Lecture Notes for

Monad-Based Programming

Recorded by Hans-Peter Deifel (hpd@hpdeifel.de)
Edited by Sergey Goncharov (sergey.goncharov@fau.de)

by PD Dr. Sergey Goncharov

2022/01/12

mailto:hpd@hpdeifel.de
mailto:sergey.goncharov@fau.de

Contents

1 Semantics for Computation 3
1.1 The Untyped Lambda Calculus 5
1.2 Evaluation Strategies L L 7

1.2.1 Formal Systems L 7
1.2.2 Standard Evaluation Strategy 8
1.2.3 Call-by-Name (Lazy) Evaluation Strategy 9
1.2.4 Call-by-Value (Eager) Evaluation Strategy 10
1.2.5 Big-Step Call-by-Name 10
1.2.6 Big-Step Call-by-Value, 11
1.3 PCF (Programming Computable Functions) 11
1.3.1 Simply-Typed A-calculus. 0L 11
1.3.2 Call-by-Name Operational Semantics for PCF 13
1.3.3 Call-by-Value Operation Semantics for PCF 15
1.3.4 Contextual Equivalence, 16
1.3.5 Coproducts, Abrupt Termination and I/O 17
1.4 Denotational Semantics of PCF 18
1.4.1 Constructions on Predomains 20
1.4.2 CBN Denotational Semantics 23
1.4.3 Failure of Full Abstraction. 25
1.4.4 CBV Denotational Semantics 26

2 Categories and Monads 29

2.1 Introducing Monads 29
2.1.1 Products and Coproducts o 30
2.1.2 Functors and Monads 34
2.1.3 Natural Transformations: Relating Functors 36
2.1.4 Examples of Monads 40
2.1.5 Dualization, Bi-Functors, Cartesian Closure 41

2.2 Tensorial Strength L 42
2.2.1 Strong Monads 43
2.2.2 Commutative Monads 45

2.3 Algebras and CPS-Transormations 45

2.4 Free Objects and Adjoint Functors 48

1 Semantics for Computation

In mathematics we do not distinguish between expressions and their meanings. The meaning
of 2+2 is 4 and both things mean (or denote) the same. In computer science we do distinguish
expressions or terms from what they mean, for which we use semantic brackets

[—]: Terms — Meanings

The style of semantics involving such brackets is called denotational semantics. Denotational
semantics has been developed in 70’s by Christopher Strachey and Dana Scott.

The equality 2 + 2 = 4 and the like, which we know from mathematics means that 2 + 2
and 4 denote the same, however, what connects 2+ 2 and 4 is a computational process (which
is, of course, very simple in this case). Mathematics traditionally ignores the computational
overhead of evaluating 2 + 2 to 4, but in programming we cannot afford this, because pro-
gramming (program analysis, verification) is largely about evaluation of expressions (or, more
generally, about the process of computation). There are traces of this issue in mathematics,
though, e.g. in the form of infinite series. Those usually make mathematicians uneasy, and
they become much happier if they manage to find a closed form, i.e. an analytic expression,
to which the sum converges. For examples:

1+1+%+%+%+...=ew2.71828
Riemann showed that if the partial sums ", ay, converge, but partial sums of absolute values
> o lan| diverge, then one can rearrange the elements in .2, ay, so that it converges to any
given number. Examples:

1-1)+1/2-1/2)+(1/3-1/3)+...=0
1+1/2-1)+1/3+1/4-1/2)+(1/5+1/6+1/7T—1/3)+...=1n2
A+1/2-1)+1/3+...+1/8—-1/2)+ (1/9+ ... +1/16 —1/4) + ... = ®

This makes the theory of infinite series a sophisticated subject. In computer science we deal
with potentially infinite computations routinely, as we must, since Turing complete languages
must express all partial recursive functions, which are those for which we generally cannot
decide termination. But, on a positive side, we do not have a behaviour as sophisticated
as above, which is caused by adding and subtracting quantities infinitely. The core idea of
denotational semantics is that the amount of information generated with a computation keeps
increasing over time, and what has been computed previous cannot be “undone” (like with
the expression 1 — 1 where —1 cancels previously computed 1).

Denotational semantics requires a system of domains, for collecting values. Classical math-
ematics is based on the classical set theory, which postulates that everything is a set (numbers,
relations, functions, curves, etc.) Sets thus play the role of domains. In computer science,
domains are chosen differently (we will see how!), as they must correctly capture the notion

Version: 2022/01/12, 13:33:41

of partiality of data and possible non-termination of functions. Because of the parallels be-
tween mathematical functions and programs, built in the denotational semantics, the latter
is sometimes called a mathematical semantics.

A different established style of semantics is operational semantics: it describes a reduction
of terms to values, e.g. 2 + 2 reduces to 4, assuming that 2 = s(s(0)) (2 is the successor of
the successor of 0):

5(s(0)) + 5(5(0)) — 5(5(0) + 5(5(0))) — s(s(0 + 5(5(0)))) — s(s(s(5(0))))-

This neither directly defines domains of values nor identifies + as a function over these
values. The framework for defining operational semantics rigorously is the framework of
formal systems. Finally, logical semantics describes programs by drawing on logical properties
they are expected to satisfy, e.g. © := x+1 is such a program that if x was n before its execution
then z is n + 1 after its execution.

In summary:

Classical styles of semantics
e Denotational Semantics (what the program means?)
e Operational Semantics (how the program behaves?)

e Axiomatic Semantics (what properties the program satisfies?)

We stick to the first two styles of semantics, of which we first consider the second one (which
is easier) to approach the first one (which is harder). Example of axiomatic semantics is Hoare
logic (not covered here).

What we do in the course? The course revolves around the triad:

Category
Theory

Semantics

Functional
Programming

Starting from one node you will be able to connect to the other nodes, transferring the
knowledge and understanding.

e Denotational semantics is motivated by computation and ultimately involves advanced
mathematical structures, for which category theory is arguably the most natural language to
use. We thus transfer computational intuition from semantics to category theory to approach
the latter.

1.1. The Untyped Lambda Calculus Version: 2022/01/12, 13:33:41

e Good understanding of semantics helps in functional programming, in particular Haskell,
since it has been designed by computer scientists who took semantics very seriously. We thus
learn Haskell in a semantic-oriented way.

e Category theory influenced semantics, since many abstract, purely mathematical con-
cepts, such as monads, were utilized in semantics to organize constructions and reasoning.
We thus use semantics to develop a computational intuition of formal categorical concepts.

e Similarly, a great amount of abstract categorical concepts was utilized in functional
programming, again, most notably by Haskell. Specifically, monads were introduced to Haskell
as a practical organization tool for writing programs — even writing the ”Hello World” program
in Haskell requires a monad!

e Therefore, in this course, conversely, we use Haskell as a showcase for advanced categorical
concepts, such as monads, adjunctions, Cartesian closure.

e Semantically, Haskell is a statically typed, purely functional lazy programming language,
which can be regarded as a far-reaching generalization of the typed A-calculus, and as such
it provides as excellent playground for illustrating various important semantics concepts.

1.1 The Untyped Lambda Calculus

Untyped A-calculus is a proto-programming language introduced by a mathematician Alonzo
Church in 30’s prior to any actual programming languages and computers.

Variables x,y,z,...
Terms t,s:=m,y,z | \x.t|ts
Contexts C,D:=z,y,z 0] Xx.C|CD

So, a context is a term with a “hole” 0. Let C[t] be the term obtained by replacing [J in a
context C' with a term ¢.

e a-conversion C[\z.t] —, C[Ay.t[y/x]], where y is not free in ¢ (see definition below)
e [J-reduction C[(Az.t)s] — 3 C[t[s/x]]
e 7-reduction C[Az.fz] — C[f]
where C ranges over all contexts. Derived reductions:
e af-reduction is: —7%5 = (—a U —p)"

*
aBn

*

e afn-reduction is: —}, = (=4 U =5 U =)

Definition (Redex). A (8—)redex (=reducible expression) is a subterm of the form (Ax.t)s
of a given term; that is, the given term is of the form C[Az.t].
Definition (Free Variables).

e Free(x) = {z}
e Free(st) = Free(s) u Free(t)
e Free(Az.s) = Free(s) \ {z}

1.1. The Untyped Lambda Calculus Version: 2022/01/12, 13:33:41

A variable x is free in t, if x € Free(t). A variable x is bound in t, if = ¢ Free(t).
Definition (Substitution).
t/x] = t;
t/y] = x if © # y;
(pg)[t/x] = plt/x]qlt/x];
e (\z.p)[t/z] = Az. p;
(Ay.p)[t/x] = Az.p[z/y][t/x] if z ¢ Free(\y. p) U Free(t).

Example. (Az.yz)[yz/y] = Az.(y2)[z/z][yz/y] = Az.(y2)[yz/y] = Az.(y2)=.

ox[
[

L

Proposition (Diamond Property = Confluence = Church-Rosser Property). Independent
reductions starting from the same term can always eventually be joined in the following
sense:

t t
N\ N
* * * *
t1 to t1 to

~ -, ~
ANE S * 7 ANE S * 7

af ™ < ap aBn ™t * apn

That identifies one-step relations —,g and —,g, as confluent, or Church-Rosser and their
transitive-reflexive closures —7 ; and H;ﬁn as having the diamond property.

Proposition. —7 ; is not terminating:

Proof. Since Q = (Az.zx)(Az.zx) — g (Az.zz)(Az. zx) = , we obtain and infinite reduc-
tiOnQ—>gQ—>5...]

Definition (Fixpoint Combinator).

Y = Af.(Az.f(zzx))(Az f(zx))
Y —p (Ax.f(ex)) (M. f(xx))s < f(Y),

so Y f and f(Y f) are S-equivalent, but Y f need not S-reduce to f(Y f).

Definition (Church Numerals). The following combinators model natural numbers:

They can be added with
(+) = dm. An. Af.Az.m f (n f x)

In a similar way one can define (—), True, False, if-then-else, etc.

1.2. Fvaluation Stmtegies Version: 2022/01/12, 13:33:41

1.2 Evaluation Strategies

Evaluation strategies describe how a term can be reduced. In particular, we might want an
evaluation strategy to be deterministic, since an implementation of it in a compiler must
be so. An appropriate language for defining evaluation strategies is the language of formal
Systems.

1.2.1 Formal Systems

Formal systems is a language of mathematics and (!) of theoretical computer science. They
describe, how new pieces of knowledge can be obtained from old in a rule-based manner from
top to bottom, by building a finitary derivation where we move from assumptions (or facts)
to goals.

Definition (Formal System). A formal system consists of

e A (finite) set of symbols — alphabet;

e A grammar for producing formulas from symbols. A formula is said to be well-formed
if it can be formed using the rules of the grammar. Since one is usually not interested
in non-well-formed formulas for too long, one usually shortens “well-formed formula”
to “formula”;

e A set of axioms, or axiom schemata, consisting of well-formed formulas;

e A set of inference rules, consisting of multiple (zero or infinite number of) premises and
precisely one conclusion.

