a coalgebraic account of *bisimulation*.
 - Using a lax extension, lift the set functor T to a functor on pseudometrics.
 - Behavioural distance arises from a coalgebraic *fixpoint* construction.
- We extract characteristic logics for these behavioural distances:
 - Coalgebraic modal logics with *modalities* defined using *L*.
 - *Real-valued semantics* give rise to logical distance.
 - Logical distance = behavioural distance, amounting to a *Hennessy-Milner theorem*.

Definition

A fuzzy relation is a map $R: A \times B \rightarrow [0,1]$, also written $R: A \rightarrow B$.

Convention: a, b are related by $R \iff R(a, b) = 0$.

Definition

A fuzzy relation is a map $R: A \times B \rightarrow [0,1]$, also written $R: A \rightarrow B$.

Convention: a, b are related by $R \iff R(a, b) = 0$.

Let $R \colon A \to B, S \colon B \to C$ and $f \colon A \to B$.

• Converse relation: $R^{\circ}(b, a) = R(a, b)$.

• Graph of a function:
$$\operatorname{Gr}_f(a,b) = \begin{cases} 0, & \text{if } f(a) = b, \\ 1, & \text{otherwise.} \end{cases}$$

Definition

A fuzzy relation is a map $R: A \times B \rightarrow [0,1]$, also written $R: A \rightarrow B$.

Convention: a, b are related by $R \iff R(a, b) = 0$.

Let $R: A \rightarrow B, S: B \rightarrow C$ and $f: A \rightarrow B$.

- Converse relation: $R^{\circ}(b, a) = R(a, b)$.
- Graph of a function: $\operatorname{Gr}_f(a,b) = \begin{cases} 0, & \text{if } f(a) = b, \\ 1, & \text{otherwise.} \end{cases}$
- Composition of relations: $(R; S)(a, c) = \inf_{b \in B} R(a, b) \stackrel{*}{\oplus} S(b, c).$

Definition

A fuzzy relation is a map $R: A \times B \rightarrow [0,1]$, also written $R: A \rightarrow B$.

Convention: a, b are related by $R \iff R(a, b) = 0$.

Let $R: A \leftrightarrow B, S: B \leftrightarrow C$ and $f: A \rightarrow B$.

- Converse relation: $R^{\circ}(b, a) = R(a, b)$.
- Graph of a function: $\operatorname{Gr}_f(a,b) = \begin{cases} 0, & \text{if } f(a) = b, \\ 1, & \text{otherwise.} \end{cases}$

$$x \oplus y = \min(x+y,1)$$

• Composition of relations: $(R; S)(a, c) = \inf_{b \in B} R(a, b) \stackrel{*}{\oplus} S(b, c).$

•
$$\varepsilon$$
-diagonal on a set: $\Delta_{\varepsilon,A}(a_1, a_2) = \begin{cases} \varepsilon, & \text{if } a_1 = a_2, \\ 1, & \text{otherwise.} \end{cases}$

Fuzzy Lax Extensions

Definition

A fuzzy lax extension maps $R: A \rightarrow B$ to $LR: TA \rightarrow TB$ such that:

(L0) $L(R^{\circ}) = (LR)^{\circ}$ (L1) $R_1 \leq R_2 \Rightarrow LR_1 \leq LR_2$ (L2) $L(R;S) \leq LR;LS$ (L3) $LGr_f \leq Gr_{Tf}$

We say that L is non-expansive, if additionally

(L4)
$$L\Delta_{\varepsilon,A} \leq \Delta_{\varepsilon,TA}$$

where A, B, C are sets, $R, R_1, R_2 \colon A \to B, S \colon B \to C, f \colon A \to B, \varepsilon > 0.$

Lemma

L satisfies Axiom (L4) $\iff R \mapsto LR$ is non-expansive w.r.t. the supremum metric.

Lemma

L satisfies Axiom (L4) $\iff R \mapsto LR$ is non-expansive w.r.t. the supremum metric.

Lemma

If $d: X \rightarrow X$ is a pseudometric, then so is $Ld: TX \rightarrow TX$.

Thus, L gives rise to a functor lifting of T: Set \rightarrow Set to a functor \overline{T} : PMet \rightarrow PMet.

category of pseudometric spaces and non-expansive maps -

Classically, bisimulations on Kripke frames arise via the *Egli-Milner extension*:

 $(U,V) \in \overline{\mathcal{P}}(R) \iff (\forall a \in U. \exists b \in V. (a,b) \in R) \land (\forall b \in V. \exists a \in U. (a,b) \in R).$

 $\overline{\mathcal{P}}$ is a two-valued lax extension of the powerset functor \mathcal{P} .

