
Monad-Based Programming WS 2021

Assignment 2
Deadline for solutions: 24.11.2021

Exercise 1 Not Quite Contextual Equivalence (8 Points)

Within this exercise we stick to PCF under the call-by-name semantics.

The simplest implementation of Fibonacci numbers, corresponding to the following Haskell def-
inition

fib 0 = 1

fib 1 = 1

fib n = fib (n - 1) + fib (n - 2)

can be extremely inefficient, for every step recursively calls fib twice, so the number of recursive
calls grows exponentially. Because of that, it makes sense to use the following variant of fib,
which simultaneously calculates the n-th and the pn` 1q-th Fibonacci number:

fib2 0 = (1 , 1)

fib2 n = let (fn_1, fn) = fib2 (n - 1) in (fn, fn_1 + fn)

1. Encode both examples in PCF.

2. Using the operational semantics rules (small-step or big step, chosen at pleasure), show that
for every input natural number n, both fib and fst $ fib2 applied to n reduce to the same
value. Hint: Use induction over n; for the second function, consider strengthening the induction
invariant.

Exercise 2 Stateful Calculator (10 Points)

1. Write a Haskell function for parsing arithmetic expressions given by the following grammar:

e1, e2 “ n | ´e1 | pe1q | e1 ` e2 | e1 ´ e2 | e1 ˚ e2 | e1 ze2

where n ranges over positive natural numbers represented as nonempty strings of decimal digits.

Hint: Reuse the example code from the lecture: https://www8.cs.fau.de/ext/teaching/

wise2021-22/mbprog/parsing.hs.

2. Write a Haskell function evaluating the parse trees obtained in the previous clause to the
corresponding integer values or to an error message if division by zero occurs. In any case
record the evaluation history in the following style:

Prelude> eval $ calc $ "12 + 5 * 6"

Prelude> Result 42, ["5 * 6 -> 30", "12 + 30 -> 42"]

Prelude> eval $ (calc $ "12 + 5 / (0*6)"

Prelude> Error, ["0 * 6 -> 0", "5 / 0 -> error"]

https://www8.cs.fau.de/ext/teaching/wise2021-22/mbprog/parsing.hs
https://www8.cs.fau.de/ext/teaching/wise2021-22/mbprog/parsing.hs

MBProg, WS 2021

To this end, use the writer monad Writer from Control.Monad.Trans.Writer for recording
the calculation history as a list of strings. Use an instance of the exception monad transformer
from Control.Monad.Except to implement exceptions

newtype ExceptT e (m :: * -> *) a

with an exception monad as the argument m.

Alternatively: Implement your own monad from scratch that combines writing calculation
history with exceptions i.e. the monad TX “ pX `EqˆS where S is the type of lists of strings
(histories) and E is the type of strings (error messages).

Exercise 3 First-Order Logic (12 Points)

Analogously to the previous exercise, implement (also in Haskell!) a parser for first-order for-
mulas

φ, ψ ::“ T | F |„ φ | φ/\ψ | φ\/ψ | φ->ψ | forall x. φ | exists x. φ

Implement the following transformations of formulas:

1. Recursive replacement of the implication under the rule φ->ψ p„ φq\/ψ.

2. Negation normal form, as described in GLoIn (p.42 of https://www8.cs.fau.de/ext/

teaching/wise2021-22/gloin/skript.pdf).

3. Prenex normal form, as described in GLoIn (p.43 of https://www8.cs.fau.de/ext/

teaching/wise2021-22/gloin/skript.pdf). Attention: you will need to ensure cap-
ture avoidance, e.g. pforall x. φq\/ψ must be transformed to forall y. pφry{xs\/ψq for a
suitable y if x occurs freely in ψ (Circumventing this challenge, e.g. via de Bruijn indices
will not be considered legit). Avoid unnecessary renamings!

2

https://www8.cs.fau.de/ext/teaching/wise2021-22/gloin/skript.pdf
https://www8.cs.fau.de/ext/teaching/wise2021-22/gloin/skript.pdf
https://www8.cs.fau.de/ext/teaching/wise2021-22/gloin/skript.pdf
https://www8.cs.fau.de/ext/teaching/wise2021-22/gloin/skript.pdf

	Not Quite Contextual Equivalence(8 Points)
	Stateful Calculator(10 Points)
	First-Order Logic(12 Points)