Some remarks:

e One is usually interested in organizing a formal system in some sort of finitary (tech-
nically speaking: recursively enumerable) way. That is, if there is a finite number of
axioms and rules, we are fine. Otherwise, we might need to capture many axioms and
rules with schemata, meaning that even thought, the number can be infinite, but there
is a computationally meaningful procedure to enumerate them all.

e An axiom is virtually a rule with no premises.

e Aside from the logical context, it can be more suitable to call formulas judgements,
meaning that a judgement is something more general than a formula. Derivable formulas
are also called theorems, but that again only makes sense if judgements are some sort
of logical formulas, which are true or falls. Formal systems, generally speaking, operate
with derivable (and not derivable), free of claims for truth or false.

Example (Cherry-Banana Calculus). Let {%, &} be the alphabet, and let the grammar
identify any non-empty sequence over { §&, &} as a (well-formed) formula. Rule schemes

— L (i vk &y . T (iv

represent an infinite number of rules, obtained by replacing variables x,y with non-empty
finite sequences of & and &. Rule (i) is an “axiom”.

1.2. Fvaluation Stmtegies Version: 2022/01/12, 13:33:41

We can build proofs or derivations, like

=S (i)
FR&

Thus the formula % & & is derivable.

Contrastingly, let us show that % & is not derivable. Indeed, it if was derivable, it would
be derivable with rule (iii). But that rule itself would require % & as a premise — we obtain
contradiction to the global assumption that derivations must be finite.

Note that natural deduction (from GLoIn) cannot be organized as a formal system so easily,
e.g. it has rules like

(8
o=

That is: derivations themselves must be judgements. Gentzen solved that by introduced a
sequent calculus for first-order logic, whose judgements are sequents

(=1

P T s ERRR)

where the ¢; are first-order formulas (conjunctive premises) and the ; are again first-order
formulas (disjunctive goals).

Formal systems are perfectly suitable for describing program semantics: when judging that
a program (terminates and) returns a value, it is natural to assume that this is something we
can derive with a finitary system of rules in finitely many steps (in contrast to judging that
a program does not terminate, which need not be derivable in finitely many steps).

1.2.2 Standard Evaluation Strategy

We specify evaluation strategies with rules of structural operational semantics (SOS). SOS
is a class of formal systems where the judgments describe how programs reduce. “Structural”
means, that the premises for a judgement on how to reduce a program, are judgements about
reducing structurally smaller programs. We proceed with the small-step operational semantics
where the judgements have the form s — s’ meaning that s reduces to s’ in one step.

The evaluation order imposed by the standard evaluation strategy is called the left-most-
outermost order.

P —so Pl D #)‘y't P —so p/
()“T'p)q —so p[q/x] Pq —so qu)\5'3~p —so)\-T~p,

/

qd —s0 ¢ D lso p# ATt
Pq —s0 P4’

1.2. Fvaluation Stmtegies Version: 2022/01/12, 13:33:41

where p s, means that p is irreducible with respect to —y,, i.e. p is so-normal.
This style of reductions is also called small-step semantics because in order to find an
so-normal form p’ of some p we generally need a chain of reductions p —, ... —¢ P’

Definition. Using these rules, we define p |, v, if there is a derivation of p —7 v and v is
so-normal.

Example.

Az.zy)(A\x.) —50 (Az.)Y Y Iso y # Ax.t
y((Az. zy)(Az. x)) —s0 y(Az. 2)y)

Proposition (Standardization Theorem!). If s —>;ﬁ t and t is af—normal, then s —
and ¢ is so-normal.

ot

SO

Note the following.
e The definition of —, is structural, i.e. a sucessor of a term t w.r.t. —, is calculated
by structural induction over t.

e The relation —g, is deterministic in the sense that there is only one way to build a
(possibly nonterminating) reduction starting from a given ¢; this contrasts af-reduction: we
both have (Az.\y.y)Q —pg Ay.y and

Az AY. y)Q —g0 (AT AY. y)Q —g0 - - -

e The standartization theorem indicates that all existing «/3-normal forms can be calcu-
lated by the standard evaluation, e.g. (Az.Ay.y) Q —so Ay.y and Ay. ¥ |so.

e As a consequence of the previous clause —, diverges on a term ¢ iff ¢ does not have an
af-normal form.

1.2.3 Call-by-Name (Lazy) Evaluation Strategy

Lazy or call-by-name (CBN) evaluation strategy refines and simplifies the standard evalu-
ation strategy as follows:

/
P —cbn P
(Az.p)q —>cbn Pla/z] Pg —>cbn P'q

where the terms are now supposed to be closed. Compared to the standard evaluation strategy,
the key distinctions are:

e no more rewriting under \ (therefore Ax.Q |p);

e all terms are closed.

'"Hendrik Barendregt. The Lambda calculus: Its syntaz and semantics. Amsterdam: North-Holland, 1984,
but see ThProg for a beautiful and concise proof!

1.2. Fvaluation Stmtegies Version: 2022/01/12, 13:33:41

We thus reject n-reduction, in order to capture the fundamental distinction between com-
putations and values. Roughly, a A-term p represents a program, and Ax.px represents its
program code. While p can diverge, Az.p cannot diverge, because it is just a text of the
program. However Az.p can be applied to an argument, which then can again result in
divergence.

Proposition. Like SO, CBN does not diverge on terms which have af-normal forms, but
CBN-normal forms need not be af-normal, e.g. Az. (A\y.y)z |cpn but Az. (A\y. y)x —ap Ax. 2.

Example.

(M. zx)(Az. x)(Az. 7)) —>cpn (

—cbn (Az.2)((Az. 2)(Az. 7))
(
(

>cbn

>cbn

1.2.4 Call-by-Value (Eager) Evaluation Strategy

Definition (Value). A value is a term of the form Az.¢.

Under the same assumption as with CBN we define the call-by-value (CBV) evaluation strat-
egy:

P —>cbv P q—cbv ¢ p is a value q is a value
Pq —cby P'q Pq —>cbv PG (Az. p)q —> by Pla/x]

instead of “p is a value”, one could write p |cpy.

Proposition. CBV calculates properly fewer normal forms than CBN, e.g. (Ax.Ay.4)Q |cbn
Ay.y, but
Az MY y) Q — by (AT AY. YY) Q —cpy - -

However, CBV is generally more efficient than CBN.

Example. We can redo the previous example in the CBV style:

Az.zz)(A\z.) (A2) —> ey (Ax.z2)(AT.)
—seby (Az.z)(Az.)

—seby (Az.T)

This demonstrates that CBV (at least, implemented naively) is more efficient than CBN.

1.2.5 Big-Step Call-by-Name
In big-step styles of semantics we relate a term not to its one-step successor, but directly

to its normal form.

P debn)\x.p/ p/[Q/x] Jebn v
Az.p Jebon AT.D Pq Ycbn v

10

1.3. PCF (Programming Computable Functions) Version: 2022/01/12, 13:33:41

Proposition. p —? ¢ and q |cpn iff p Jcbn ¢
Proving this requires the following
Lemma. p — ¢y g with ¢ Ucbn r imply p Ucbn r.

Proof. Induction over the proof of p —¢pn ¢:

Induction base: p = (Ax.t)s, ¢ = t[s/x]. Then we build the necessary derivation p |cpn 7
in two steps.

Induction step: p = st, ¢ = s't and s —>¢,, s'. By assumption, st ¢,y 7, which implies
8" ebn Az.u, ult/x] |epn - By induction, s |epn Az. u. Hence st |lcpy 7, as required. d

1.2.6 Big-Step Call-by-Value

Call-by-value requires evaluation of arguments of function application:

Pl Az qlew @ P[d/2] ey €
)\1’.]) Ucbv)\x.p Pq Ucbv &

Proposition. p —7, ¢ and q lepy M p Jeby ¢-

Example.

AZ. T Jeby A2 AT T by AT AZ. T Jepy AZ. X
M. 22 by AT. TT Az z)(Az.) Jepy Az (Az.2)(Az. x) eby Az. x
Az. zz)(Az. 2)(Az.) Jeby Az.

1.3 PCF (Programming Computable Functions)

1.3.1 Simply-Typed)-calculus

Type:=A,B,C,...| 1 |AxB|A—B
—_—
base types unit

type

Proposition. Q = (Az. zz)(Az. zx) is not typable, and hence not a valid term.

Proof. By contradiction: if z: Athenzz: Aand x: A — A, hence A = A — A, contradiction.
O

Proposition. — g is strong normalising for simply typed A-calculus.
PCF is obtained from the simply typed A-calculus by

¢ adding the fixpoint combinator Y4: (A — A) — A for every type A;
e fixing Nat and Bool as the base types;

e postulating the corresponding signature of arithmetic and logical operations.

11

1.3. PCF (Programming Computable Functions) Version: 2022/01/12, 13:33:41

Definition (Terms-In-Context). A term in context has the form
'—t: A,

where A is a type and I' is a context, which is a list of pairs x;: A; such that x; occur
non-repetitively.

We work only with those I - t: A which are derivable using the following rules:

(var) DEDRE D o (D SR i
=1 Fii;cii;:_»BB (= B) FFS:AF_;Z:BFH:A
(Const) e A (Fun) I'+ tlli ﬁlf(t‘l; " - ’tnl“) :I—Btn: A,
where ¢ € {True, False} U {0,1,...} where fe{an,v,—, +,—, ...}
(Eq) -s:A Frl—l_t;i . Bi)loel {Bool, Nat, 1}
(I£) e ?Ool—lifbtie:z:eéet: ff — (Fix) P-Y :(A—A)— A

Definition (Term). A PCF term t is obtained from I' - ¢: A by removing the return type A
and the context I'.

The PCF syntax corresponds to the Haskell syntax quite accurately, e.g.:

-- | single element () of the unit type ()

O ra ©

-— | first component of a pair

fst :: (a,b) —> a
fst (x,.) = x

-- | second component of a pair
snd :: (a,b) > Db
snd (_,y)

]
<

12

1.3. PCF (Programming Computable Functions) Version: 2022/01/12, 13:33:41

-- | logical constants
True :: Bool
False :: Bool

-— | Numeric constants

0 :: Num a => a

42 :: Num a => a

-- | lambda-abstraction, assuming f :: a —-> b

\x > f x ::a—>b

-- | application, assuming f :: a -> b, = :: a

fx i1 b

-- | equality

(== :: EQ a =>a ->a -> Bool
-- | if-then-else, assuming b :: Bool, = :: a, Yy :: a

if b then a else b ioa

-— | fizpoint operator is definable:
fix :: (a ->a) > a
fix £ = f(fix f)

1.3.2 Call-by-Name Operational Semantics for PCF

We modify the concept of value as follows.
Definition (Value). A value is either

¢ a Boolean, or

a natural number, or

® x, or

a pair of closed terms, or

a closed term A\z.t.

The call-by-name semantics for PCF' is obtained by completing the call-by-name semantics
of A-calculus. As before, the judgement p || v indicates that p reduced to the value v in the
updated sense.