Classically, bisimulations on Kripke frames arise via the *Egli-Milner extension*:

 $(U,V) \in \overline{\mathcal{P}}(R) \iff (\forall a \in U. \exists b \in V. (a,b) \in R) \land (\forall b \in V. \exists a \in U. (a,b) \in R).$

 $\overline{\mathcal{P}}$ is a two-valued lax extension of the powerset functor $\mathcal{P}.$

Replacing \forall with \sup , \exists with \inf , \land with \max gives the Hausdorff lifting H:

$$HR(U,V) = \max(\sup_{a \in U} \inf_{b \in V} R(a,b), \sup_{b \in V} \inf_{a \in U} R(a,b)).$$

H is a non-expansive fuzzy lax extension of $\mathcal{P}.$

Let L be a lax extension of T, and let $\alpha \colon A \to TA$ and $\beta \colon B \to TB$ be coalgebras.

1. $R: A \rightarrow B$ is an *L*-bisimulation if $LR \circ (\alpha \times \beta) \leq R$.

Let L be a lax extension of T, and let $\alpha \colon A \to TA$ and $\beta \colon B \to TB$ be coalgebras.

- 1. $R: A \rightarrow B$ is an *L*-bisimulation if $LR \circ (\alpha \times \beta) \leq R$.
- 2. *L*-behavioural distance: $d_{\alpha,\beta}^L = \inf\{R: A \rightarrow B \mid R \text{ is an } L\text{-bisimulation}\}.$

Let L be a lax extension of T, and let $\alpha \colon A \to TA$ and $\beta \colon B \to TB$ be coalgebras.

- 1. $R: A \rightarrow B$ is an *L*-bisimulation if $LR \circ (\alpha \times \beta) \leq R$.
- 2. *L*-behavioural distance: $d_{\alpha,\beta}^L = \inf\{R: A \rightarrow B \mid R \text{ is an } L\text{-bisimulation}\}.$

Equivalently, $d^L_{\alpha,\beta}$ is the least fixed point of $R \mapsto LR \circ (\alpha \times \beta)$.

Let L be a lax extension of T, and let $\alpha \colon A \to TA$ and $\beta \colon B \to TB$ be coalgebras.

- 1. $R: A \rightarrow B$ is an *L*-bisimulation if $LR \circ (\alpha \times \beta) \leq R$.
- 2. L-behavioural distance: $d^L_{\alpha,\beta} = \inf\{R: A \rightarrow B \mid R \text{ is an } L\text{-bisimulation}\}.$

Equivalently, $d^L_{\alpha,\beta}$ is the least fixed point of $R \mapsto LR \circ (\alpha \times \beta)$.

 \implies L-bisimulations can be used to prove upper bounds for behavioural distance.

An *n-ary (fuzzy) predicate lifting* is a natural transformation

 $\lambda\colon \mathbf{Q}^n \Rightarrow \mathbf{Q}\circ T,$

where $QX = [0,1]^X$ is the contravariant fuzzy powerset functor.

An *n-ary (fuzzy) predicate lifting* is a natural transformation

$$\lambda\colon \mathbf{Q}^n \Rightarrow \mathbf{Q}\circ T,$$

where $QX = [0, 1]^X$ is the contravariant fuzzy powerset functor.

- Dual of λ : $\bar{\lambda}(f_1, ..., f_n) = 1 \lambda(1 f_1, ..., 1 f_n).$
- λ is monotone if $f_1 \leq g_1, \ldots, f_n \leq g_n \implies \lambda(f_1, \ldots, f_n) \leq \lambda(g_1, \ldots, g_n).$
- λ is nonexpansive if

$$\|\lambda_X(f_1,\ldots,f_n) - \lambda_X(g_1,\ldots,g_n)\|_{\infty} \le \max(\|f_1 - g_1\|_{\infty},\ldots,\|f_n - g_n\|_{\infty}).$$

The Kantorovich Lifting

For $\mu_1, \mu_2 \in \mathsf{D}X$ and $d: X \to X$ a metric,

 $Kd(\mu_1,\mu_2) = \sup\{\mathbb{E}\,\mu_1(f) - \mathbb{E}\,\mu_2(f) \mid f \colon (X,d) \to ([0,1],d_E) \text{ nonexpansive}\}.$

