
Monad-Based Programming WS 2021

Assignment 6
Deadline for solutions: 04.02.2022

Exercise 1 Make Trees Foldable (Again) (9 Points)

The following code implements a breadth-first traversal of a tree, using the formalization of trees
from Data.Tree:

import Data.List

import Data.Monoid

import Data.Tree (Tree(..))

newtype BFSTree a = BFS (Tree a)

instance Foldable (BFSTree) where

foldMap f (BFS tr) = go [tr]

where

go q = case q of

[] -> mempty

(Node x xs):qs -> f x `mappend` go (qs ++ xs)

Hence one can run programs like

foldr (:) [] (BFS some_tree)

to obtain a breadth-first unfolding of a tree some_tree into a list, instead of the default depth-
first unfolding by

foldr (:) [] some_tree

This implementation is based on using the list type [BFSTree] as a queue in which new trees are
added at the back with the qs ++ xs command, which is highly inefficient, because it requires
full traversal of the pending queue qs at every iteration.

(a) Introduce a monad class (QMonad s) supporting the following operations

empty :: q ()

pop_front :: q (Maybe s)

push_back :: s -> q ()

for initializing the background queue, for popping elements (of type s) in front of the queue
(unless the queue is empty), and for pushing elements at the back of the queue (this requires
the {- ## LANGUAGE FunctionalDependencies ## -} extension). Implement a function

foldMapM :: (Monoid m, QMonad s q) => (s -> m) -> (s -> [s]) -> q m



MBProg, WS 2021

working analogously to the above foldMap, but using the above operations empty, pop_front,
push_back for working with the queue. The first argument of foldMapM is a map extracting a
root label of a tree (or some more general data structure) and interpreting it in a monoid, and
second argument is a function that yields a list of immediate subtrees of a given tree.

(b) Implement a concrete instance of (QMonad s) based on the above breadth-first traversal
example using [s] as the underlying storage (like in the state monad).

(c) Implement another instance of (QMonad s) using a pair of lists to simulate a queue (that
is: pop_front pops an element from the first list, push_back pushes an element to the second
list; once the first list is empty, and the second one is not, they must be swaped). Compare the
performance of both implementations by running tests on exponentially growing trees, e.g.

expTree a b = Node (a, b) [expTree (a + 1) b, expTree a (b + 1)]

Exercise 2 Making a Non-Strong Monad (Again) (5 Points)

Construct an example of non-strong monad in a Poset-cateory.

Hint: Use Exercise 3 from Assignment 5.

Exercise 3 (Non-)Commutative Monads (6 Points)

(a) Consider the exeption monad TX = X + E over the category of sets and functions. For
which E it is commutative? Justify your answer with a formal proof.

(b) Consider the lifting monad TX = X⊥ over the category of complete partial orders and
continuous functions. Is it commutative? Justify your answer with a formal proof.

(c) Prove that the reader monad TX = XS over the category of sets and functions is commu-
tative for every S.

2


	Make Trees Foldable (Again)(9 Points)
	Making a Non-Strong Monad (Again)(5 Points)
	(Non-)Commutative Monads (6 Points)

