Assignment 5

Deadline for solutions: 21.01.2022

Exercise 1 Triples* Need Not Be Kleisli

(6 Points)
Complete the proof from the lecture that Kleisli triples bijectively correspond to the triples (T, η, μ). To that end
(1) define a Kleisli triple from a monad, given as a triple (T, η, μ) and verify the axioms of Kleisli tripples;
(2) define a monad in the form (T, η, μ) from a Kleisli triple and verify the axioms of monads;
(3) show that the passage $\left(T, \eta,{ }_{-}^{*}\right) \rightarrow(T, \eta, \mu) \rightarrow\left(T, \eta,{ }_{-}^{*}\right)$ yields an identity;
(4) show that the passage $(T, \eta, \mu) \rightarrow\left(T, \eta,-^{*}\right) \rightarrow(T, \eta, \mu)$ yields an identity.

Exercise 2 Success and Failure of Monad Laws

List monad is defined as follows in Haskell

```
instance Monad [] where
    return }x=[x
    xs >>=f= concat (map f xs)
```

(1) Give a category-theretic defintion of this monad (i.e. in terms of η and μ) over the category of sets using the connection betwenn category-theoretic and Klesili presentations, using the previous excercise.

Note that the elements of $[A]$ can be understood as expressions of the form $a_{1} \vee \ldots \vee a_{n}$, where $a_{i} \in A$. For convenience, let us denote such an expression as false if $n=0$ and a_{1}^{\vee} if $n=1$. We could write e.g. $(a \vee b) \vee c$, which is the same as $a \vee(b \vee c)$, since both expressions correspond to the same list $[a, b, c]$.
(2) Describe η and μ in terms of this presentation and use it to show that the list monad is really a monad.
(3) Modify the presentaion from the previous clause and the argument, so as to show that the finite powerset monad (i.e. the one obtained by replacing finite lists by finite sets) is also a monad.

Consider the following code next
import Prelude hiding (and,or)
newtype DNF a = DNF \{ unDNF :: [[a]] \}