For $\mu_1, \mu_2 \in \mathsf{D}X$ and $d: X \to X$ a metric, $Kd(\mu_1, \mu_2) = \sup\{\mathbb{E}\,\mu_1(f) - \mathbb{E}\,\mu_2(f) \mid f: (X, d) \to ([0, 1], d_E) \text{ nonexpansive}\}.$

Definition (Kantorovich Lifting)

cf. Baldan et al. 2018

Let Λ be a set of monotone predicate liftings that is closed under duals. For $R: A \rightarrow B$, $K_{\Lambda}R: TA \rightarrow TB$ is given by

 $K_{\Lambda}R(t_1, t_2) = \sup\{\lambda_A(f)(t_1) - \lambda_B(g)(t_2) \mid \lambda \in \Lambda, (f, g) \text{ is } R\text{-nonexpansive}\},\$

where (f,g) is *R*-nonexpansive if $f(a) - g(b) \le R(a,b)$ for all $a \in A, b \in B$.

For $\mu_1, \mu_2 \in \mathsf{D}X$ and $d: X \to X$ a metric, $Kd(\mu_1, \mu_2) = \sup\{\mathbb{E}\,\mu_1(f) - \mathbb{E}\,\mu_2(f) \mid f: (X, d) \to ([0, 1], d_E) \text{ nonexpansive}\}.$

Definition (Kantorovich Lifting)

cf. Baldan et al. 2018

Let Λ be a set of monotone predicate liftings that is closed under duals. For $R: A \leftrightarrow B$, $K_{\Lambda}R: TA \leftrightarrow TB$ is given by

 $K_{\Lambda}R(t_1, t_2) = \sup\{\lambda_A(f)(t_1) - \lambda_B(g)(t_2) \mid \lambda \in \Lambda, (f, g) \text{ is } R\text{-nonexpansive}\},\$

where (f,g) is *R*-nonexpansive if $f(a) - g(b) \le R(a,b)$ for all $a \in A, b \in B$.

Theorem

 K_{Λ} is a lax extension. If all $\lambda \in \Lambda$ are nonexpansive, then K_{Λ} is nonexpansive.

The Wasserstein Lifting

Definition (Wasserstein lifting)

cf. Baldan et al. 2018, Hofmann 2007

Let Λ be a set of monotone predicate liftings. For $R: A \rightarrow B$, $W_{\Lambda}R: TA \rightarrow TB$ is given by

 $W_{\Lambda}R(t_1, t_2) = \sup_{\lambda \in \Lambda} \inf\{\lambda_{A \times B}(R)(t) \mid t \in T(A \times B), T\pi_1(t) = t_1, T\pi_2(t) = t_2\}.$

The Wasserstein Lifting

Definition (Wasserstein lifting)

cf. Baldan et al. 2018, Hofmann 2007

Let Λ be a set of monotone predicate liftings. For $R: A \rightarrow B$, $W_{\Lambda}R: TA \rightarrow TB$ is given by

$$W_{\Lambda}R(t_1, t_2) = \sup_{\lambda \in \Lambda} \inf\{\lambda_{A \times B}(R)(t) \mid t \in T(A \times B), T\pi_1(t) = t_1, T\pi_2(t) = t_2\}.$$

Suppose T preserves weak pullbacks and for each $\lambda \in \Lambda,$

$$\lambda_X(0_X) = 0_{TX}$$
 and $\lambda_X(f \oplus g) \le \lambda_X(f) \oplus \lambda_X(g).$

Theorem

 W_{Λ} is a lax extension. If all $\lambda \in \Lambda$ are nonexpansive, then W_{Λ} is nonexpansive.

D has a nonexpansive fuzzy lax extension $W = W_{\{\lambda\}}$, where $\lambda_X(f)(\mu) = \mathbb{E} \mu(f)$.

D has a nonexpansive fuzzy lax extension $W = W_{\{\lambda\}}$, where $\lambda_X(f)(\mu) = \mathbb{E} \mu(f)$.

Example (Hausdorff lifting)

For the Hausdorff lifting H of \mathcal{P} , we have $H = W_{\{\lambda\}}$, where $\lambda_X(f)(A) = \sup f[A]$.

