
Monad-Based Programming WS 2021

Assignment 1
Deadline for solutions: 10.11.2021

Exercise 1 Small-step v.s. Big-step (6 Points)

Consider the following rules for the small-step and big-step call-by-value semantics of untyped
λ-calculus:

Small-step semantics:

pÑcbv p
1

pq Ñcbv p
1q

(l-red)
q Ñcbv q

1 p is a value

pq Ñcbv pq
1

(r-red)
q is a value

pλx. pqq Ñcbv prq{xs
(β)

Big-step semantics:

λx. p ócbv λx. p
(value)

p ócbv λx. p
1 q ócbv q

1 p1rq1{xs ócbv v

pq ócbv v
(app)

Recall that a λ-term is a value if and only if it has the form λx. t. A normal form of t w.r.t.
the small-step semantics is such a value v that tÑ‹

cbv v. A normal form of t w.r.t. the big-step
semantics is such a value v that t ócbv v.

(a) In both styles of semantics, calculate normal forms of the term

pλm. λn. λf. λx.m f pn f xqqpλf. λx. fpfxqqpλf. λx. fpfxqq,

meaning: produce the corresponding complete derivations.

Hint: It can be useful to introduce abbreviations for combinators (i.e. terms without free
variables), e.g. p for λm. λn. λf. λx.m f pn f xq and t for λf. λx. fpfxq.

(b) Prove that for any closed λ-term p, pÑ‹
cbv q with q being a value iff p ócbv q. To this end,

use (without a proof) the following

Well-founded Tree Induction Principle: given a set of rules S and a predicate P with the
following properties:

(i) P ptq for any rule from S of the form

t

(ii) whenever P pt1q, . . . , P ptnq and the rule

t1 . . . tn
t

belongs to S then P ptq.

Then P ptq for any t that can be derived using S.

Hint: For one direction of the equivalence use the lemma: pÑcbv q ^ q ócbv cñ p ócbv c.



MBProg, WS 2021

Exercise 2 Lazy Lists (7 Points)

(a) Complete the untyped λ-calculus with constructors for lists (i.e. a zero-ary constructor nil
for forming the empty list and a binary constructor cons for forming a list from a head and a
tail) and with the head and tail destructors.

(b) Design a call-by-name (lazy) small-step and big-step semantics for the obtained extension in
such a way that the observable behaviour of terms is analogous to the corresponding behaviour
of Haskell programs.

(c) Recall the Haskell program for generating Fibonacci numbers

fib = 1 : 1 : [a + b | (a, b) <´ zip fib (tail fib ) ]

from the lecture. How can this program be implemented in the lazy untyped λ-calculus with
lists? Justify your answer.

Hint: Recall that natural numbers can be modelled with Church numerals.

Exercise 3 Getting Real (7 Points)

Consider a notion of number which includes all natural numbers and supports the operations of
summation and multiplication. Let us denote by S the set of such numbers. We can extend S
to the numbers of the form

a`
?

2 ¨ b (˚)

with a, b P S and denote the extended numbers as Sr
?

2s. Note that depending on S, S may be
equi-expressive with Sr

?
2s (e.g. if S are all real numbers) or properly less expressive (e.g. if S

are all rational numbers).

Implement the numbers (˚) in Haskell as an
algebraic data type

Sq2Num a

where a is the type capturing the elements
of S. Ensure that Sq2Num a (under suitable
assumptions) is an instance of the following
type classes: Eq, Ord, Show, Num, Fractional,
e.g. by completing the following declarations:

instance (Num a, Eq a) => Eq (Sq2Num a)
instance (Num a, Eq a) => Num (Sq2Num a)
instance (Num a, Eq a, Ord a) => Ord (Sq2Num a)
instance (Fractional a, Eq a) => Fractional (Sq2Num a)

Additionally, provide a conversion function

getReal :: Floating a => Sq2Num a ´> a

reducing from Sr
?

2s to S in such a way that real numbers are converted to themselves.

Hint: For inspiration, you can use the standard implementation of complex numbers in Haskell [1].
Like in the case of complex numbers, you need to prove (!) and implement the mathematical
fact that the numbers (˚) are closed under summation and multiplication and additionally under
division, provided that so are the numbers from S.

2



MBProg, WS 2021

References

[1] https://www.haskell.org/onlinereport/complex.html.

3

https://www.haskell.org/onlinereport/complex.html

	Small-step v.s. Big-step(6 Points)
	Lazy Lists(7 Points)
	Getting Real(7 Points)