[^0]```
 deriving (Eq, Ord, Show, Read)
newtype DNF a = DNF { unDNF :: [[a]] }
 deriving (Eq, Ord, Show, Read)
true :: DNF a
true = DNF [[]]
false :: DNF a
false = DNF []
or :: DNF a -> DNF a -> DNF a
or (DNF a) (DNF b) = DNF $ a + + b
and :: DNF a -> DNF a -> DNF a
and (DNF []) (DNF bs) = false
and (DNF (a : as)) (DNF bs) = DNF $ (map (a++)bs) ++ (unDNF $ DNF as 'and' DNF bs)
instance Monad DNF where
 return a = DNF $ [[a]]
 DNF [] >>= k = false
 DNF (a : as) >>= k = (foldl and true (map k a)) 'or' (DNF as >>= k)
```

In a nutshell, we switched from lists $([A])$ to iterated lists $([[A]])$, but the notation is selected to be more suggestive - intuitively, instead for finite disjunctions of "atoms" from $A$, we are dealing with negation-free disjunctive normal forms (DNF) over $A$.
(4) Again, describe $\eta$ and $\mu$, derived from the above definition.
(5) Show that the specified iterated list monad is actually not a monad. Program an example showing that, i.e. provide two instances of the left and the right hand side of the monad law that fails.
Hint: It is advisable to view $\mu$ as a certain normalization procedure and exploit the discrepancy between $a^{\wedge} \vee(a \wedge b)$ and $\left(a^{\wedge}\right)^{\vee}$, which are distinct but logically equivalent DNF's.

## Exercise 3 Monads on Posets

A closure operator $T$ over a poset (=partially ordered set), say $\mathcal{C}$, satisfies properties:

$$
\begin{aligned}
X & \leq T X \\
X & \leq Y \quad \text { implies } \quad T X \leq T Y \\
T T X & =T X
\end{aligned} \quad \begin{aligned}
& \text { (extensiveness) } \\
& \text { (monotonicity) } \\
& \text { (idempotence) }
\end{aligned}
$$

For example, if $\mathcal{C}$ is the standard partial order on real numbers, then the operator rounding up a number to the closest integer is a closure operator.

Recall from the lecture that we can view $\mathcal{C}$ as a category: $O b(\mathcal{C})$ is the set of elements, $\operatorname{Hom}_{\mathcal{C}}(X, Y)=\{*\}$ if $X \leq Y$ and $\operatorname{Hom}_{\mathcal{C}}(X, Y)=\{ \}$ otherwise.
Prove that $T$ is a monad on $\mathcal{C}$ iff $T$ is a closure operator.

## Exercise 4 Monads from Monoids

A category $\mathcal{C}$ is called monoidal if it is equipped with the following data

- a bifunctor $\otimes: \mathbf{C} \times \mathbf{C} \rightarrow \mathbf{C}$ (tensor product);
- an object $I$ (unit object);
- three natural isomorphisms: $\alpha_{A, B, C}: A \otimes(B \otimes C) \cong(A \otimes B) \otimes C$ (associator), $\lambda_{A}: I \otimes A \cong A$ (left unitor) and $\rho_{A}: A \otimes I \cong A$ (right unitor);
- the following laws (coherence conditions):


An instructive example is a category with (selected) finitary products (Cartesian category), where we can take

- $\otimes$ to be $\times$,
- $I$ to be the initial object 1 ,
- $\alpha_{A, B, C}=\langle\mathrm{id} \times \mathrm{fst}$, snd $\circ$ snd $\rangle: A \times(B \times C) \cong(A \times B) \times C, \lambda_{A}=$ snd: $1 \times A \cong A$, $\rho_{A}=\mathrm{fst}: A \otimes I \cong A($ where $f \times g=\langle f \circ \mathrm{fst}, g \circ$ snd $\rangle$ for $f: A \rightarrow B, g: C \rightarrow D)$.

The coherence conditions can easily be obtained using equational reasoning from the following complete axiomatization of binary products:

$$
\text { fst } \circ\langle f, g\rangle=f \quad \text { snd } \circ\langle f, g\rangle=g \quad\langle\text { fst }, \text { snd }\rangle=\text { id } \quad h \circ\langle f, g\rangle=\langle h \circ f, h \circ g\rangle
$$

A monoid in a monoidal category $\mathcal{C}$ is a triple $(M, \epsilon, \odot)$ where $M$ is an object in $\mathcal{C} ; \odot$ ( multiplication) is a morphism $M \otimes M \rightarrow M$ and $\epsilon$ (unit) is a morphism $I \rightarrow M$ such that the following diagrams commute:


It is easy to check that in a Cartesian category, these diagrams precisely capture the property that $\epsilon$ is a monoid unit, i.e. $\odot \circ\langle\mathrm{id},!\rangle=\odot \circ\langle!$, id $\rangle=$ id (first diagram) and that monoid multiplication is associative, i.e. $\odot \circ(\odot \times \mathrm{id})=\odot \circ(\odot \times \mathrm{id}) \circ \alpha$ (second diagram).

Every monoid $(M, \epsilon, \odot)$ gives rise to a monad $T_{M}$, with

1. $T_{M} X=M \otimes X$;
2. $\eta_{X}=(\epsilon \times \mathrm{id}) \circ \lambda^{-1}: X \rightarrow M \otimes X$;
3. $\mu_{X}=(\odot \otimes \mathrm{id}) \circ \alpha: M \otimes(M \otimes X) \rightarrow M \otimes X$.
(1) Prove by diagram chasing that $T_{M}$, thus defined, is indeed a monad.

You can make free use of the following (famous) Mac Lane's coherence theorem:
Theorem: every well-formed diagram, with morphisms made of $\alpha, \lambda, \rho, \alpha^{-1}, \lambda^{-1}, \rho^{-1}$, id and $\otimes$ commutes.
For example, the monad law $\mu \circ \eta=$ id is shown with the following diagram:


It is relatively easy to see that under $\otimes=\times, I=1, T_{M}$ is the familiar writer monad Write m from Haskell.
(2) Using the axiomatization of binary coproducts dual to the above axiomatization of finite products, prove that in a monoidal category with $\otimes=+$ (what is $I ?$ ) any object $E$ can be made into a monoid. What is the induced monad?


[^0]:    *"Triple" is an old fashioned term for "monad".