D has a nonexpansive fuzzy lax extension $W = W_{\{\lambda\}}$, where $\lambda_X(f)(\mu) = \mathbb{E} \mu(f)$.

Example (Hausdorff lifting)

For the Hausdorff lifting H of \mathcal{P} , we have $H = W_{\{\lambda\}}$, where $\lambda_X(f)(A) = \sup f[A]$.

Example (Convex powersets)

CX = nonempty convex subsets of DX.

 \mathcal{C} has a nonexpansive fuzzy lax extension $L = W_{\{\lambda\}}$, where

 $\lambda_X(f)(A) = \sup_{\mu \in A} \mathbb{E} \mu(f).$

D has a nonexpansive fuzzy lax extension $W = W_{\{\lambda\}}$, where $\lambda_X(f)(\mu) = \mathbb{E} \mu(f)$.

Example (Hausdorff lifting)

For the Hausdorff lifting H of \mathcal{P} , we have $H = W_{\{\lambda\}}$, where $\lambda_X(f)(A) = \sup f[A]$.

Example (Convex powersets)

CX = nonempty convex subsets of DX. C has a nonexpansive fuzzy lax extension $L = W_{\{\lambda\}}$, where

 $\lambda_X(f)(A) = \sup_{\mu \in A} \mathbb{E}\,\mu(f).$

One can show that in fact $L = H \circ W = H \circ K$. \checkmark Mio/Vignudelli 2020

Goal

Given a fuzzy lax extension L, find a set Λ such that $L = K_{\Lambda}$.

Goal

Given a fuzzy lax extension L, find a set Λ such that $L = K_{\Lambda}$.

Idea

If the functor T is *finitary*, is has a finitary presentation:

- a $\textit{signature } \Sigma$ of operations with given finite arities
- for each $\sigma \in \Sigma$ of arity n a natural transformation $\sigma \colon (-)^n \Rightarrow T$

such that every element of TX has the form $\sigma_X(x_1, \ldots, x_n)$ for some $\sigma \in \Sigma$.

Let $\sigma \in \Sigma$ be *n*-ary. The Moss lifting $\mu^{\sigma} \colon \mathbf{Q}^{n} \Rightarrow \mathbf{Q} \circ T$ is defined as follows:

$$\mu_X^{\sigma}(f_1,\ldots,f_n)(t) = Lev_X(\sigma_{\mathsf{Q}X}(f_1,\ldots,f_n),t),$$

where $ev_X \colon QX \to X$ is given by $ev_X(f, x) = f(x)$.

Let $\sigma \in \Sigma$ be *n*-ary. The Moss lifting $\mu^{\sigma} \colon \mathbf{Q}^{n} \Rightarrow \mathbf{Q} \circ T$ is defined as follows:

$$\mu_X^{\sigma}(f_1,\ldots,f_n)(t) = Lev_X(\sigma_{\mathsf{Q}X}(f_1,\ldots,f_n),t),$$

where $ev_X \colon QX \to X$ is given by $ev_X(f, x) = f(x)$.

Theorem

We have $L = K_{\Lambda}$, where $\Lambda = \{\mu^{\sigma} \mid \sigma \in \Sigma\} \cup \{\overline{\mu^{\sigma}} \mid \sigma \in \Sigma\}$ is the set of all Moss liftings and their duals.

Moreover, L is nonexpansive iff all Moss liftings are nonexpansive.

Finitary Separability

What about non-finitary functors?

Note that every set functor T has a finitary part T_ω given by

 $T_{\omega}X = \bigcup \{Ti[TY] \mid Y \subseteq X \text{ finite}, i \colon Y \to X \text{ inclusion} \}.$

Finitary Separability

What about non-finitary functors?

Note that every set functor T has a finitary part T_ω given by

```
T_{\omega}X = \bigcup \{Ti[TY] \mid Y \subseteq X \text{ finite}, i \colon Y \to X \text{ inclusion} \}.
```

Definition

A fuzzy lax extension L of T is finitarily separable if for every set X, $T_{\omega}X$ is a dense subset of TX wrt. to the pseudometric $L\Delta_X$.

Example

The Kantorovich lifting K of D is finitarily separable.

Finitary Separability

What about non-finitary functors?

Note that every set functor T has a finitary part T_ω given by

```
T_{\omega}X = \bigcup \{Ti[TY] \mid Y \subseteq X \text{ finite}, i \colon Y \to X \text{ inclusion} \}.
```

Definition

A fuzzy lax extension L of T is finitarily separable if for every set X, $T_{\omega}X$ is a dense subset of TX wrt. to the pseudometric $L\Delta_X$.