We discuss the most instructive rules.

tl g plec tl{p,q) qlc
fstt | ¢ sndt || ¢

13

1.3. PCF (Programming Computable Functions) Version: 2022/01/12, 13:33:41

which means that pairing is lazy. Hence, in particular, fst(1,) || 1, but snd(1, Q) diverges.
Note that there is no rule for reducing (¢, s), which is by definition already a value.

bl True plc b || False qlc
if bthenpelseq | ¢ if bthenpelseq | c

The rules for application and abstraction are as in the A-calculus. Arithmetic operations are
strict (i.e. if one argument fails, everything fails):

plc ql co
ptqlc+ce

For interpreting logical disjunction, one could think of the following seemingly natural rules:

b | True c | True b | False c | False
bv el True bv el True bvc| False

This is known as “parallel or” and it does make certain sense, but in our case it would make
the semantics unintentionally non-deterministic. That is, to evaluate bv ¢, the semantics every
time would need to simulate behaviours of two independent threads running in parallel and
correspondingly evaluating b and ¢ until one of them possibly succeeds. Such parallel facilities
are not considered to be part of the core in functional languages. From a foundational point
of view, PCF was developed for programming computable functions, in the sense of Turing
computability. This notion of computability is sequential by definition, and thus also does
not support facilities for parallel execution.
The standard rules are like this

b | True b | False cld
bvel| True bveld

That is, v is not commutative, e.g. True v || True, but € v True diverges. It is easy to see
that b v ¢ is interpreted in the same way as if bthen True else c.
This semantics can be readily tested in Haskell, since it is lazy:

fix £ = f (fix f) -- fizpoint combinator
omega = fix id -- divergence

success = () -- successful termination
testl = fst (success, omega) -— terminates

test2 = fst (success, omega) —-- diverges

test3 = True || omega -— terminates

test4 = omega || True -- diverges

test4 = False || omega -- diverges

The rule for the fixpoint combinator is the only non-structural rule:

fYaf)lc
Yaflc

14

1.3. PCF (Programming Computable Functions) Version: 2022/01/12, 13:33:41

1.3.3 Call-by-Value Operation Semantics for PCF

We redefine the notion of value once again.

Definition (Value). A value is a Boolean, or a natural number, or , or a pair of values or a
closed term Az.t.

D debv €1 q Jebv 2 P Jeby (€1,¢2) D Yeby (€1,¢2)
(0, q) Vebv (c1,c2) fstp Yoy c1 sndp Jebv C2

If we used the same rule for the Y-combinator, as for call-by-name, we would diverge:

Vf—f¥f) — X)) — -

(Evaluating the argument would use the same rule on and on). In order to prevent this, for
the CBV semantics:

e we require C in Yo to be of the form A — B,
e the small-step rule for Y: Y f — f(Ax.(Y f)z), or, alternatively, as a big-step rule:

fleaw Az.g gl (Y)y/z] bebv €
Yf Ucbv &

Example (Factorial). The factorial function
fac(0) = fac(l) =1 fac(n) = n-fac(n — 1) (n>1)
is expressible as follows in PCF:

pi= | z: Nat - (Ynat—nNat(AfAz.if z < 1thenlelsex - f(x — 1)))(x)

~~

g

We show that: (Az.p)(n) | n! (in CBV).

Proof. We easily reduce the goal to (Y g)n || n!. We proceed by induction over n.
Induction base (n = 0):

glg Mz ifz < 1thenlelsex - MNy. (Yg)y)(x—1) | Ax. ¢
g 0<1JTrue 1|1
Ygl A\x.g 000 g'[0/z] § 1
(Yg)0§ 1

15

1.3. PCF (Programming Computable Functions) Version: 2022/01/12, 13:33:41

Induction step (n > 0):

(Yg)nlln'
n+1ln+1 Oy (Ygy)ln+1-1)]n!
7Ts gy "rlstifalse (n+1)-Qy.(Vgy)n+1-1) ¢ (n+1)
YglAz.g n+1ln+1 gln+1/z]§ (n+1)!
Yg)(n+1) | (n+1)!

where : refers to the proof from the induction hypothesis. O

1.3.4 Contextual Equivalence

Operational semantics culminates in defining contextual (or operational, or observational)
equivalence. We want to know if two programs are equivalent or not w.r.t. their observable
behaviour. What this means? For closed programs, we can just compare if they reduce to
the same value, i.e. s and ¢ are equivalent iff s | v iff £ | v for some v. This is not enough for
programs with free variables. Intuitively, free variables range over program inputs and two
programs must be equivalent if they agree on all possible inputs. Additionally, if the result
type is itself a functional type, we need to check if the results are equivalent as functions. We
can formally capture the relevant notion with term contexts.

A term context is a term with a special symbol [, occurring precisely once. Given a
context C' and a term ¢, C[t] denotes the term obtained by replacing O in C' with ¢. In typed
settings, contexts and placeholders [J have types, i.e. in PCF (O + 1) has the type Nat and O
in it has the type Nat.

Definition (Contextual Equivalence for PCF). A term context C'is of ground type if its type
is either Nat or Boolor 1. Two PCF terms I' - s: A and I" - t: A are conteztually equivalent
if for every context C' of ground type, for every value v, C[s] | v iff C[¢] | v. In this case, we
write I' - p =cx q: A, or simply p =cix ¢.

We see that contextual equivalence is a derived notion, defined indirectly via semantics of
closed programs and by quantification over (infinitely many) term contexts. This complex
notion is needed, to cope with (a) programs with free variables (b) higher-order programs
(i.e. not only programs of ground types). Clearly (a) reduces to (b) by A-abstracting free
variables. The following can be shown (although, we currently do not have machinery for
proving even such innocently looking statements):

Proposition. Let I' - s: A and I' - £: A be two programs in context, A be a ground type
and let I' be empty. Then p = ¢ iff for every value v, s | v iff t | v.

Contextual equivalence of higher-order programs is considerably more advanced than con-
textual equivalence of closed programs of ground types. For example, for proving that two
implementations of binary addition of numbers are equivalent, it is necessary to check that
they behave the same on all inputs (i.e. either both converge to the same result, or both
diverge). This quantification “over all inputs” is what more abstractly captured by quantifi-
cation over all term contexts.

16

1.3. PCF (Programming Computable Functions) Version: 2022/01/12, 13:33:41

1.3.5 Coproducts, Abrupt Termination and 1/0

Let us extend PCF with coproducts types. That is, we add A + B to the type grammar
and add the following term formation rules:

I't: A I't: B
L) i A+ B L) AT B
(+E) '-b: A+ B Lz: Ar-p: C NNy:BrFgq: C

I' - casebofinlz — p;inry — q: C

With this extension we can make do without Bool and if-then-else by encoding Bool as 1+ 1,
and by encoding if-then-else as follows:

if bthenpelseq = casebofinlz — p; inrz — q.
In Haskell, coproducts are implemented as an algebraic data type:
data Either a b = Left a | Right b

Moreover, we can encode the “maybe” type constructor sending a type X to MX = X +1
and introduce the following syntax:

'+t A '-p: MB I'x: B+-p: MC

t bind
(ret) '+ returnt: M A (bind) I'-dox «—p; q: MC

where

returnt = inlt,

dox < p; ¢ = casepofinlz — ¢; inly — inry.

The intuition here: a term in context I' - t: M X with I' = (x1: A1, ..., 2,: Ay) models a
partial function (x1,...,x,) — t, either sending a tuple (z1,...,x,) to a value in X or to
undefinedness; return and do correspondingly provide means for converting total functions to
partial function and for composing partial functions correspondingly. This yields the second
simplest example of a monad. This first one is the identity monad with M X = X, and with
return and do defined in the obvious way.

In Haskell the maybe-monad is implemented as follows:

data Maybe a = Just a | Nothing

instance Monad Maybe where

(Just x) >>= k =k x

Nothing >>= _ = Nothing
In Haskell there is a very special monad called I0 for interacting with the environment (read-
ing/writing on the console, accessing/modifying the file system, the web, peripheral devises,
sensors, etc). Thanks to the monadic abstraction, interaction with the environment is orga-
nized in the same style as with all other monads, e.g.

17

1.4. Denotational Semantics Of PCF Version: 2022/01/12, 13:33:41

main :: I0 O
main = do
putStrLn "Enter two lines"

linel <- getLine -— linel :: String
line2 <- getline -- line2 :: String
putStrln ("you said: " ++ linel ++ " and " ++ line2)

Remarkable and often confusing is the laziness of 10, which in conjunction with other lazy
aspects can produce unexpected effects. Consider for instance

interact $ unlines . map reverse . lines

which reads a string from the console and prints it reversed in a loop. An analogous program

interact $ unlines . map (\s -> "your string is: " ++ !s) . lines

does not function as expected (starts printing before input is finished) because the input does
not affect the initial part of the output, in contrast to the reverse-example where we needed
to know the very last character of the input string to be able to say what the reversed string
is. A possible fix is

interact $ unlines . map (\s -> seq (last s) "your string is " ++ s) . lines

Here seq is a very special build-in primitive, smuggling non-lazy semantics in. Very roughly
seq x y runs y unless x unproductively diverges. Thus, e.g. strict function application is
defined as

($!) :: (a->Db) ->a —>b
f $! x=x "seq” f x

An important property that is broken exclusively by seq is that f is no longer contextually
equivalent to Az. fx, which is otherwise true w.r.t. the call-by-name semantics (!) Indeed,
omega and \x -> omega x can be distinguished by the context const 0 $! (but not with
const 0 $!).

1.4 Denotational Semantics of PCF

Operational semantics is non-compositional, in the sense that it does not yield a function [-]
from terms to meanings, so that for every n-ary term construct op, [op(ti,...,t,)] could
be calculated as a function of [¢1],...,[tn]. In particular, operational semantics does not
directly define meanings of functions, hence we cannot express [f t] via [f] and [¢].

In designing a denotational semantics (overall, but in our concrete case, for PCF) one would
want to satisfy the following yardsticks:

e Soundness: if p | v then [p] = [v];
e Adequacy: if [p] = [v] with v being a value then p | v;
e Compositionality: [C[t]] = [C][[t]]-

18

1.4. Denotational Semantics Of PCF Version: 2022/01/12, 13:33:41

Soundness and adequacy ensure that the denotational semantics sufficiently mimics the oper-
ational semantics. The soundness property is the most basic one and is usually easy to verify
by induction over a derivation p || v. Adequacy is usually considerably harder. Composition-
ality is where denotational semantics shines. For example, the proof of f =c Az. fx can be
obtained as follows:

Clfl v = [C[f]] =[] /| soundness
= [C][[f]] = [v] /| compositionality
— [Cl[[. f]] = [v]
> [C[M\x. fz]] = [v] /| compositionality
— C[\z. fz] | v. /| adequacy

This relies on the fact that [f] = [Az. fz], which will be an easy consequence of the definition
of [-].

How can we define [A]? It cannot be just a set of values of type A, e.g. [Bool] =
{True, False}. At least, [Bool] must include the divergence L. Is it enough to say that [A]
collects the values of type A plus the divergence? No, for e.g. the function in [A — B] must
be all total functions (the “values”), the totally undefined function (the “divergence”), plus
all the partial functions in between (so, more or less defined). This issue propagates along
type constructors, which is the reason we cannot think of [A] merely as a certain set, and
[f: A — B] merely as a certain function between sets [A] and [B]. However, we can use
as [A] complete partial orders (cpos), and as [f: A — B] (w-)continuous maps, between [A]
and [B]. This is a big idea of denotational semantics, proposed by Dana Scott.

Definition (Partial Orders). A partial order (A,C) is a relation satisfying the following
axioms:

e al g
s aCbAbDCc=alc

sealbAbCa=a=hb.

