Assignment 1

Deadline for solutions: 10.11.2021

Exercise 1 Small-step v.s. Big-step

Consider the following rules for the small-step and big-step call-by-value semantics of untyped λ-calculus:

Small-step semantics:

$$
\frac{p \rightarrow_{\mathrm{cbv}} p^{\prime}}{p q \rightarrow_{\mathrm{cbv}} p^{\prime} q}(\mathbf{l}-\mathrm{red}) \quad \frac{q \rightarrow_{\mathrm{cbv}} q^{\prime} \quad p \text { is a value }}{p q \rightarrow_{\mathrm{cbv}} p q^{\prime}} \quad(\mathbf{r}-\mathrm{red}) \quad \frac{q \text { is a value }}{(\lambda x . p) q \rightarrow_{\mathrm{cbv}} p[q / x]}
$$

Big-step semantics:

$$
\frac{\overline{\lambda x . p} \Downarrow_{\text {cbv }} \lambda x . p}{} \text { (value) } \quad \frac{p \Downarrow_{\text {cbv }} \lambda x . p^{\prime}}{q \Downarrow_{\text {cbv }} q^{\prime}} \begin{array}{ll}
p^{\prime}\left[q^{\prime} / x\right] \Downarrow_{\text {cbv }} v \\
p q \Downarrow_{\text {cbv } v} & (a p p) ~
\end{array}
$$

Recall that a λ-term is a value if and only if it has the form λ x.t. A normal form of t w.r.t. the small-step semantics is such a value v that $t \rightarrow_{\mathrm{cbv}}^{\star} v$. A normal form of t w.r.t. the big-step semantics is such a value v that $t \Downarrow_{\text {cbv }} v$.
(a) In both styles of semantics, calculate normal forms of the term

$$
(\lambda m \cdot \lambda n \cdot \lambda f \cdot \lambda x \cdot m f(n f x))(\lambda f \cdot \lambda x \cdot f(f x))(\lambda f \cdot \lambda x \cdot f(f x)),
$$

meaning: produce the corresponding complete derivations.
Hint: It can be useful to introduce abbreviations for combinators (i.e. terms without free variables), e.g. p for $\lambda m . \lambda n . \lambda f . \lambda x . m f(n f x)$ and t for $\lambda f . \lambda x . f(f x)$.
(b) Prove that for any closed λ-term $p, p \rightarrow_{\mathrm{cbv}}^{\star} q$ with q being a value iff $p \Downarrow_{\mathrm{cbv}} q$. To this end, use (without a proof) the following

Well-founded Tree Induction Principle: given a set of rules S and a predicate P with the following properties:
(i) $P(t)$ for any rule from S of the form

$$
\bar{t}
$$

(ii) whenever $P\left(t_{1}\right), \ldots, P\left(t_{n}\right)$ and the rule

belongs to S then $P(t)$.
Then $P(t)$ for any t that can be derived using S.
Hint: For one direction of the equivalence use the lemma: $p \rightarrow_{\mathrm{cbv}} q \wedge q \Downarrow_{\mathrm{cbv}} c \Rightarrow p \Downarrow_{\mathrm{cbv}} c$.

Exercise 2 Lazy Lists

(a) Complete the untyped λ-calculus with constructors for lists (i.e. a zero-ary constructor nil for forming the empty list and a binary constructor cons for forming a list from a head and a tail) and with the head and tail destructors.
(b) Design a call-by-name (lazy) small-step and big-step semantics for the obtained extension in such a way that the observable behaviour of terms is analogous to the corresponding behaviour of Haskell programs.
(c) Recall the Haskell program for generating Fibonacci numbers

$$
\text { fib }=1: 1:[a+b \mid(a, b)<- \text { zip fib }(\text { tail fib })]
$$

from the lecture. How can this program be implemented in the lazy untyped λ-calculus with lists? Justify your answer.
Hint: Recall that natural numbers can be modelled with Church numerals.

Exercise 3 Getting Real

Consider a notion of number which includes all natural numbers and supports the operations of summation and multiplication. Let us denote by \mathcal{S} the set of such numbers. We can extend \mathcal{S} to the numbers of the form

$$
\begin{equation*}
a+\sqrt{2} \cdot b \tag{*}
\end{equation*}
$$

with $a, b \in \mathcal{S}$ and denote the extended numbers as $\mathcal{S}[\sqrt{2}]$. Note that depending on \mathcal{S}, \mathcal{S} may be equi-expressive with $\mathcal{S}[\sqrt{2}]$ (e.g. if \mathcal{S} are all real numbers) or properly less expressive (e.g. if \mathcal{S} are all rational numbers).
Implement the numbers (*) in Haskell as an algebraic data type

Sq2Num a
where a is the type capturing the elements of \mathcal{S}. Ensure that Sq2Num a (under suitable assumptions) is an instance of the following type classes: Eq, Ord, Show, Num, Fractional, e.g. by completing the following declarations:

```
instance (Num a, Eq a) => Eq(Sq2Num a)
instance (Num a, Eq a) \(=>\) Num (Sq2Num a)
instance (Num a, Eq a, Ord a) \(=>\) Ord (Sq2Num a)
instance (Fractional a, Eq a) \(=>\) Fractional (Sq2Num a)
```


Additionally, provide a conversion function

$$
\text { getReal }:: \text { Floating } a=>\text { Sq2Num } a->a
$$

reducing from $\mathcal{S}[\sqrt{2}]$ to \mathcal{S} in such a way that real numbers are converted to themselves.
Hint: For inspiration, you can use the standard implementation of complex numbers in Haskell [1]. Like in the case of complex numbers, you need to prove (!) and implement the mathematical fact that the numbers $(*)$ are closed under summation and multiplication and additionally under division, provided that so are the numbers from \mathcal{S}.

References

[1] https://www.haskell.org/onlinereport/complex.html.