Example

The Kantorovich lifting K of D is finitarily separable.

Theorem

If L is finitarily separable, then the Moss liftings for T_{ω} extend to a set Λ of predicate liftings for T such that $L = K_{\Lambda}$.

Real-valued Coalgebraic Modal Logic

Syntax of \mathcal{L}_Λ

$$\varphi, \psi ::= c \mid \varphi \ominus c \mid \neg \varphi \mid \varphi \land \psi \mid \lambda(\varphi_1, \dots, \varphi_n) \qquad (c \in [0, 1], \lambda \in \Lambda)$$

Semantics over a coalgebra $\alpha \colon A \to TA$

Real-valued Coalgebraic Modal Logic

Syntax of \mathcal{L}_Λ

$$\varphi, \psi ::= c \mid \varphi \ominus c \mid \neg \varphi \mid \varphi \land \psi \mid \lambda(\varphi_1, \dots, \varphi_n) \qquad (c \in [0, 1], \lambda \in \Lambda)$$

Semantics over a coalgebra $\alpha \colon A \to TA$

$$\begin{split} \llbracket c \rrbracket(a) &= c & \llbracket \varphi \ominus c \rrbracket(a) = \max(\llbracket \varphi \rrbracket(a) - c, 0) \\ \llbracket \neg \varphi \rrbracket(a) &= 1 - \llbracket \varphi \rrbracket(a) & \llbracket \varphi \wedge \psi \rrbracket(a) = \min(\llbracket \varphi \rrbracket(a), \llbracket \psi \rrbracket(a)) \\ & \llbracket \lambda(\varphi_1, \dots, \varphi_n) \rrbracket(a) = \lambda_A(\llbracket \varphi_1 \rrbracket, \dots, \llbracket \varphi_n \rrbracket)(\alpha(a)) \end{split}$$

Real-valued Coalgebraic Modal Logic

Syntax of \mathcal{L}_{Λ}

$$\varphi, \psi ::= c \mid \varphi \ominus c \mid \neg \varphi \mid \varphi \land \psi \mid \lambda(\varphi_1, \dots, \varphi_n) \qquad (c \in [0, 1], \lambda \in \Lambda)$$

Semantics over a coalgebra $\alpha \colon A \to TA$

$$\begin{split} \llbracket c \rrbracket(a) &= c & \llbracket \varphi \ominus c \rrbracket(a) = \max(\llbracket \varphi \rrbracket(a) - c, 0) \\ \llbracket \neg \varphi \rrbracket(a) &= 1 - \llbracket \varphi \rrbracket(a) & \llbracket \varphi \wedge \psi \rrbracket(a) = \min(\llbracket \varphi \rrbracket(a), \llbracket \psi \rrbracket(a)) \\ & \llbracket \lambda(\varphi_1, \dots, \varphi_n) \rrbracket(a) = \lambda_A(\llbracket \varphi_1 \rrbracket, \dots, \llbracket \varphi_n \rrbracket)(\alpha(a)) \end{split}$$

Definition

$$\Lambda\text{-logical distance: } d^{\Lambda}(a,b) = \sup\{|\llbracket\varphi\rrbracket(a) - \llbracket\varphi\rrbracket(b)| \mid \varphi \in \mathcal{L}_{\Lambda}\}.$$

A Hennessy-Milner Theorem

Theorem (Fixpoint approximation)

Put $d_0 = 0$ and $d_{n+1} = Ld_n \circ (\alpha \times \beta)$ for $n < \omega$. Then $d_{\alpha,\beta}^L = \sup_{n < \omega} d_n$.
A Hennessy-Milner Theorem

Theorem (Fixpoint approximation)

Put
$$d_0 = 0$$
 and $d_{n+1} = Ld_n \circ (\alpha \times \beta)$ for $n < \omega$. Then $d_{\alpha,\beta}^L = \sup_{n < \omega} d_n$.

For Kantorovich extensions K_{Λ} , this is known to imply $d^{K_{\Lambda}} = d^{\Lambda}$.

König/Mika-Michalski 2018

A Hennessy-Milner Theorem

Theorem (Fixpoint approximation)

 $\textit{Put } d_0 = 0 \textit{ and } d_{n+1} = Ld_n \circ (\alpha \times \beta) \textit{ for } n < \omega. \textit{ Then } d_{\alpha,\beta}^L = \sup_{n < \omega} d_n.$

For Kantorovich extensions K_{Λ} , this is known to imply $d^{K_{\Lambda}} = d^{\Lambda}$.