Definition (Complete Partial Orders). A(n w-)cpo is a partial order (A, C), such that for
any infinite chain
agEal ...,

there is an a, such that

1. Vi.a; C a;
2. Vi,a; °Tb=aCb.

We denote such a by | |, a;. More, generally we write | |,_; a; for any least upper bound (not
necessarily of a chain) if Vi.a; C | |,c; a; and | |;.; a; © b once Vi.a; T b.

Definition (Pointed Cpos). A cpo (A, C) is pointed if it contains such an element L, that
YVae A. L Ca

Every set A is trivially a cpo (A,C) with a C b iff a = b.

19

1.4. Denotational Semantics Of PCF Version: 2022/01/12, 13:33:41

Definition (Monotonicity, Continuity, Strictness). A function f: A — B between partial
orders is monotone if a £ b = f(a) C f(b); a monotone function f: A — B between cpos
(A,C) and (B,C) is (Scott-)continuous if for any chain a; Cas C .. .

(L e) =L, a0

A function f: A — B is strict if f(1) = L. This extends to the multi-ary functions in the
obvious way, e.g. if-then-else is strict in the first argument, but not in the second and the
third.

Definition ((Pre-)Domain). We agree to refer to cpos as pre-domains, and to pointed cpos
as domains.

1.4.1 Constructions on Predomains

Product of Predomains A x B = {(a,b) |a€ A,be B}
(al,bl) E (ag,bQ) if al E a9 and b1 E bQ

Properties:

e Continuity of pairing: | |;(a;, ;) = (|]; ai, | b;);
e Continuity of projections: fst: A x B — A and snd: A x B — B are continuous, i.e.:
fst(|_|j a;) = LI, fstay, snd(|_|j a;) = Ll;snd aj;

e Products of domains are again domains with (L, L) as the least element.

Lifting Predomains and Functions The correspondence A — A defines a lifing of A where
A= Aw{L} = {(x,0) | ac A} U {(L)},

aCb if a=1 or acAbeAandalCbh

Let for any a € A: |a] = (x,a) € A}.
Let B be a domain and let f: A — B be continuous. Then we define f*: A, — B as

follows:
won Iy ifx =y
/ (x)_{L if o= |
The result f* is the lifting of f.

Example (Flat Domains). Given a set A, A is called the flat domain over A, regarded as
a trivially ordered set (i.e. C is =).

Bool | :

True False

NS

1

Nat | :

20

1.4. Denotational Semantics Of PCF Version: 2022/01/12, 13:33:41

Non-example 1| x 1;:

PN
(x, 1) (L, %)
~ 7
(L, 1)

Notation. We use the point-full notation (letx = ping) alongside with the point-free one
(Ax.q)*(p) where Az.q: A — B and p: A].

Properties:

e |-] is continuous: || |;a;| =;|ai].

e Lifting is continuous: (|], f;)" =
wise, that is f C g if f(z) C
bellow).

|_| where continuous functions are compared point-
g(z) for any x (see the definition of function spaces

For every op: X x Y — Z with X,Y, Z being sets, we define the strict ertension:

Opl:XJ_XYJ_HZJ_
op|(p,q) = letz=pinlety=qin|op(z,y)]

Function Spaces Let (A,C) and (B,C) be two predomains. Then (A — B,C) is the
function space predomain, where

A— B={f: A— B f is continuous}

and
fEg< Ve f(x) C g(x) (pointwise)

We define two operations:

curry: (Ax B—C)— (A— (B—-(0))
(curry f)(2)(y) = f(z,y)

uncurry: (A — (B—C)) » (Ax B —C)
(uncurry f)(z,y) = f(z)(y)

from which we can derive

ev=uncurry((A—>B)—> (A—>B)): (A—>B)x A— B

21

1.4. Denotational Semantics Of PCF Version: 2022/01/12, 13:33:41

Properties:

e curry and uncurry are continuous.
e If B is a domain then so is A — B with the bottom element being the completely
undefined function Az. L.

Theorem 1 (Kleene’s Fixpoint Theorem). Let f be a continuous function f: D — D over a
domain D. Then

1. There is puf € D — the least fixpoint of f, i.e.
a) f(uf) = nf
b) Ve D.f(x)=x=pufCx
2. pf =L, f1(L), where fO(z) = L, f*!(z) = f(f*(2))
3. uf € D is moreover the least pre-fixrpoint of f, i.e.
a) f(uf) E nf
b) VeeD.f(x) Cx=pufCx
Proof. Let us first show that pf as defined in clause 2 is a fixpoint of f. Indeed, f(uf) =
f(U@ fZ(J_)> = (|_|1 f”l(J_)) = pf. Hence is it also a prefixpoint. Let us show that it is
the least one. Suppose that ¢ is another prefixpoint, i.e. f(¢) C ¢. From L C ¢, inductively,

fHL) C fi(c) = ¢, hence puf = ||, f1(L) C c. Since uf is the least prefixpoint and a fixpoint,
it is in particular the least prefixpoint. O

Example. Consider f;: Nat — Nat; with i € Nat:

foln) =1 (n=0)
f1(0) = [1], fi(n) = L (n>1)
f2(0) = [1], f2(1) = [1], fa(n) = L (n>2)
f3(0) = |1], f3(1) = [1], f3(2) = [2], fs(n) = L (z =3)
fa(0) = [1], fa(1) = [1], fa(2) = [2], fa(3) = [6], fa(n) = L (z =4)

It’s easy to see that every f; is continuous and that f; C f; 1 for any ¢. Let

le_ll.fi

Again, it is easy to see that for every f(n) = n!. By Kleene fixpoint theorem, we can interpret
this as the fact that f is a solutions of a recursive equation, defining the factorial function.
Note that

fir1=F(fi) V(ieN)
where F': Natf“t — Natf“t is as follows:

1] if 2 =0,1

F(g: Nat — Nat,)(z € Nat) = {M Jglz—1) ifz>1

which is the defining expression for the factorial. So, by Kleene fixpoint theorem:

plF =] FiL =] fi=r

22

1.4. Denotational Semantics Of PCF Version: 2022/01/12, 13:33:41

Proposition. u: (D — D) — D is continuous.
Definition. Let ifThenElse: Bool| x X x X — X:

x if b= |True]
ifThenElse(b,z,y) = <y if b = |False]

1 otherwise

Proposition. ifThenElse is continuous.

1.4.2 CBN Denotational Semantics

We assign to every type A a domain [A] as follows:
o [1] =14;
e [Nat] = Nat;
e [Bool] = Bool | ;
e [A x B] =[A4] x [B];
« [4— B] =[] > [B].
Now, given a term in context I - t: A whereI' = z1: Ay, ..., 2, A, the semantics [I" - ¢: A]

is a continuous function [A;] x ... x [4,] — [A] recursively computed according to the
following clauses where [- -], reads as [---](p):

o [T+ 2 A, = pry(p)
o [I'*:1], = [*];

[T+ b: Bool], = |b];

[I' = n: Nat], = |[n];

[T+ f(t,s): Al = fu(IT - 65 B, b i CL) (F & (A= %, =)
[- if bthen s else t: A], = ifThenElse([I' - b: Bool],, [I' - s: A],, [T +t: A],);
[T (t,s): Ax B], =([I'+1t: A],,[I' - s: B],);

[T fstt: A, = fst[I' - t: Ay x Aa],;

[I'sndt: B], =snd[I" = t: A1 x As];

[I'—Az.t: A— B], = (curry [I',x: A t: B])(p);

[I'~st: B],=ev([I' -s: A— B],,[I'+t: A],);

[T Yal, = p

Lemma (Substitution Lemma). Given I' - ¢q: A, I',x: A+ p: B and p € [I]

[T+ plg/z]: B], = [T z: A+ p: B](p, [T + q: A],)

Proof. Induction over the structure of p. Let us consider the there last clauses in the semantics
for p, which are the only non-trivial ones.

23

1.4. Denotational Semantics Of PCF Version: 2022/01/12, 13:33:41

e p=\y.t with some I';y: C t: D and then B = C' — D. It follows by assumption that
x # y. Then, by induction,

[T+ plg/x]: B], = [I' + Ay.t[q/x]: B],
= (curry[I',y: C + t[g/z]: D])(p)
= (curry([I',y: Cyz: A+ t: D] o (id,[T,y: C + q: A])))(p)
= (curry[l',z: A,y: C +t: D])(p, [T+ q: A],)
=[Iz: A= Ay.t: B](p,[I' - q: A],)
=[Iz: A+ p: B](p,[I' - q: A],).

e p=stwithsomeI',z: Ar-t: Cand I'yx: A+ s: C — B. Then, by induction,

[T+ pla/z]: Bl, = [T - (sla/e]) (¢la/al): Bl
_ [P+ slg/al: € — BT + tlg/e]: C1,)
—(I,z: A+ 5:C = BJ(p [T - ¢: A],))
(I, 22 A+ t: Cl(p, [T - g: AL,))
= [a: A st: B](p,[I' - q: A],)
=[Iz: A p: B](p,[I' = q: A],).

e p=Yp f withsome'z: A+ f: B — B. Analogously to the previous clauses:

[T = plg/z]: Bl, = [= (Ya flg/x]: Bl,
= [T+ YB flg/x]: B],
~ Il - flo/s]: B~ B,
= oz A 2 B — Bl(p, [T+ g: A1)
=[Tz: A+ pf: Bl(p, [I' = q: A],)
=[Iz: A= p: B](p, [T F q: A],).

Definition (Soundness). A denotational semantics is sound if

plo=[p]=v
Definition (Adequacy). A denotational semantics is adequate, if
[p] =v=p | v if the type of p is either 1 or Bool or Nat

for every value v.

Proposition. The presented call-by-name denotational semantics is sound and adequate with
respect to |cbn-

Soundness is typically easy to prove: using the equivalence of big-step and small-step
semantics, it suffices to prove that p — ¢ entails [p] = [q¢]; then p || v entails p —* v and we
are done by induction over the length of this reduction. Proving adequacy is usually much
harder and requires new methods.

24

1.4. Denotational Semantics Of PCF Version: 2022/01/12, 13:33:41

Assuming soundness, we can equivalently reformulate adequacy as follows: by contrapo-
sition, it says that for all values v, —(p || v) = [p] # v, in particular, if p { then [p] # v
for any value v, i.e. [p] = L. This is the only instance that does not follow from soundness.
Indeed, if —(p | v), but p | v with v' # v then by soundness [p] = v' and hence [p] # v. In
summary, we equivalently switched to the implication:

pt=lp] =1
Recall the following property of contextual equivalence.

Proposition. Let ' - s: A and I' - ¢t: A be two programs in context, A be a ground type
and let I be empty. Then s = t iff for every value v, s | v iff t || v.

We now can prove it. The left to right direction is clear. Assume the right hand side and
prove s =cix t. If s | v for some v then ¢ | v and by soundness, [s] = v = [t]. If s {} then
t 1, and by adequacy, [s] = L = [t]. In any case, we have [C|[s]] = [C[t]] with C = O. The
general case follows by induction on C. Then C[s] | v by adequacy entails C[t] | v and vice
versa.

1.4.3 Failure of Full Abstraction
Note the implication

[p] = [q] = p =ctx ¢

where p and ¢ are closed programs of the same type. Indeed, for very suitable context C' of
ground output type,

Clpl | v = [C[p]] = [v] / sound. and adeq.
< [C][[p]] = [v] /| compositionality
= [C][l4]] = [v] /| assumption
= [Clq]] = |v] /| compositionality

< Clq] | v // sound. and adeq.

