
Monad-Based Programming WS 2021

Assignment 5
Deadline for solutions: 21.01.2022

Exercise 1 Triples* Need Not Be Kleisli (6 Points)

Complete the proof from the lecture that Kleisli triples bijectively correspond to the triples
(T, η, µ). To that end

(1) define a Kleisli triple from a monad, given as a triple (T, η, µ) and verify the axioms of
Kleisli tripples;

(2) define a monad in the form (T, η, µ) from a Kleisli triple and verify the axioms of monads;

(3) show that the passage (T, η, ∗)→ (T, η, µ)→ (T, η, ∗) yields an identity;

(4) show that the passage (T, η, µ)→ (T, η, ∗)→ (T, η, µ) yields an identity.

Exercise 2 Success and Failure of Monad Laws (9 Points)

List monad is defined as follows in Haskell

instance Monad [] where
return x = [x]
xs >>= f = concat (map f xs)

(1) Give a category-theretic defintion of this monad (i.e. in terms of η and µ) over the category
of sets using the connection betwenn category-theoretic and Klesili presentations, using
the previous excercise.

Note that the elements of [A] can be understood as expressions of the form a1 ∨ . . . ∨ an, where
ai ∈ A. For convenience, let us denote such an expression as false if n = 0 and a∨1 if n = 1. We
could write e.g. (a ∨ b) ∨ c, which is the same as a ∨ (b ∨ c), since both expressions correspond
to the same list [a, b, c].

(2) Describe η and µ in terms of this presentation and use it to show that the list monad is
really a monad.

(3) Modify the presentaion from the previous clause and the argument, so as to show that the
finite powerset monad (i.e. the one obtained by replacing finite lists by finite sets) is also
a monad.

Consider the following code next

import Prelude hiding (and,or)

newtype DNF a = DNF { unDNF :: [[a]] }

*“Triple” is an old fashioned term for “monad”.



MBProg, WS 2021

deriving (Eq, Ord, Show, Read)

newtype DNF a = DNF { unDNF :: [[a]] }
deriving (Eq, Ord, Show, Read)

true :: DNF a
true = DNF [[]]

false :: DNF a
false = DNF []

or :: DNF a −> DNF a −> DNF a
or (DNF a) (DNF b) = DNF $ a ++ b

and :: DNF a −> DNF a −> DNF a
and (DNF []) (DNF bs) = false
and (DNF (a : as)) (DNF bs) = DNF $ (map (a++) bs) ++ (unDNF $ DNF as ‘and‘ DNF bs)

instance Monad DNF where
return a = DNF $ [[a]]

DNF [] >>= k = false
DNF (a : as) >>= k = (foldl and true (map k a)) ‘or‘ (DNF as >>= k)

In a nutshell, we switched from lists ([A]) to iterated lists ([[A]]), but the notation is selected
to be more suggestive – intuitively, instead for finite disjunctions of “atoms” from A, we are
dealing with negation-free disjunctive normal forms (DNF) over A.

(4) Again, describe η and µ, derived from the above definition.

(5) Show that the specified iterated list monad is actually not a monad. Program an example
showing that, i.e. provide two instances of the left and the right hand side of the monad
law that fails.

Hint: It is advisable to view µ as a certain normalization procedure and exploit the
discrepancy between a∧ ∨ (a ∧ b) and (a∧)∨, which are distinct but logically equivalent
DNF’s.

Exercise 3 Monads on Posets (6 Points)

A closure operator T over a poset (=partially ordered set), say C, satisfies properties:

X ≤ TX (extensiveness)

X ≤ Y implies TX ≤ TY (monotonicity)

TTX = TX (idempotence)

For example, if C is the standard partial order on real numbers, then the operator rounding up
a number to the closest integer is a closure operator.

Recall from the lecture that we can view C as a category: Ob(C) is the set of elements,
HomC(X,Y ) = {∗} if X ≤ Y and HomC(X,Y ) = { } otherwise.

Prove that T is a monad on C iff T is a closure operator.