As a corollary, we get:

König/Mika-Michalski 2018

Theorem (Hennessy-Milner Theorem for Lax Extensions) Let L be a non-expansive finitarily separable fuzzy lax extension. Then there exists a set Λ of monotone non-expansive predicate liftings such that $L = K_{\Lambda}$ and $d^{\Lambda} = d^{L}$.

 $\implies \mathcal{L}_{\Lambda}$ is a characteristic logic for L.

A Quantified Coalgebraic van Benthem Theorem (FoSSaCS'21)

Paul Wild and Lutz Schröder

A **Quantified Quantitative** Coalgebraic van Benthem Theorem (FoSSaCS'21)

Paul Wild and Lutz Schröder

Introduction – Bisimulation invariance

Bisimilar states: indistinguishable in terms of successor behaviour.

Bisimulation invariant properties:

 $\Diamond_a \varphi =$ there exists an *a*-successor satisfying φ

 $\Box_b \varphi =$ all *b*-successors satisfy φ

A syntax for bisimulation-invariant properties:

$$\varphi, \psi ::= \top \, | \, \varphi \wedge \psi \, | \, \neg \varphi \, | \, \Diamond_a \varphi \, | \, \Box_a \varphi \qquad (a \text{ label})$$

Lemma

Every modal formula is bisimulation-invariant.

A syntax for bisimulation-invariant properties:

$$\varphi, \psi ::= \top | \varphi \land \psi | \neg \varphi | \Diamond_a \varphi | \Box_a \varphi \qquad (a \text{ label})$$

Lemma

Every modal formula is bisimulation-invariant.

Theorem (Hennessy-Milner Theorem)

In finitely branching systems, two states agreeing on all modal formulae are bisimilar.

A *syntax* for bisimulation-invariant properties:

$$\varphi, \psi ::= \top \, | \, \varphi \wedge \psi \, | \, \neg \varphi \, | \, \Diamond_a \varphi \, | \, \Box_a \varphi \qquad (a \text{ label})$$

Lemma

Every modal formula is bisimulation-invariant.

Theorem (Hennessy-Milner Theorem)

In finitely branching systems, two states agreeing on all modal formulae are bisimilar.

Theorem (van Benthem Theorem)

If a first-order property is bisimulation-invariant, it is equivalent to a modal formula.

Introduction – Markov chains

Behavioural distance d with $d(\bullet, \blacktriangle) = 0.01$

Real-valued probabilistic modal logic with $\llbracket \varphi \rrbracket(x) \in [0,1]$:

- $\mathbb{E}\, \varphi = \mbox{ expected truth value of } \varphi \mbox{ over successors }$
- Modal formulae are *non-expansive* wrt. $d: [\![\varphi]\!](x) [\![\varphi]\!](y) \le d(x, y)$

Probabilistic Hennessy-Milner Theorem: [van Breugel/Worrell 2005] Probabilistic van Benthem Theorem: [Wild/Schröder/Pattinson/König 2019]

Introduction – Simulations

Syntax for properties *preserved under simulation*:

$$\varphi, \psi ::= \bot \mid \top \mid \varphi \land \psi \mid \varphi \lor \psi \mid \Diamond_a \varphi \qquad (a \text{ label})$$

Hennessy-Milner Theorem for simulations: [van Glabbeek 2001] van Benthem Theorem for simulations: [Lutz/Piro/Wolter 2010]

Goal

General versions of the Hennessy-Milner and van Benthem Theorems that have all the previous examples as instances.

Goal

General versions of the Hennessy-Milner and van Benthem Theorems that have all the previous examples as instances.

Key Ingredients

- an algebra of truth values \rightsquigarrow value co-quantale ${\mathcal V}$
- abstraction over system types \rightsquigarrow T-coalgebras of a functor T
- a representation of the modalities \rightsquigarrow set of predicate liftings Λ

Goal

General versions of the Hennessy-Milner and van Benthem Theorems that have all the previous examples as instances.

Key Ingredients

- an algebra of truth values \rightsquigarrow value co-quantale $\mathcal V$
- abstraction over system types \rightsquigarrow T-coalgebras of a functor T
- a representation of the modalities \rightsquigarrow set of predicate liftings Λ

Idea

Modal logic \mathcal{L}_{Λ} characterizes non-expansiveness wrt. behavioural distance d^{K} .

