Monad-Based Programming WS 2021

Assignment 1

Deadline for solutions: 10.11.2021

Exercise 1 Small-step v.s. Big-step (6 Points)

Consider the following rules for the small-step and big-step call-by-value semantics of untyped
A-calculus:

Small-step semantics:

/ / 3 .

P —cby P q —cby ¢ p is a value q is a value
————— (l-red) (r-red) B
Pq —cbv P'q Pq —cbv D¢’ (Az.p)gq —cby plg/7] B)

Big-step semantics:

D Jeby)\l‘.p, q Jeby q/ pl[q//x] Yebv v
Pq Yeby v

(value) (app)

AZ. D leby AT.p

Recall that a A-term is a wvalue if and only if it has the form Az.t. A normal form of t w.r.t.
the small-step semantics is such a value v that t —% v. A normal form of t w.r.t. the big-step
semantics is such a value v that ¢ | cpy v.

(a) In both styles of semantics, calculate normal forms of the term

Am. dn A f de.m f (n fx))NfAx. f(fz)(Nf. Xz, f(fx)),

meaning: produce the corresponding complete derivations.

Hint: It can be useful to introduce abbreviations for combinators (i.e. terms without free

variables), e.g. p for Am. An. Af. Az.m f (n f x) and ¢ for \f. \x. f(fz).

*
cbv

(b) Prove that for any closed A-term p, p —7%_ ¢ with ¢ being a value iff p ||cpy ¢. To this end,

use (without a proof) the following

Well-founded Tree Induction Principle: given a set of rules S and a predicate P with the
following properties:

(i) P(t) for any rule from S of the form

(ii) whenever P(t1),..., P(t,) and the rule
t1 ... tpn

belongs to S then P(t).

Then P(t) for any t that can be derived using S.

Hint: For one direction of the equivalence use the lemma: p —cpy ¢ A ¢ by €= P Jeby C-

MBProg, WS 2021

Exercise 2 Lazy Lists (7 Points)

(a) Complete the untyped A-calculus with constructors for lists (i.e. a zero-ary constructor nil
for forming the empty list and a binary constructor cons for forming a list from a head and a
tail) and with the head and tail destructors.

(b) Design a call-by-name (lazy) small-step and big-step semantics for the obtained extension in
such a way that the observable behaviour of terms is analogous to the corresponding behaviour
of Haskell programs.
(c) Recall the Haskell program for generating Fibonacci numbers

fib =1:1: [a+b]| (a, b) <— zip fib (tail fib)]
from the lecture. How can this program be implemented in the lazy untyped A-calculus with
lists? Justify your answer.

Hint: Recall that natural numbers can be modelled with Church numerals.

Exercise 3 Getting Real (7 Points)

Consider a notion of number which includes all natural numbers and supports the operations of
summation and multiplication. Let us denote by S the set of such numbers. We can extend S
to the numbers of the form

a++v2-b (*)

with a,b € S and denote the extended numbers as S[v/2]. Note that depending on S, S may be
equi-expressive with S[v/2] (e.g. if S are all real numbers) or properly less expressive (e.g. if S
are all rational numbers).

Implement the numbers (*) in Haskell as an
algebraic data type

BE
Sq2Num a RATIONAL!
where a is the type capturing the elements
of §. Ensure that Sq2Num a (under suitable -
assumptions) is an instance of the following
type classes: Eq, Ord, Show, Num, Fractional,

e.g. by completing the following declarations:

instance (Num a, Eq a) => Eq (Sq2Num a)
instance (Num a, Eq a) => Num (Sq2Num a)
instance (Num a, Eq a, Ord a) => Ord (Sq2Num a)
instance (Fractional a, Eq a) => Fractional (Sq2Num a)

Additionally, provide a conversion function

getReal :: Floating a => Sq2Num a —> a

reducing from S[v/2] to S in such a way that real numbers are converted to themselves.

Hint: For inspiration, you can use the standard implementation of complex numbers in Haskell [1].
Like in the case of complex numbers, you need to prove (!) and implement the mathematical
fact that the numbers () are closed under summation and multiplication and additionally under
division, provided that so are the numbers from S.

MBProg, WS 2021

References

[1] https://www.haskell.org/onlinereport/complex.html.

https://www.haskell.org/onlinereport/complex.html

	Small-step v.s. Big-step(6 Points)
	Lazy Lists(7 Points)
	Getting Real(7 Points)