We have thus obtained a fundamental relation between operational and denotational seman-
tics: contextually equivalent programs are necessarily denotationally equal. The opposite
implication

P =ctx 4 = [[p]] = [[Q]]

is called full abstraction, and it would provide the highest degree of satisfaction, for it would
mean that operational sematnics and denotational semantics agree (as far as program equiv-
alence is concerned). However, for our precent semantics full abstraction fails (!), and the
reason for it is instructive.

Consider the following PCF-function in Haskell syntax:

25

1.4. Denotational Semantics Of PCF Version: 2022/01/12, 13:33:41

t :: Bool -> (Bool -> Bool -> Bool) -> Bool
t b f =1if (f True omega).
then if (f omega True).
then if (f False False) then omega else b
else omega
else omega
where omega = omega

It can be shown that (t True) and (t False) are contextually equivalent, however, they are
not denotationally equivalent. The reason for it is that we cannot test (t True) and (t Fa,
1se) on the parallel-or function, which is described as follows: por(True,x) = por(x, True) =
True, por(False, False) = False and por(z,y) = L otherwise. This function is not definable in
PCF, but it is a continuous function, and thus, it can be used as a witness that (t True)
and (t False) are denotationally distinct.

1.4.4 CBV Denotational Semantics

We we assign to every type A a predomain [A] as follows:
e [1] =1;

[Nat] = Nat,;

[Bool]] = Bool,

[A x B] = [A] x [B];

[A— B] =[A] — [B]..

Now, the semantics of a term in context I' - ¢: A with I' = (x1: Ay,...,z,: A,) is a contin-
uous function [A;] x ... x [A4,] — [A] L defined by structural induction as follows.

o [ai: Ail, = [pri(p)];

[I'—n: Nat], = |n];

[T+ b: Bool], = [b];

[T+ £t.8): Aly = fu(IT -t Bl [T e i CL) (Fe {n—+,— %, =)
[- if bthen s else t: A], = ifThenElse([I' - b: Bool],,[I' - s: A],, [I' - t: A],);
[T (t,s): Ax B, =letx=[I't: Al,inlety=[I' - s: B],in|(z,y)];

[['fstt: A, =letv=['t-t: Ax B],in[fstv];

[I'—sndt: B], =letv=[I"-t: Ax B],in[sndv];

[T AXe.t: A— B], = [(curry [I',z: A t: B])(p)];

[I'—st: B],=letv=["t: A],inlet f=[I' = s: A — B],inev(f,v);

[T = Yasgl, = M. p(Ag. f(Az. leth = ginh(x))) where f: (JA] — [B].) — ([4] —
[B]1)1 and g € ([A] — [B]1)1-

The analogue of the substitution lemma is as follows.

26

1.4. Denotational Semantics Of PCF Version: 2022/01/12, 13:33:41

Lemma (Substitution Lemma). Given I' - ¢: A, I',x: A+ p: B and p € [I'],
[T+ plg/x]: B], =letv=[I't-q: A],in[I",z: A+ p: B](p,v)
provided that ¢ is of the form Az.r.

In contrast to the call-by-name case, the assumption that ¢ = Az.r is essential. For example,
if ¢ diverges, but p does not depend on z, we would have [I' - p: B] on the left-hand side
and | on the right-hand side.

Proof. The proof is by structural induction over p. Again, only the last three clauses in the
definition of semantics of p are sophisticated. Still the other ones require some properties of
the let-construct (commutativity and copyability).

Assume that I, z: E+1r: F,ie. A=FE — F.

e p=)\y.twithsomel',y: C,x: A t: D and then B = C — D. It follows by assumption
that # y. Let us fix ce [C], pe [I'] and let s = letv=[I" - g: A],in[I",z: A p: B](p,v).
It is easy to check that s = |g| for some g. Then

[Py: C - tlg/a]: D(p,)
= letv=[I',y: C+ q: A](p,c)in[l",y: C,x: A t: D](p,c,v)
= letv:=[I' q: A],in[l",z: A,y: C't: D](p,v,c)
= letv=[I'q: A inlet f=[I',z: A+ p: B](p,v)in f(c)
= letf=(letv=[I'+q: A],in[I",z: A+ p: B](p,v))in f(c)
~ let £ g)in f(c)
=g(c)

using the fact that ¢ does not depend on y. Now

I+ plg/x]: B],
= [T+ Xy.tlg/z]: B],
= [(curry[l',y: C + t[g/z]: D])(p)]
= Ly

=s.
e p=stwithsomeI',z: Ar-t: Cand I'yx: A+ s: C — B. Then, by induction,

[- pla/a]: Bl, = [T + (sla/z)) (tla/a]): Bl
= letv=[I' - t[g/z]: C], in
let f = [I" - s[q/x]: C — B],in f(v)
= letw=[I' - q: A inletv= [z: A-t: CJ(p,w) in
let f=[T,2: A s: C — B](p,w)in f(v)
= letw=[I'+q: A],in[[’,z: A+ st: B](p,w).

27

1.4. Denotational Semantics Of PCF Version: 2022/01/12, 13:33:41

e p=Ypf withsome 'z: A f: (C - D) - (C — D), hence B = (C — D). Note
that for a suitable w, [I' - ¢: A], = |w]. Then
[C'+- pla/al: Bl = [T+ (Vs Pla/21: Bl,
= [I'+Yg flg/z]: B],
= 1(9)
[F,a: Ak Yaf: Bl(pw)
= letv=[I"q: A],in [I',z: A+ p: B](p,v).
where g(p) =leth=[I',z: A+ f: B — B](p,w)inh(u(p)) and u(p)(x) =leth=pinh(z). O
Proposition. The CBV semantics of PCF is sound and adequate.
Proposition (let-unit-1). letz = [t]inp = p[t/x].
Proof.

letz= [t]inp = (Az.p)*[t] =

{(Aw)(s) it [t =1]s] {ux.p)t

1 otherwise plt/x]

Proposition (let-unit-2). letx=pin|z| = p.
Proof. letz=pin|z] = (\z. |z])*(p) = (Az.x)(p) = p. O
Proposition (let-assoc).
letz=pin(lety=qinr) =lety=(letz=ping)inr.
where x ¢ Free(r).

Alternatively, the three laws for the let-operator can be presented in the pointfree form as
follows:

frn=n n*=id frg=(f9)
where n: A — A sends x to |x|. These are known as monad laws, and they identify the
map A — A, as a monad whose unit is |-| and whose Kleisli lifting is the operation (-)*.
Thus, a monad can be understood as a certain type constructor that transforms values to

computations and induces a notion of generalized function, carrying a certain (side-)effect in
contrast to “normal functions”. The side-effect of the lifting monad is divergence. Further
side-effects that can be abstracted in monads include

e abortion,

¢ non-determinism,

e store,

e input/output,
and in fact many others. In order to make these considerations rigorous, we proceed with the
basic concepts of category theory. As we will see, monads is a genuinely categorical concept.

28

2 Categories and Monads

Let us consider the do-notation, as a generalization of our previous let-notation. The idea is
to capture the most abstract properties of computation, e.g. the let-notation also satisfies the
following commutativity property:

letz=pinlety=qin|[(z,y)| = lety=gqinletz=pin|{(z,y)],

but this is not abstract enough: if p writes to a store and ¢ reads from that store the order
in which p and ¢ are executed obviously matters.
Essentially we introduce two term constructs:

dox— p : f (x) ret: A—>TA
N~ =
TA A—TB

In conjunction with other (obvious) term constructs this forms what is known as (first-order)
computational metalanguage whose syntax is Haskell’s do-notation.

2.1 Introducing Monads

Definition (Category). A Category C consists of a collection of objects Ob(C) and a collection
of morphisms Hom¢ (A, B) for any A, B € Ob(C), such that the following properties hold:

e for every A € Ob(C) there is an identity morphism id4 € Home (A, A);

e for any f € Hom¢(B,C) and g € Hom¢(A, B) we can form a composition f o g €
Hom¢ (A, C);

eidof=f, foid=f, (fog)oh=folgoh).
We also write f: A — B instead of f € Hom¢(A, B) = Hom(A, B).

A “collection” in the definition of a category is in fact a “class”, i.e. something generally
larger than a set, e.g. the “set of all sets” does not make sense, but “all sets” form a class.
Categories in which any Hom(A, B) is a set are called locally small and the categories in which

Ob(C) is a set are called small. Most of our examples of categories are locally small but not
small.

Example. Examples of categories:

e Sets: Ob(Sets) = “all sets” and Hom(A, B) = “functions from A to B”.
e Cpo: Ob(Cpo) = “all cpos” and Hom(A, B) = “continuous functions from A to B”.
e Rel: Ob(Rel) = “all sets” and Hom(A, B) = “relations R € A x B” with

idg ={(z,2) | z € A}
RoS ={(z,2)e AxC|3ye B.(z,y) € R,(y,z) € S}

29

2.1. Introducing Monads Version: 2022/01/12, 13:33:41

e PFun: Ob(PFun) = “all sets” and Hom(A, B) = “partial functions from A to B”.

Definition (Commutative Diagrams). We consider diagrams whose nodes are labeled with
objects and whose edges are oriented and labelled with morphisms. A diagram commutes
if all paths with the same start and endpoint produce equal morphisms (the morphism are
formed by composing the labels along paths).

For example, the axioms for identity can be stated as follows:

P

B

Curiously, we cannot express associativity of composition in this way, because it is already
baked in to the diagrammatic language.

In category theory, it is customary to prove equations between morphisms f = g “by
diagram chasing”, that is, by producing a commutative diagram, from which a chain of
equations f = f' = f” = ... = ¢ = g can be read out. Importantly, not every commutative

diagram produces a proof like this. For example, the diagram

does not prove the equation ba = dc even though all the triangles commute.

2.1.1 Products and Coproducts

Definition (Binary Products). A (binary) product of objects A, B in a category C is a triple
(A x B e Ob(C),fst: A x B - A,snd: A x B — B), such that for any C' € Ob(C) with
f:C — A /g: C — B, there is a unique (!) morphism (f,g): C — A x B, such that the
following diagram commutes:

C

A fst AxB snd B

As a text: fsto(f,g) = f, sndo(f,g) = ¢g. The morphisms fst and snd are called (left and
right) projections and the operation f, g — (f,g) is called pairing.

Example.

e In Sets, products are Cartesian products.

e In Cpo, products are products of Cpos.

Definition (Terminal Object). A terminal object is an object 1 € Ob(C), such that for any
A € Ob(C), there is a unique morphism: !4: A — 1

30

2.1. Introducing Monads Version: 2022/01/12, 13:33:41

Definition (Cartesian Category). A Cartesian category is a category with a terminal object
and binary products.

Equivalently, a Cartesian category is the one which has all finite products: products of a
nonempty finite number of components are obviously induced by binary products, the product
of the empty family of components is the terminal object.

Ezamples: Sets and functions, Cpos and continuous functions, ...

Definition (Isomorphism). An isomorphism between objects A and B in a category C is given
by a pair of morphisms: f: A — B, g: B — A, such that the following diagram commutes:

A1 . B

lg idp
id 4

A

B

Example. In Sets, an isomorphism is a bijection.

Here is a translation table, between the different languages of set theory, category theory and
Haskell.