Value co-quantales

Value co-quantale ${\cal V}$

- Completely distributive lattice (V, \leq)
- Monoid structure \oplus that distributes over meets: $a \oplus \bigwedge_{i \in I} b_i = \bigwedge_{i \in I} a \oplus b_i$.
- Subtraction $a \ominus b \leq c \iff a \leq b \oplus c$.
- Filter of positive elements $\{\varepsilon \mid \varepsilon \gg 0\}$.

Key properties

$$0 = \bigwedge \{ \varepsilon \mid \varepsilon \gg 0 \} \qquad \text{ and } \qquad \varepsilon \gg 0 \implies \exists \delta \gg 0. \ \delta \oplus \delta \le \varepsilon$$

Value co-quantales

Value co-quantale ${\cal V}$

- Completely distributive lattice (V, \leq)
- Monoid structure \oplus that distributes over meets: $a \oplus \bigwedge_{i \in I} b_i = \bigwedge_{i \in I} a \oplus b_i$.
- Subtraction $a \ominus b \leq c \iff a \leq b \oplus c$.
- Filter of positive elements $\{\varepsilon \mid \varepsilon \gg 0\}$.

Key properties

$$0 = \bigwedge \{ \varepsilon \mid \varepsilon \gg 0 \} \qquad \text{and} \qquad \varepsilon \gg 0 \implies \exists \delta \gg 0. \ \delta \oplus \delta \le \varepsilon$$

Main Examples

$$2 = \{0, 1\} \qquad [0, 1] \qquad \{[a, b] \mid 0 \le a \le b \le 1\}$$

$$\gamma: X \to TX$$
 (*T* endofunctor on Set)

Some choices of T:

- LTS with edge labels in A: $TX = \mathcal{P}(A \times X)$
- Markov chains with deadlocks: TX = 1 + DX
- Metric transition systems with state labels in (S, d_S) : $TX = S \times \mathcal{P}X$

Predicate Lifting

 $\lambda_X \colon (X \to V) \to (TX \to V)$, natural, monotone and non-expansive

Predicate Lifting $\lambda_X \colon (X \to V) \to (TX \to V)$, natural, monotone and non-expansive

Syntax of QCML

$$\varphi, \psi ::= c \mid \varphi \oplus c \mid \varphi \ominus c \mid \varphi \wedge \psi \mid \varphi \lor \psi \mid \lambda \varphi \qquad (c \in V, \lambda \in \Lambda).$$

Predicate Lifting

 $\lambda_X \colon (X \to V) \to (TX \to V)$, natural, monotone and non-expansive

Syntax of QCML

$$\varphi, \psi ::= c \mid \varphi \oplus c \mid \varphi \ominus c \mid \varphi \wedge \psi \mid \varphi \lor \psi \mid \lambda \varphi \qquad (c \in V, \lambda \in \Lambda).$$

Semantics over $\gamma \colon X \to TX$

 $\llbracket \varphi \rrbracket_{\gamma} \colon X \to V \text{ recursively defined with } \llbracket \lambda \varphi \rrbracket_{\gamma} = \lambda_X(\llbracket \varphi \rrbracket_{\gamma}) \circ \gamma.$

Predicate Lifting

 $\lambda_X \colon (X \to V) \to (TX \to V),$ natural, monotone and non-expansive

Syntax of QCML

$$\varphi, \psi ::= c \mid \varphi \oplus c \mid \varphi \ominus c \mid \varphi \wedge \psi \mid \varphi \lor \psi \mid \lambda \varphi \qquad (c \in V, \lambda \in \Lambda).$$

Semantics over $\gamma \colon X \to TX$

 $\llbracket \varphi \rrbracket_{\gamma} \colon X \to V \text{ recursively defined with } \llbracket \lambda \varphi \rrbracket_{\gamma} = \lambda_X(\llbracket \varphi \rrbracket_{\gamma}) \circ \gamma.$

Example

Probabilistic modal logic: $\mathbb{E} X(f)(\mu) =$ expected value of f under μ

Kantorovich Lifting

$$(R: A \times B \to V) \quad \mapsto \quad (K_{\Lambda}(R): TA \times TB \to V)$$

