Assignment 1

Deadline for solutions: 10.11.2021

Exercise 1 Small-step v.s. Big-step

(6 Points)

Consider the following rules for the small-step and big-step call-by-value semantics of untyped λ -calculus:

Small-step semantics:

$$\frac{p \to_{\mathsf{cbv}} p'}{pq \to_{\mathsf{cbv}} p'q} \quad \text{(l-red)} \qquad \frac{q \to_{\mathsf{cbv}} q' \quad p \text{ is a value}}{pq \to_{\mathsf{cbv}} pq'} \quad \text{(r-red)} \qquad \frac{q \text{ is a value}}{(\lambda x. p)q \to_{\mathsf{cbv}} p[q/x]} \quad (\beta)$$

Big-step semantics:

$$\frac{1}{\lambda x. \, p \, \Downarrow_{\mathsf{cbv}} \, \lambda x. \, p} \quad \text{(value)} \qquad \frac{p \, \Downarrow_{\mathsf{cbv}} \, \lambda x. \, p' \qquad q \, \Downarrow_{\mathsf{cbv}} \, q' \qquad p'[q'/x] \, \Downarrow_{\mathsf{cbv}} \, v}{p \, q \, \Downarrow_{\mathsf{cbv}} \, v} \quad \text{(app)}$$

Recall that a λ -term is a value if and only if it has the form $\lambda x.t$. A normal form of t w.r.t. the small-step semantics is such a value v that $t \to_{\mathsf{cbv}}^{\star} v$. A normal form of t w.r.t. the big-step semantics is such a value v that $t \downarrow_{\mathsf{cbv}} v$.

(a) In both styles of semantics, calculate normal forms of the term

$$(\lambda m. \lambda n. \lambda f. \lambda x. m \ f \ (n \ f \ x))(\lambda f. \lambda x. f(fx))(\lambda f. \lambda x. f(fx)),$$

meaning: produce the corresponding complete derivations.

Hint: It can be useful to introduce abbreviations for *combinators* (i.e. terms without free variables), e.g. p for λm . λn . λf . λx . m f (n f x) and t for λf . λx . f(fx).

(b) Prove that for any closed λ -term $p, p \to_{\mathsf{cbv}}^{\star} q$ with q being a value iff $p \downarrow_{\mathsf{cbv}} q$. To this end, use (without a proof) the following

Well-founded Tree Induction Principle: given a set of rules S and a predicate P with the following properties:

(i) P(t) for any rule from S of the form

 \overline{t}

(ii) whenever $P(t_1), \ldots, P(t_n)$ and the rule

$$\frac{t_1 \quad \dots \quad t_n}{t}$$

belongs to S then P(t).

Then P(t) for any t that can be derived using S.

Hint: For one direction of the equivalence use the lemma: $p \to_{\mathsf{cbv}} q \land q \Downarrow_{\mathsf{cbv}} c \Rightarrow p \Downarrow_{\mathsf{cbv}} c$.

Exercise 2 Lazy Lists

(7 Points)

- (a) Complete the untyped λ -calculus with constructors for lists (i.e. a zero-ary constructor nil for forming the empty list and a binary constructor cons for forming a list from a head and a tail) and with the head and tail destructors.
- (b) Design a call-by-name (lazy) small-step and big-step semantics for the obtained extension in such a way that the observable behaviour of terms is analogous to the corresponding behaviour of Haskell programs.
- (c) Recall the Haskell program for generating Fibonacci numbers

$$fib = 1:1:[a+b|(a, b) <-zip fib (tail fib)]$$

from the lecture. How can this program be implemented in the lazy untyped λ -calculus with lists? Justify your answer.

Hint: Recall that natural numbers can be modelled with Church numerals.

Exercise 3 Getting Real

(7 Points)

Consider a notion of number which includes all natural numbers and supports the operations of summation and multiplication. Let us denote by \mathcal{S} the set of such numbers. We can extend \mathcal{S} to the numbers of the form

$$a + \sqrt{2} \cdot b \tag{*}$$

with $a, b \in \mathcal{S}$ and denote the extended numbers as $\mathcal{S}[\sqrt{2}]$. Note that depending on \mathcal{S} , \mathcal{S} may be equi-expressive with $\mathcal{S}[\sqrt{2}]$ (e.g. if \mathcal{S} are all real numbers) or properly less expressive (e.g. if \mathcal{S} are all rational numbers).

Implement the numbers (*) in Haskell as an algebraic data type

where a is the type capturing the elements of S. Ensure that Sq2Num a (under suitable assumptions) is an instance of the following type classes: Eq, Ord, Show, Num, Fractional, e.g. by completing the following declarations:


```
instance (Num a, Eq a) => Eq (Sq2Num a)
instance (Num a, Eq a) => Num (Sq2Num a)
instance (Num a, Eq a, Ord a) => Ord (Sq2Num a)
instance (Fractional a, Eq a) => Fractional (Sq2Num a)
```

Additionally, provide a conversion function

$$getReal :: Floating a => Sq2Num a -> a$$

reducing from $\mathcal{S}[\sqrt{2}]$ to \mathcal{S} in such a way that real numbers are converted to themselves.

Hint: For inspiration, you can use the standard implementation of complex numbers in Haskell [1]. Like in the case of complex numbers, you need to prove (!) and implement the mathematical fact that the numbers (*) are closed under summation and multiplication and additionally under division, provided that so are the numbers from S.

References

[1] https://www.haskell.org/onlinereport/complex.html.