Set ‘ Categories Haskell
function morphism program

set object type
singleton set terminal object unit type
Cartesian product | (Cartesian) product | product type
element morphism 1 — X —

predicate — —

bijection isomorphism —

Theorem 2. Let A, B,C € Ob(C). A triple (C,fst: C — A,snd: C' — B), is a product of A
and B if there is an operation
f:D—A g:D— B
(fr9): D—C

such that

f5t0<f7g>:f7 sndo<f,g>=g, <fSt,Snd>=id, <f,g>0h=<f0h,g0h>.

Proof. The proof consist of the soundness (=) and completeness (<) directions.
(=) We need to show the claimed identities. The first two are obvious by definition. The
other two are by diagram chasing:

D
Ax B foh ih goh
fst I snd c
I f g
/ i(fst,sm / i(f,g)
A«— AxB—— B A«—— AxB ——B
fst snd fst snd

31

2.1. Introducing Monads Version: 2022/01/12, 13:33:41

The first identity holds because in the left diagram replacing (fst,snd) with id would produce
a diagram, which still commutes, but (fst,snd) is unique, hence (fst, snd) = id.

The second identity holds analogously because by the second diagram, (f,g) o h satisfies
the characteristic property of (f o h,go h).

(<) Suppose, conversely, the identities hold and for some h: D — C the diagram:

/I
A«—C(C— B

fst snd

commutes. Then
h =idoh = (fst,snd) o h = (fstoh,sndoh) = (f, g). O

Products are defined not uniquely, but only uniquely up to (a unique) isomorphism. Let e.g.
(A x A,fst,snd) be a product of A, A. Then (A x A,snd,fst) is also a product of A, A:

swap
swapy: A x A U404 AxAT T AxA
swap

The pair (swapy,swap, 4) is an isomorphism of A x A and A x A:

swap o swap = (snd, fst) o (snd, fst)
= (snd o(snd, fst), fst o(snd, fst))
= (fst,snd) = id.

By using specific names x, fst, snd throughout we stick to selected (binary) products. In Set,
standardly

Ax B={{z,y) | xe A ye B}, fst(z,y) = =, snd(z,y) = y.
But we could just as well define

Ax B={{y,x) | ze A ye B}, fst(y, x) = z, snd(y, z) = y.
Theorem 3. Products (if they exists) are unique up to isomorphism.

Proof. Let (A x B, fst,snd) be a product of A, B and let (AOB, fst’,snd’) be another product.
Then the following diagram commutes:

Ax B
fst (fst,snd)l
fst/ AOB snd’

/ l <f5t,m
A

Ax B

fst snd

snd

B

f g

——
Hence, (fst,snd) o {fst'snd’) = id (because both morphisms satisfy the same characteristic
property). Because of symmetry, also g o f = id. Hence (f,g) is an isomorphism between
A x B and AB. O

32

2.1. Introducing Monads Version: 2022/01/12, 13:33:41

From Haskell’s perspective x is a type constructor, and since Haskell supports user defined
type constructors, we can introduce arbitrary many isomorphic products, e.g.

data Prod a b = Prod a b

projl :: Prod a b —> a
projl (Prod x _) = x

proj2 :: Prod a b -> b
proj2 (Prod _ y) =y

pair :: (a ->b) -> (a > ¢c) -> a > Prod b c
pair f g x = Prod (f x) (g x)

Coproducts are dual to products, which is explicit in the following definition.

Definition (Coproducts). An object A + B together with morphisms inl: A — A + B and
inr: B — A+ B called left and right injections is a coproduct of A and B if for any f: A — C
and any ¢g: B — C, there is a unique morphism [f,g]: A + B — C, such that the following
diagram commutes:

C

A inl A+ B inr B

Intuitively, [f, g] is defined by case distinction: if we are on the left of A + B then we apply
f; if we are on the right of A + B then we apply g.

Example.

e In Sets, A + B is the disjoint union of A and B.

e In Cpo, coproducts A + B are inherited from Sets, and z C y for x,y € A + B iff both x
and y are either in A or in B.

¢ In the category of relations, coproducts coincide with products and are thus called biprod-
ucts: A + B is again the disjoint union of A and B, and [r,s] € (A+ B) x C for r € A x C,
s € B x C'is as follows: (x,y) € [r,s] iff (z,y) €r or (z,y) € s.

Dually to products we have a complete axiomatization for coproducts:

L [f,gloinl = f;
2. [f,g]einr =g;
3. [inl inr] = id;

4. ho[f,g] =[ho f,hog].

Definition (Dual Category). Given a category C, the dual category C°P is defined as follows:
e Ob(C°P) = Ob(C);

33

2.1. Introducing Monads Version: 2022/01/12, 13:33:41

e Homeer (X, Y) = Home (Y, X).

Example. Let C be a poset category, i.e. Home(X,Y) = {x} iff X < Y. Then C° is the
dually ordered poset: Homeer (X,Y) = {x} iff X > Y.

For example, we now can formally state that products are dual to coproducts.

Proposition. For every C, a binary product C°P is a binary coproduct of C°P.

2.1.2 Functors and Monads

Definition (Functor). A (covariant) functor between categories C and D is a correspondence
sending any A € Ob(C) to FA € Ob(D) and any f € Hom¢ (A, B) to Ff € Homp(FA, FB) in
such a way that:

F(ida) = idra, F(fog)=(Ff)o(Fg).

Example (Forgetful Functor). Forgetful functor is an informal concept: this is a functor that
“forgets” some information about the category. One example is

G: Cpo — Set
GAC)=A
G(f)=1f

G is a typical name for forgetful functors (to remember: forGetful).

Example (Endofunctor). An endofunctor is a functor from a category into itself. E.g.,
F': Set — Set
FX=X+F
(Ff)(inlz) =inl(fx)
(Ff)(inre) = inr(e)

Example (Finite Lists). Another endofunctor over Set:

F': Set — Set
FX =[X] (finite lists over X)

(Ff)x1,...,xn] = [fz1,. .., fzn]

Definition (Contravariant Functor). A functor F': C°P — D is said to be a contravariant
functor from C to D.

Small categories themselves form a category with finite products: the final object is the
category of one object and one arrow, and a product of categories C and D is the category
C x D with

e Ob(C x D) = Ob(C) x Ob(D),

34

2.1. Introducing Monads Version: 2022/01/12, 13:33:41

e Homeyxp((X,Y), (X', Y")) = Home(X, X') x Homp(Y,Y").

The category of all categories is not a category, more precisely, the locally small categories do
not form a locally small category (but they form a category in a higher sense). Still, products
of locally small categories make perfect sense regardless of this issue.

Definition (Bi-Functor). A bifunctor is a functor C x D — &£ for which one also uses the
notation F'(A, B) instead of F(A x B) and F(f,g) instead of F(f x g).

Natural transforamtions & between bifunctors more explicitly satifying the following condi-
tion:

§A,B

F(A, B) G(A, B)
F(f,g)l lG(ﬁg)
FA x B 27 (4 x BY)

for any f: A— A’ and g: B — B’.

Example (Product Functor). Let C have binary products. Then F': C x C — C sending A, B
to A x B is a bi-functor with F'(f,g) = f x g.

Example (Hom-Functor). The hom-functor is the bi-functor Hom(-,-): C°? x C — Set.

Now, instead of saying that «: F' — G is a natural transformation, one often says that a
family ap: FA — GA is natural in A, e.g. for bi-functors, F': C x D — &, naturality of
aap: F(AxB)— G(Ax B) in A and B. Another example: associativity aa pc: A x (B x
C) — (A x B) x C is natural in A, B, C.

Definition (Monad/Kleisli Triple). A Monad in a category C is given by a triple (T, n,_*)
(Kleisli triple) where

e T: Ob(C) — Ob(C),
e 7 is a family (nx: X — T'X) xeob(c) (unit),
e forany f: A—>TB, f*: TA— TB ((Kleisli) lifting)

and the following laws are satisfied:

n"=id, frn=1, (fT9)" = f"g"
Example (Exception monad). TX = X + E is a monad with:
nx(a) =inla f*(inla) = fa f*(inre) =inre

This works in any category C with coproducts, TX = X + E extends to a monad under the
following definitions:

nx =inl: X - X+ F
fF=0fiin: X+E—>Y +Ewhere f: X > Y + E

Intuitively, f is a function, which may raise an exception, and f* completes the definition of
f by the clause: “if an exception has already been raised before, pass it as the result”.

35

2.1. Introducing Monads Version: 2022/01/12, 13:33:41

It is easy to check that 7" from a monad (7,7, —*) is a functor. We call it the functorial
part of the monad.

Definition (Kleisli Category). Given a monad T over a category C, the Kleisli category Cr
of T is defined as follows:

e Ob(Cr) = Ob(C);

e Hom¢,. (A, B) = Hom¢ (A, T'B);

e identity morphisms in Cr are nx € Home,. (X, X) = Hom¢ (X, TX);

e composition of f: A —>TB and g: B — TC is Kleisli composition: g*f: A — TC.
Theorem 4. Cr is a category:

Ly f=idof=f

2. f'n=f

3. f*(g*h) = (f*g")h = (f*g)"h

Let f x g denote (f ofst,gosnd): Ax B — A’ x B’ where f: A— A’ and g: B — B'. Tt is
easy to check some obvious properties of this notation like (f x g)o(f'x¢') = (fof')x(gog)

and (f x g)o(f',g)=(fofg0d).
Let

aap,c = (id x fst,sndosnd): A x (B x C) — (A x B) x C;
aiB?C = (fstofst,snd xid): (A x B) x C —> A x (B x C).

Obviously, o and o' are mutualy inverse. Analogously, we define unitors:
)\A:(AxliA), pA:(leﬂA)

for which A% = (ida,!), px = (!,id4).

Theorem 5 (Mac Lane’s Coherence Theorem'!). Any diagram with labels composed from

id, x, o, ™, A, A2, p, pt commutes.

2.1.3 Natural Transformations: Relating Functors

Associativity morphisms a4 g ¢ are examples of natural transformations, which are a cat-
egorical formalization of parametric dependency.

Definition (Natural Transformation). Let C,D be categories and F,G: C — D be functors.
A natural transformation ¥: F — G is a family of morphisms in D:

(Vo : FC — GCO)ceob(e);

such that, for any f: C — C’ in C, the following (naturality) diagram commutes:

lsimplified version

36

2.1. Introducing Monads Version: 2022/01/12, 13:33:41

FC 2, qo

o e

FC' 2 qer
The morphisms ¥¢ : FC — GC are called components of 9: F — G.

Intuitively, natural transformations are such morphisms J¢ : FC — GC that do not use
any information about C. Instead of saying “9: F' — G is a natural transformation” one
often uses equivalent formulation “9¢: FC — GC is a morphism natural in C”.

Semantically, naturality corresponds to a specific form of parametric polymorphism. Haskell
functions are automatically polymorphic in the corresponding type variables, but not neces-
sarily natural. E.g. Haskell’s function

reverse :: [a] -> [a]
for list reversal is polymorphic in a as well as natural it in the categorical sense, but
sort :: Ord a => [a] -> [a]

for sorting lists is not natural, which is indicated by the type constraint ”"0rd a =>" telling
that sorting is not independent of the type a — the result depends on the fact that a is an
ordered type and on that how it is ordered.