Kantorovich Lifting

$$(R: A \times B \to V) \quad \mapsto \quad (K_{\Lambda}(R): TA \times TB \to V)$$

$$K_{\Lambda}(R)(t_1, t_2) = \bigvee \{ \lambda_A(f)(t_1) \ominus \lambda_B(g)(t_2) \mid \lambda \in \Lambda, \ \forall a, b. \ f(a) \ominus g(b) \le R(a, b) \}$$

Kantorovich Lifting

$$(R: A \times B \to V) \quad \mapsto \quad (K_{\Lambda}(R): TA \times TB \to V)$$

$$K_{\Lambda}(R)(t_1, t_2) = \bigvee \{ \lambda_A(f)(t_1) \ominus \lambda_B(g)(t_2) \mid \lambda \in \Lambda, \ \forall a, b. \ f(a) \ominus g(b) \le R(a, b) \}$$

Behavioural distance as least fixed point

$$d^K = K_{\Lambda}(d^K) \circ (\gamma \times \gamma)$$

$$d^{K}(x,x) = 0$$
 and $d^{K}(x,z) \leq d^{K}(x,y) \oplus d^{K}(y,z)$

Kantorovich Lifting

$$(R: A \times B \to V) \quad \mapsto \quad (K_{\Lambda}(R): TA \times TB \to V)$$

$$K_{\Lambda}(R)(t_1, t_2) = \bigvee \{ \lambda_A(f)(t_1) \ominus \lambda_B(g)(t_2) \mid \lambda \in \Lambda, \ \forall a, b. \ f(a) \ominus g(b) \le R(a, b) \}$$

Behavioural distance as least fixed point

$$d^K = K_{\Lambda}(d^K) \circ (\gamma \times \gamma)$$

$$d^K(x,x) = \textbf{0} \qquad \text{and} \qquad d^K(x,z) \leq d^K(x,y) \oplus d^K(y,z)$$

 $d^K(x,y)=d^K(y,x)$ if Λ closed under duals

Theorem (Quantitative Hennessy-Milner theorem)

Let Λ be finite and \mathcal{V} totally bounded and continuous from below.

If T is finitary, then

$$d^{K}(a,b) = \bigvee \{ \llbracket \varphi \rrbracket(a) \ominus \llbracket \varphi \rrbracket(b) \mid \varphi \text{ a modal formula} \}.$$

Quantitative Coalgebraic Predicate Logic

 $\varphi, \psi ::= c \mid x = y \mid \varphi \oplus c \mid \varphi \ominus c \mid \varphi \wedge \psi \mid \varphi \vee \psi \mid \exists x.\varphi \mid \forall x.\varphi \mid x\lambda \lceil y \colon \varphi \rceil$

Theorem (Quantitative van Benthem theorem)

Let Λ be finite and \mathcal{V} totally bounded. Let $\varphi \in \mathsf{QCPL}$ be non-expansive wrt. d^K .

For every $\varepsilon \gg 0$ there exists a modal formula ψ such that for all γ, x :

 $[\![\varphi]\!]_\gamma(x) \ominus [\![\psi]\!]_\gamma(x) \leq \varepsilon \qquad \text{and} \qquad [\![\psi]\!]_\gamma(x) \ominus [\![\varphi]\!]_\gamma(x) \leq \varepsilon$

Existing instances of Hennessy-Milner and van Benthem theorems we cover:

- Classical modal logic with $\mathcal{V} = 2$ and $TX = \mathcal{P}(A \times X)$
- Probabilistic modal logic with $\mathcal{V} = [0, 1]$ and $TX = 1 + \mathcal{D}X$
- Two-valued ($\mathcal{V}=2$) coalgebraic modal logic [Schröder/Pattinson/Litak 2017]

Existing instances of Hennessy-Milner and van Benthem theorems we cover:

- Classical modal logic with $\mathcal{V} = 2$ and $TX = \mathcal{P}(A \times X)$
- Probabilistic modal logic with $\mathcal{V} = [0,1]$ and $TX = 1 + \mathcal{D}X$
- Two-valued ($\mathcal{V}=2$) coalgebraic modal logic [Schröder/Pattinson/Litak 2017]

New instances include:

- Metric modal logic with $TX = S \times \mathcal{P}X$ and modalities based on d_S .
- For $\mathcal{V} = \{[a, b] \mid 0 \le a \le b \le 1\}$: convex-nondeterministic metric modal logic.
- Simulation-based versions of all the above.