Monad-Based Programming WS 2021

Assignment 3

Deadline for solutions: 10.12.2021

Exercise 1 Programming a Proof Assistant (20 Points)

The formal system of natural deduction operates with the judgements of the form
>, I'km: A

which states that a (first-order) proposition A with free variables in X is derivable from the
list of propositions I', and 7 is the proof term, encoding this derivation. Derivability of such
judgment is interpreted as the fact that A provably follows from I'.

Formally, for a fixed set of functional symbols F' and a fixed set of predicate symbols P, we
introduce terms in contert with the rules

Yt term ... YHt, term
Y f(ty,... ty) term

r in X (Var—F)

o -F
X+ x term (app-F')

Example: With F' = {+}, (z,y - +y term) states that x + y is a term over variables x
and y.

Propositions in context (over F', P) are introduced with the rules:

peP Ykt term ... Y+t, term
Y+ o(ty, ... tn) prop

>+ B prop X+ B prop

(pred-F)

YX+AAB prop (A F) X+ T prop (TF)
>+ B prop ¥+ B prop
X+Av B prop (VF) X+ 1 prop (LF)
>+ B prop ¥+ B prop
X+ A= B prop (= F)
X,x = A prop (VF) X,x = A prop (3F)
X+ Vx. A prop Y+ dz. A prop

Example: With P = {P}, (- Jz.(P(x) — Yy. P(y)) prop) is a proposition without free
variables.

MBProg, WS 2021

Derivable judgements are obtained with the following rules:

u: A in T
ST w4 (P)

% Pkm: A X;T'+-me: B

I — (TI
;T (m,m): AAB (A) Z;FI—():T()
Y -m: A (vI) ;I'-me: B (vI)
>;'kinlm: Av B v ;D kinrme: Av B Vi
% Dx: Ar-m: B N
>;I'Xe.n: A= B (=
Yol Fn: A I Yt term 5T b wft/x]: Alt/x] @an
E;Fl—Am.ﬂ':Vz.A() 5T (tm): 3z A
> I'm: AAB %:T'+m: AAB
Y;D-fstm: A (AB1) ;I'-snd w: B (A Es)
5 I'-7n:Av B Y“lha:A-m: C E;F,y:Bl—ﬁng(E)
;' case minl & — 7rq;inr y — mo: C M
Db m: L
;' + absurd w: C (LE)
>;I'm: A= B Y me: A S m:Vz. A X+t term

(VE)

(= E)

;' mmy: B 5T+ 7t]: Alt/z]

XD da. A Soo;Tiu: A my: C
ST let (z,u) = 71 inme: C

(3E)

The syntax of proof terms is designed so as to indicate how proofs of the judgements in the
conclusions are obtained from the proofs of the judgements in the premises. Consider, for
example, the conclusion of (v E):

;' case 7 inl & — m;inr y — mo: C.

This says: to obtain a proof of a proposition C' (from the premises I'), take a proof 7 of the
disjunction A v B; if m proves A, bind the corresponding proof to x and call m; for which the
current assumptions I' suffice, since the only additional one (the assumption that A is true)
is proven by x; if m proves B, bind the corresponding proof to y and call mo in an analogous
manner.

Alternatively, we can view the last set of rules as term formation rules for a generalization of
simply typed A-calculus — the proof terms are generalized A-terms. This connection between
A-calculus and proof theory is called the Curry-Howard correspondence. We add the following
rule of double negation elimination, in order to fully capture classical logic (even though this
rule largely disrupts the Curry-Howard correspondence):

5TFm:(C=1)=1
;T - nne(n): C

(——E)

MBProg, WS 2021

(we thus assume that negation —A is encoded as A = 1).
Your task: Design and program an interactive proof assistant in Haskell, implementing the

above rules of natural deduction. Mind the following:

e No need to implement the entire system in detail as it stands. In particular, no need to
implement formation rules for ¥ — ¢ term and ¥ — A prop. It suffices to introduce a
handful of functional and predicate symbols statically and specify terms and propositions
over them by the corresponding grammars.

e [t is not necessary to implement proof terms — the entire calculus perfectly works if they
are completely omitted.

e Use the state monad (transformer) to store the current proof state, which is a stack
of pending judgements. Every rule transforms such a stack as follows: it pops the top
judgement, matches it with the conclusion of the rule, and pushes the premises of the rule
back on the stack. The proof is finished once the stack becomes empty.

e The interaction with the user can be organised as follows: the user is asked to provide the
name of a rule and possibly further input, such as a term in the (37) rule. The rule is
either applied, if possible, or an error message is displayed. This is repeated in a loop.

e You can take orientation from Coq’s tactic language. E.g. (= I) corresponds to intro
and (Al) to split, etc.

Test your implementation by proving

1. the excluded middle law P() v (P() = 1);

2. propositional de Morgan laws: ((P() v Q() = 1) = (P() = 1) A (Q() = 1) and
(PO AQO)= 1) = (PO =1)v Q)= 1)

3. the following de Morgan law for quantifiers: (3z. P(z) = 1) = V. (P(z) = 1).

Hint: Note that you cannot derive (1) without using (——F). Think of (sparing) use of (=—F)
for proving other formulas.

Exercise 2 Not Quite Contextual Equivalence,
Continued (5 Points)

Recall two implementations of Fibonacci numbers from Assignment 2:

fibp 0 = 1

fib 1 =1

fibn = fib (n - 1) + fib (n - 2)

fib2 0= (1 , 1)

fib2 n = let (fn_1, fn) = fib2 (n - 1) in (fn, fn_1 + fn)

Show that PCF terms for fib and fst $ fib2 are denotationally equal.

Hint: Obtain recursive equations for [f], [fi], [f2] and use them to show that [f] = [fi]
by induction over the input, where f, fi, fo are the PCF terms for fib, fst $ fib2 and
snd $ fib2 respectively.

MBProg, WS 2021

Exercise 3 The Diagonal Identity (5 Points)

Given a domain D and a continuous function f: D x D — D, the following diagonal identity
holds true:

px. py. f(z,y) = pa. f(z,z)

where px.t abbreviates p (Az.t). This law is essentially responsible for the fact that nested
recursion loops (in pretty much any programming language) can be equivalently replaced by a
single recursion loop. In order to prove it, we need to show the inequalities

px. py. f(x,y) Cpx. f(x,z)
p. f(x,x) C pa.py. f(z,y)
Prove one of them.

Hint: One of these inequations can be deduced merely from the fact that u calculates least
fizpoints, that is, always: px.t = t[px.t/z] and pz.t is the least element with this property.

	Programming a Proof Assistant(20 Points)
	Not Quite Contextual Equivalence, Continued(5 Points)
	The Diagonal Identity(5 Points)