Another example of a natural transformation:

maybeToList :: Maybe a -> [al
maybeToList (Just a) [a]
maybeToList Nothing (]

Definition. For any functor F' and natural transformation 9¥: G — H we define natural
transformations ¥p : GF — HF and F¢: FG — FH as follows:

(Wr)x =9px
(Fi)x = F(Vx).

(Easy) exercise: show that Jp and F¢ are indeed natural transformations.

F
Remark A natural transformation F AR G is often drawn as C /E? D . This would
v

G
be consistent with the notation £: F' = G, which is often used for natural transformations.

We simply write £: F' — G instead, for, after all, natural transformations are just morphisms
in the functor category [F,G].

37

2.1. Introducing Monads Version: 2022/01/12, 13:33:41

Theorem 6. Cat is defined as follows:

e Ob(Cat) are small Categories C (that is, those for which Ob(C) is a set).
e Hom(C, D) is the class of all functors from C to D.

Cat is itself a category with id: C — C being the identity functor and F' o G being functor

composition C _S,.p - L,¢.
Proof. trivial. O
Theorem 7. Given two categories C and D, [C, D], defined as follows:

e Ob([C,D]) are functors from C to D;

e Hom(F, @) are natural transformations : F — G.
is again a category.
Proof.

1. idoé=¢: Forany f: A— B
£

FA S, ga 29, ga

lFf le . lG’f

idp

FB -2, GB GB
_/
192}
2. £oid =¢
3. §o(foo)=({ob)oo
Properties 2 and 3 are analogous to proof.]

Pointwise composition of natural transformations ((§ 0 0)4 = £4 0 604) is called vertical com-
position:

/Fﬁ
C V° D

b

H

Definition (Horizontal composition). Given £: F — F’ and 0: G — G’,
€00: GF — G'F'

is defined by the diagram:

¢ e D7 o e
\F// \é/

38

2.1. Introducing Monads Version: 2022/01/12, 13:33:41

Notation. Given ¢: F' — G, we can form:

H¢: HE — HG
¢ FU — GU

with
(HE)a = H(Ea)
(€v)a = &ua
Proposition. Given £: F— F' and 0: G — G’ then £ 00 = (0p/) o (GE)
Example. elemsy : [A] — P(A) defined as follows:
elemsy([l1,...,0a]) = {l1,...,ln}

yields a natural transformation elems: [| — P of endofunctors over Sets.
Naturality: Let f: A — B. Then

(Pf)oelemso([ly,...,ln]) = (Pf)o{ly,....ln} = {f(l1),..., f(ln)}.
On the other hand:

(elemsg o[f[l1; - .., In] = elemsp([f(11), .- -, f(In)]) = {F (L), - -, f(In)}-

We now can give a new (equivalent) definition of a monad.

Definition (Monad). A monad on a category C consists of an endofunctor T : C — C, and
natural transformations

n: Id > T, w:TT —>T
— R
unit multiplication
satisfying triangle identities:
TTTX % TTX TXx X, prx Xy
T Xl l“x id& l’”i/dm
TTX " TX TX
i.e. the equations
popr=polp ponr =id=poTn.

Proposition. Given a Kleisli-Triple (77,7, _*) satisfying the monad laws, one obtains a
monad in the sense defined above in the following way:

Tf=Mnof) forf: X—>Y

TX =T'X
nx =
px = (idrx)*

39

2.1. Introducing Monads Version:

2022/01/12, 13:33:41

2.1.4 Examples of Monads

10 Monad

instance Monad IO

getLine :: I0 String
putStrLn :: String -> I0 O
do x <- getLine; putStrLn $ "yes, exactly, " ++ x ++ "I"

Rough intuition: I0 A = World — A x World:

getLine: 1 — (World — (String x World))
getLine(x)(w) = (receiveLineFromWorld(w), w)
putString(s)(w) = (1, sendLineToWorld(s, w))

State Monad
TX = (X x §)°

This works in Sets, Cpos and more generally in Cartesian closed categories.

x: X — (X x8)°

nx (z)(s) = (z,)

fiX (Y x8)°

(X x8) - (Y x8)°

*(p)(s) = let(z, s') = p(s) in f(z)(5)

=

N

where
let(x,y) =ping = let z = ping[fst z/x, snd z/y]
The state monad supports the following operations:

put: S — T1 put(s)(s’) = (x,s)
get: 1 - TS get(x)(s) = (s,s)

Example (Writer Moand).
TX =M x X (where M is a Monoid)

Example (Reader Monad).
TX = X°

The Reader Monad is a submonad of the State monad:
ax: X% — (X x 8)°
ax(p)(s) = (p(s),s)
Theorem 8. TX = X7 is a monad.

40

2.1. Introducing Monads Version: 2022/01/12, 13:33:41

Continuation Monad In Sets: 7X = (X - R) - R
— S~——
Continuation Result
nx(z) = k. k(x)
(f: X > (RY > R)*(p: RX > R) =Xk : Y — R.p(hz.f(2)(k))

—_—
X—R

The following lemma helps to prove that the continuation monad is indeed a monad in an
abstract way.

Lemma. Let F': C — D be a functor and let T be a map Ob(C) — Ob(C). Suppose that for
any X,Y € Ob(C), the hom-sets Hom(X,TY) and Hom(F X, FY') are isomorphic naturally in
X. Then T is a monad with the following induced structure

n=id fr=7Fid

where f: FX — FY and §g: X — TY are the obvious isomorphic images of f: X — TY and
g: FX — FY correspondingly.

Moreover, the Kleisli category of T is isomorphic to the full subcategory of D over the
objects of the form FX.

Proof. The naturality condition means precisely that f (Fh) = fﬁ for any h: X — Y and
f:Y — TY. This entails that g(F'h) = gh for g = f and moreover,

_— —— —

frg=fidg=fidFg=fidg=7[g.

Therefore,
N = glj = é =id
fa=Fa=7=1
(f9) = (F)id = F@id) = /91 = 4",
and we are done. d

This can be instantiated as follows.
Example. For the state monad TX = (X x S)%, Hom¢(X,TY) = Home(X x S, Y x S).

For the continuation monad TX = (X — R) — R, Hom¢(X,TY) = Homee (RX, RY) =
HOmc(RY, RX).

2.1.5 Dualization, Bi-Functors, Cartesian Closure

Definition (Cartesian Closure). A category C is Cartesian closed (CCC) if it is Cartesian,
and for any objects B and C there is an object B®, called an exponential, for which we have
an isomorphism

curry: Hom(A x B, C) =~ Hom(4, CP)

41

2.2. Tensorial Strength Version: 2022/01/12, 13:33:41

which is natural natural in A, meaning that

curry

Hom(A x B, C) Hom(A, CB)

Hom(fx B, C) Hom(f,CP)
Hom(A’ x B,C) ——~ Hom(A/,CB)

On the left side we go from A x B — C to A’ x B — C’ by post-composing with f x id
where f: A — A. On the right side we post-compose with f, i.e. the diagram expresses the
following equation, where g : A x B — (.

(curryg) o f =curry(go (f x id))

It is easy to see that the naturality condition for uncurry = curry™

uncurry(g o f) = (uncurry g) o (f x id)
is derivable.
Again, we can define the evaluation transformation
ev = uncurry(id: C® — CP): ¢B x B - C.

Proposition. In any CCC C, AP extends to a bi-functor (-)(): C°° xC — C sending f: A’ —
Aand g: B— B’ to

curry(BAx A S, gA A B 9 py. A, gAY

Proposition. In any CCC curry and uncurry are natural in all parameters.

2.2 Tensorial Strength

We can generalize the call-by-value semantics of PCF along the following lines:

e replace (=) with T
e replace “let” with the “do”;

e replace |—| with return.

This should work for any CCC with suitable carriers [Bool], [Nat] and a fixpoint operator
fir: (TA— TA)— TA. Recall the semantics of types:

o [1] =1;
e [A x B] =[A4] x [B];
e [A— B] =[A] — T[B].

42

2.2. Tensorial Strength Version: 2022/01/12, 13:33:41

Now, the semantics of a term in context I' - t: A with I' = (z1: Ay,...,2,: A,) must be a
morphism [A;] x ... x [A,] — T[A]. This works alright, and we could also incorporate the
do-notation in the language (modulo replacing 7'X with X in the return types):

I'p: A Iz: A+q: B
I'-dox=p;q: B

Here we have:

f=[TFp:A]: [I] — T[A]
g=[T,z: A+ q: B]: [I'] x [A] — T[B]

from which we expect to obtain:
[I'+=doz=p;q: B]: [I'] - T[B]
We would expect to have
[r] 2 [x 74] —— T([T] x [A]) £ T[B]

That is, we need means to incorporate the context I' into a computation of type A.

2.2.1 Strong Monads

We arrive at the following notion.

Definition (Tensorial Strength). A strong functor is a functor F': C — D between Cartesian
categories C and D, plus strength, which is a natural transformation 74 p: AXxFB — F(AxB),
such that

IxFX ., FxX (XxY)xFZ u F((X xY) x Z)
Tl Ad assocl lFassoc
F(1 x X) X x (Y xFY) X0 X x F(Y x Z) > F(X x (Y x Z))

Strong natural transformations are those that preserve strength in the obvious sense. Given
a strong functor (F,7), note that (Id,id: X xY — X xY) and (FF,(F1)7: X x FFY —
FF(X xY)) are again strong functors.

Now, a monad is strong if it is strong as a functor and 7, u are strong natural transforma-
tions, concretely,

idx p

XxY 1 T(X xY) X xTTY X xTY

idxnl T pa
A | o

X xTY T(X xTY) — TT(X xY) —> T(X x Y)

The reason why we do not see strength when programming in Haskell is because Haskell
functors F': C — C are indeed natural transformations A? — FAFB (as opposed to cate-
gorical functors Hom(A, B) — Hom(F A, FB)). Categorically, this is in fact, a quite specific
condition.

43

2.2. Tensorial Strength Version: 2022/01/12, 13:33:41

Definition (Functorial Strength). An endofunctor F': C — C on a CCC C is functorially
strong, if it comes with a functorial strength, i.e. a family of morphisms

pap: B — FBI,
such that

Hom(1 x A, B) —> Hom(4, B) —£> Hom(F A, FB) —=> Hom(1 x FA, FB)

cu rryl lcu rry

Hom(1, B4) Hom(1, FBT4)

Hom(l, PA,B)

Moreover, p must respect internal units (curry(snd): 1 — A4) and composition (B4 x CF —
C4) in an obvious sense.

Analogously, we can internalise natural transformations and define “functorialy strong
monad” as those functorially strong functors, for which there are internalized version of 7
and u.

It turns out however that tensorial strength and functorial strength are equivalent:
U, (A x B)B — T(A x B)TB),
T ev

TA,B = uncurry (A

PAB = curry(BA x TA —— T(B" x A)

TB).

Example. Every endofunctor and every monad on Set are strong with the functorial strength
being just the functorial action, because there is no distinction between hom-sets Hom(A, B)
and exponentials BA. Hence 74 5(z € A,p e TB) = (TAy. (z,y))(p) (now we see, what this
expression actually means!)

Every monad on predomains is thus also strong — this amounts to verifying that the above
T is continuous.