Exercise 4 Monads from Monoids (9 Points)

A category C is called monoidal if it is equipped with the following data

2



MBProg, WS 2021

� a bifunctor ⊗ : C×C→ C (tensor product);

� an object I (unit object);

� three natural isomorphisms: αA,B,C : A⊗(B⊗C) ∼= (A⊗B)⊗C (associator), λA : I⊗A ∼= A
(left unitor) and ρA : A⊗ I ∼= A (right unitor);

� the following laws (coherence conditions):

A⊗ (I ⊗B) (A⊗ I)⊗B

A⊗B

αA,I,B

idA⊗λB ρA⊗idB

A⊗ (B ⊗ (C ⊗D)) A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D

(A⊗B)⊗ (C ⊗D) ((A⊗B)⊗ C)⊗D

idA⊗αB,C,D

αA,B,C⊗D

αA,B⊗C,D

αA,B,C⊗idD

αA⊗B,C,D

An instructive example is a category with (selected) finitary products (Cartesian category),
where we can take

� ⊗ to be ×,

� I to be the initial object 1,

� αA,B,C = 〈id × fst, snd ◦ snd〉 : A × (B × C) ∼= (A × B) × C, λA = snd : 1 × A ∼= A,
ρA = fst : A⊗ I ∼= A (where f × g = 〈f ◦ fst, g ◦ snd〉 for f : A→ B, g : C → D).

The coherence conditions can easily be obtained using equational reasoning from the following
complete axiomatization of binary products:

fst ◦ 〈f, g〉 = f snd ◦ 〈f, g〉 = g 〈fst, snd〉 = id h ◦ 〈f, g〉 = 〈h ◦ f, h ◦ g〉

A monoid in a monoidal category C is a triple (M, ε,�) where M is an object in C; � (multipli-
cation) is a morphism M ⊗M →M and ε (unit) is a morphism I →M such that the following
diagrams commute:

M ⊗ I M ⊗M I ⊗M

M

idM⊗ε

ρM
�

ε⊗idM

λM

M ⊗ (M ⊗M) (M ⊗M)⊗M

M ⊗M M M ⊗M

αM,M,M

idM⊗� �⊗idM

� �

It is easy to check that in a Cartesian category, these diagrams precisely capture the property
that ε is a monoid unit, i.e. � ◦ 〈id, !〉 = � ◦ 〈!, id〉 = id (first diagram) and that monoid
multiplication is associative, i.e. � ◦ (�× id) = � ◦ (�× id) ◦ α (second diagram).

Every monoid (M, ε,�) gives rise to a monad TM , with

1. TMX = M ⊗X;

2. ηX = (ε× id) ◦ λ−1 : X →M ⊗X;

3. µX = (�⊗ id) ◦ α : M ⊗ (M ⊗X)→M ⊗X.

3



MBProg, WS 2021

(1) Prove by diagram chasing that TM , thus defined, is indeed a monad.

You can make free use of the following (famous) Mac Lane’s coherence theorem:

Theorem: every well-formed diagram, with morphisms made of α, λ, ρ, α−1, λ−1, ρ−1, id and ⊗
commutes.

For example, the monad law µ ◦ η = id is shown with the following diagram:

M ⊗X I ⊗ (M ⊗X) M ⊗ (M ⊗X)

(I ⊗M)⊗X (M ⊗M)⊗X

M ⊗X

λ−1

λ−1⊗id

id

(Mac Lane)

(λ isomorphsim)

ε⊗id

α (naturality α) α

(ε⊗id)⊗id

λ⊗id

(axiom)
�⊗id

It is relatively easy to see that under ⊗ = ×, I = 1, TM is the familiar writer monad Write m

from Haskell.

(2) Using the axiomatization of binary coproducts dual to the above axiomatization of finite
products, prove that in a monoidal category with ⊗ = + (what is I?) any object E can
be made into a monoid. What is the induced monad?

4


	Triples Need Not Be Kleisli
	Success and Failure of Monad Laws(9 Points)
	Monads on Posets(6 Points)
	Monads from Monoids(9 Points)