Categorically, the right setup for these considerations is enriched categories. These gener-
alize standard categories by replacing hom-sets with hom-objects of a yet another category
V, in which the original category is said to be enriched. This produces the whole spectrum
of derived notions: V-functors, V-natural transormations, V-monads, etc. From this perspec-
tive our categories are Set-categories, i.e. categories enriched in Set. Every Cartesian closed
category can be regarded as enriched over itself, because we can use exponentials AP instead
of hom-sets Hom(B, A). In that sense strong functors turn out to be precisely the enriched
functors and strong monads turn out to be precisely the enriched monads. As a slogan: in
CCC strength is equivalent to enrichment?.

Is there non-strong monads? They are not easy to meet in the wild.

Example (Non-Strong Monad). In the category of two-sorted sets Set? = Set x Set the
monad (X,Y) — (X,Y + X) is not strong.

2 Anders Kock. “Strong Functors and Monoidal Monads”. In: Archiv der Mathematik 23.1 (1972), pp. 113—
120.

44

2.3. Algebras and CPS-Transormations Version: 2022/01/12, 13:33:41

2.2.2 Commutative Monads

We can classify computational effects according the equations they satisfy. Recall that the
lifting monad satisfies the commutativity property:

letz=pinlety=qin|(x,y)| =lety=qinletz=pin|[(z,y)],

Definition (Commutative Monad). A strong monad 7T is commutative if

TAxTB —> T(TA x B) X% TT(A x B)

!

T(A xTB) p
T’rl
TT(A x B) K T(A x B)

This is the same as claiming
dox=p; doy=q; return{z,y) = doy = ¢; dox = p; return(z, y).
Further important properties:
e copyability: dox=p; doy:=p; return{x,y) = dox = p; return(x, z);
o discardability: dox = p; return x = return .

Example. Powerset monad is commutative, but neither copyable, nor discardable.

Example (Probabilistic Computations). The following is a probability distribution monad
on Set:

e DX ={d: X - [0,1] | >, d =1} (it follows that the set {x | d(z) # 0} is countable);
e (nz)(z) =1 and (nz)(y) = 0if x # y (Dirac’s distribution);
o (f: X=>DY)(d: X = [0,1])(y € Y) = 2pex dlz) - f(2)(y)-

This monad is commutative and discardable, but not copyable.

2.3 Algebras and CPS-Transormations

Definition (Monad Algebras). An (Eilenberg-Moore) algebra for a monad T, or a T-algebra
is a tuple (A,a: TA — A) satisfying the following conditions:

AT, TA TTA 1%, TA
\ la #Al la
A TA —% > A

We call the object A of a T-algebra (A,a: TA — A) the carrier of the latter and the morphism
a: TA — A the corresponding structure. As expected, morphisms of T-algebras are those
morphisms of carrier that preserve the structure:

45

2.3. Algebras and CPS-Transormations Version: 2022/01/12, 13:33:41

TA I, TB
[
A B

We thus a category of T-algebras, of the Eilenberg-Moore category of T'.

Example (Pointed Sets). Let 7" be the maybe-monad TX = X +1. Then (4,a: A+1 — A)
is a T-algebra iff

A", 441 A+1)+1 - 441
\ a [id,inr]l la
A A+1 a A

The former diagram means precisely that a is of the form [id, p] for some p: 1 — A and the
latter diagram commutes automatically. Therefore, to give a maybe-algebra over A is to give
a morphism 1 — A, i.e. specify a point in A. A morphism of algebras h: (4,a: A+1— A) —
(B,b: B+ 1 — B) is exactly a morphism h: A — B of the carriers that respects the points.

Example (Monoids). Let TX be the list monad over Set: TX = X*. It can be shown that
the category of list-algebras is isomorphic to the category of monoids, defined as follows:

e objects are monoids (M,®: M x M — M,e e M);

e morphisms from (M,®,e) to (M',@', ') are those maps h: M — M, which preserve the
monoid structure: h(a ®b) = h(a) @ h(b), h(e) = ¢’

Definition (Free Algebras). A free T-algebra on an object A € Ob(C) is the tuple
(TA us: TTA - TA).

The axioms of T-algebras are automatics for free algebras.

Definition (Strong Monad Morphisms). Given two monads S and 7" on the same category,
a natural transformation a: S — T is a monad morphism if

X X, 5x SSX 95X, pox Tox, prx
A lax Hxl l#x
TX SX ax TX

A monad morphism between two strong monads is strong if it is a strong natural transfor-
mation.

Monad algebras, strong monad morphisms and continuations are connected in the following
theorem.

Theorem 9 (Dubuc’s Theorem®!). Given a strong monad T, T-algebra structures over
(A,a: TA — A) are in one-to-one correspondence with strong monad morphisms «: T —
(- —> A) - A as follows:

3Eduardo J Dubuc. “Enriched semantics-structure (meta) adjointness”. In: Rev. Union Math. Argentina 25
(1970), pp. 5-26.

4simplified version

46

2.8. Algebras and CPS-Transormations Version: 2022/01/12, 13:33:41

e given (A,a: TA — A),

(Tev)r

ax =curry<TX X (X > A) 5 (X - A) xTX TA % A);

e given a: T — (- - A) — A,

o — (TA (id, curry snd)

TAx (A — A) 2nermye, A).

If Ais a free T-algebra A = TR then a(p: TX)(f: X — TR) = f*(p). Moreover,
a(p: TR)(n: R — TR) = n*(p) = p. This can be illustrated with a series of Haskell programs.
The program over the list monad

exl :: [Int]
exl = do
a <- return 2
b <- return 2
return $§ a+b

forms a list [4]. We can reuse just the same code for the continuation monad:

ex2 :: Cont String Int
ex2 = do

a <- return 2

b <- return 2

return $ a+b

However, since the result type is String, in the end we will need to convert from Int to
String, e.g. with runCont ex2 show. In contrast to the list monad we now can ”escape”
from the computation:

ex3 :: Cont String Int
ex3 = do
cont (\r -> "escape")
a <- return 2
b <- return 2
return $§ a+b

Now, if we start with the program

ex4 :: [Int]
ex4 = do
a <- [1,2]
b <- [1,2]

return $ a + b

47

24 Free Objects and Adjoint Functors Version: 2022/01/12, 13:33:41

which yields [2,3,3,4], we can use the CPS-transform of the list monad to convert to the
continuation monad:

i x=-cont (\r -> x >>=r)

ex5 :: Cont [Int] Int

exb = do
a <-1i [1,2]
b <- i [1,2]

return $ a + b

Here [Int] is the free list-algebra on Int and i is the induced monad morphism. With r
unCont exb5 return we obtain [42] like in the original case of the list monad. But now we
also can escape from the computation:

ex6 :: Cont [Int] Int

ex6 = do
cont (\r -> [42])
a <-1i [1,2]
b <- i [1,2]

return $ a + b

The same can be achieved with the library function callCC :: MonadCont m => ((a -> m
b) -> m a) -> m a (=call with current continuation):

ex7 :: Cont [Int] Int
ex7 = callCC $ \k -> do

k 42
a <- 1 [1,2]
b <- i [1,2]

return $ a + b

2.4 Free Objects and Adjoint Functors

Definition (Free Objects). Given a functor G: C — D, a free C-object on X € Ob(D) consists
of an object Y € Ob(C) together with a morphism nx: X — GY in D such that for any other
Z € Ob(C) and morphism f: X — GZ in D, there exists a unique f7: ¥ — Z in C such that

GZ

o o

48

24 Free Objects and Adjoint Functors Version: 2022/01/12, 13:33:41

Example (Exponentials). Let C = D and let GX = X4, Then nx: X — X x A is a free
object on A and ev(f x A): X x A — Z is the universal map induced by f: X — Z4.

Example (Free Monoids). Let C be the category of monoids over C and let G be the obvious
forgetful functor. Then 7: X — X* is a free monoid on X and for every f: X — Y,
fT: X* > Y is a unique extension of f to a monoid map from X* to Y.

Example (Free Algebras). Let C be the category of T-algebras over D and G: C — D a
forgetful functor. Let F': D — C be the free T-algebra functor. Then (FX,nx: X - GFX =
TX) is the free object on X.

Definition (Adjointness). A functor F': D — C is a left adjoint of G: C — D if Hom(FX,Y)=
Hom(X,GY') naturally in X and Y. This is written as ' 4 G or G - F and G is called a
right adjoint to F.

Theorem 10. A functor G: C — D has a left adjoint F': D — C iff there exist free algebras
(FX,nx: X - GFX) for every X:

e from an adjunction Hom(FX,Y) = Hom(X,GY') we obtain a correspondence
(f: X >GY) - (fT: FX - Y)
such that (nx: X — GFX)" = idpx for a suitable nx;
e from free algebras (F X,nx: X - GFX), we obtain the maps
(f: FX - Y) > (Gf)n: X — GY),
(f: X > GY) - (f1: FX - V).
Theorem 10 allows us to switch between two equivalent ways of defining categorical structures:
by adjunctions or by free objects. The latter way is more fine grained, because we can speak

about existence of specific free objects, while the adjoint formulation is only sensible when all
free objects exist.

Example (Exponential). Existence of exponentials now can be reformulated as (-) x A
(-)4. Theorem 10 show that this definition is equivalent the the definition via free objects.

By Theorem 10, we now see that F' 4 G for F' being the free T-algebra functor and G being
the corresponding forgetful functor. This is called the FEilenberg-Moore adjunction. Because
of Theorem 10, it is easy to see that we could just as well consider the category of free T-
algebras instead of the category of all algebras. The resulting adjunction is called the Kleisli
adjunction. The reason for it is the following

Proposition. The Kleisli category of a monad is isomorphic to the category of all free algebras
of that monad. The relevant isomorphism is defined as follows:

e (from Kleisli for free algebras):
X (TX,pa), (f2 X > TY) o (f* TX — TY);

e (from free algebras to Kleisli):
(TX pa) » X (f: (TX,px) = (TY, py)) = (fn X > TY)

49

Bibliography

Barendregt, Hendrik. The Lambda calculus: Its syntax and semantics. Amsterdam: North-

Holland, 1984.
Dubuc, Eduardo J. “Enriched semantics-structure (meta) adjointness”. In: Rev. Union Math.

Argentina 25 (1970), pp. 5-26.
Kock, Anders. “Strong Functors and Monoidal Monads”. In: Archiv der Mathematik 23.1

(1972), pp. 113-120.

50

	Semantics for Computation
	The Untyped Lambda Calculus
	Evaluation Strategies
	Formal Systems
	Standard Evaluation Strategy
	Call-by-Name (Lazy) Evaluation Strategy
	Call-by-Value (Eager) Evaluation Strategy
	Big-Step Call-by-Name
	Big-Step Call-by-Value

	PCF (Programming Computable Functions)
	Simply-Typed -calculus
	Call-by-Name Operational Semantics for PCF
	Call-by-Value Operation Semantics for PCF
	Contextual Equivalence
	Coproducts, Abrupt Termination and I/O

	Denotational Semantics of PCF
	Constructions on Predomains
	CBN Denotational Semantics
	Failure of Full Abstraction
	CBV Denotational Semantics

	Categories and Monads
	Introducing Monads
	Products and Coproducts
	Functors and Monads
	Natural Transformations: Relating Functors
	Examples of Monads
	Dualization, Bi-Functors, Cartesian Closure

	Tensorial Strength
	Strong Monads
	Commutative Monads

	Algebras and CPS-Transormations
	Free Objects and Adjoint Functors

